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and 252 R’ respectively. Further, as in [1], we see that the height of a;
is at most (2442 A2V, whence, since 2D /p < % when p > &*?, it follows
that by,...,b, and «, have the properties asgerted at the beginning.

3. Proof of Theorem 1. The proof is eompleted by induction. There
is plainly no loss of generality in asswming that B’ > ¢f; to begin with. we
agsume that also 4 = ), whence

log Alog {87 B') > log (e, A¥}log (e} 6~ B').

Then all the hypotheses recorded in § 2 hold with by, ..., b, and ¢, in
place of by, ..., b, and a, respectively; the new values of 4, B, B’ arc
e, A2, ¢, B, 0, B', and 8 isreplaced by d/e¢,. We suppoge furthor, as we may,
that d is taken, at the outset, as the degree of I so that the walues of
¢y, ¢, remain unaltered in the inductive discussion.

. 'We now repeat the previous argument and obtain for each s = 1,2, ...
a set of integers b¥, ..., b, and B with absolute values at most ¢fB
and ¢fB’ respectively, and an element ol in K with height at most
ittt 48 qneh that (1) holds with 5™, ..., 5 and of in place
of b,,..., b, and a, respectively. The algorithm terminates for some
s < 2loglog A when the height of o is at most ¢; and ¥, ..., b then
have abgolute values at most

H = (log A)*max(B, B').

But the number on the right of (1) 18 at most H"/U; for if Bz B’ then
either H < B* or H < (log A)*3, and the assertion is obvious if B < B
Thus one concludes from. the result of [1] that the inequality is untenable
if ¢ is sufficiently large, and the theorem follows.
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On Waring’s problem in algebraic number fields
_ by
Tixao Tarvzawa (Tokyo)

Dédicated to Professor Oarl Ludwiy Siegel
on his 75th birthday

Since Siegel succeeded in dealing with Waring’s problem in algebraic
number fields, there have appeared many works ander almogt the same
title {see [8], [9], [12], (8] and [1]}. T should like to nse this opportunity
to add some corrections and justification for my former regults. The
result presented at the United States—Japan seminar at Tokyo in 197L
is not the best. Nevertheless, we seem to be able to place our hope in its
further developments, because the resulb is based on some remarkable
new research due to Mitsui (see [71). My concern is mainly the treatment
of Fourier analysis. ‘

1. Preliminaries and basic domains. In the first place, we shall sum-
marize the main results obtained so far. Let K be an algebraic number
field of degree m, let K® (1 <1< ry) be r, real conjugate fields, and leb
K, K (p 41 < m < ry+7) be 7, pairs of complex eonjugate fields,
30 that n = r,+2r,. Let b be the different of K, and 4 the diseriminant
of K. We can choose @, , @g, ..., @, &3 an integral basis of K and. g, 02y -+
.ey.0, 28 8 bagis of b7, satisfying _

' 1 (r=2),
0 {r = 8)-
We denote by o the integral domain of all algebraic integers in K. We
denote by P (1) the set of (2, ..., #,) satistying
oA, AT

trace (g, 0,) =~

‘where
;‘l =z G)lzl']" ‘e + wnzm,s

the indices I and m being over the set of numbers cited above. On the

other hand,

1F(m)
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means that 1 runs over all integers restricted as above. We. write
& = 01®3 o 0n iy,

L) = Y ) =

2 exp{2mi trace (AF£)}.
AB(T)

2P(T)
Then the number of solutions of

B aE o A =y,
is expressible by the integral -

I(») :f'g,'fr‘(f)a i —~ ) des,

Ajy ¥eD

where U is the unit cube; namely,

U={@, o2 0se<l,..,052, <1},

Throughout the paper, we write
t = Tl—-q7 - T,”c—l-i-u

_ 0 < a<1l).
We denote by I" the set of

: Y = @1t Qe o @0,
fultilling the conditions: - '

(@19 000380 U, @, rational numbers, N{a) <,

where g is derived from the nnique expression

: b
yb ‘_-“_a‘“: {a, D) = o,

wiiting ¢ — a for convenience. For a given g < p, the number of y in T,

subject to y —a, is O(N (a)). Define the basic domain B, for every ye I
subject to y —a, by ‘

(@2 s )5 @1 s @) T, £ = g0yt 0,8,

n

[ [ Max(h 10—, 1Y) < ()7, for any p, = ymodb~?,

Fe=1
whose contribution to ¢ does not 'vzmiah}.
8 =U— 3 B, is termod the supplomentary domain. To caleulate I(»),

pel’
we divide the integral as follows:

I = Zfﬂif'*“fsf

yel'
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According to Siegel, it T is sufficiently large, and y; = 'y,, then

B, NB, =0.
Suppose thab :
(@5 eees ‘I"n)EBw

yel ’J"‘*ﬂ;

E =0T F oo OBy 7 = 1Yt - DY
Leb
’ 8() = > BUFY),
A
the summation being over a complete residue system moda. It is kno_wn
that the sum is independent of the choice of system and there exisle

a constant e(e) such that X
1—--—z-18

Wii<el@Na) *

for any positive e. We can derive the formula

L(E) = N(a)—“ls(,}))f.“fE ("7”5“?))@'@,{»!»-0(1‘“““)_

P(T)
If we write
| TH(E—y) =7,
then we have |
f. fE(nfc(E"“?))d’_!j < TnN{M’j_n(l’ ]’E(ﬂr”k)},
P(T) -
o[ F{in (L, 1A e < T
x .

provided &> k, X being the whole n-dimensional Euc]idearf space. With
the aid of these results (see [12]), we may have the following

TrmorrM 1. If 8 > 4nk, then

2 ;;;f L B8 = S)T (T 0978

ped'
provided ve P(T%) and u = vI~ :
S(») and J (u) can be defined in the following way. If y runs over
a reduced residue gystem of (ad)*modd~", then the sum

Hia) = 3 N{a)"S{) B(—»)

for »e n, is independent of the choice of system. The geries

Sir) = ZH(G)
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iy called a singular series which is absolutely convergent for s 3= 4% and
can be expressed as

80) =[] %0
‘where ’

() = IZ,:H(JO’)-
When Landau introduced Vinogradov’s new cirele method for Waring’s
problem (see [6]), he derived the following formmula:
)

k]l = -1

i)

for 0 <e<1 and s> % In proving the formula he used the Dirichlet
integral theorem. Later on Siegel extended this integral to algebraie
number fields (see [9]) and considered the integral -

T = J.o- [B(=pe|[... [Blent ay do,
P

o

CT{e) = f 6"2’"'””( fl a“"”‘”kdw)" ay = -
. ©a 1]

setting

. & = 0% 0,8, 7= ol e Y,
where P = P(1yand u 5 0, ge P(1). By means of Fourier transformation,
he proved

)7y

1
T(e) = 1010 TR (u® [T H (™)
. I=1 Mgy L

for s > k. The definitions of these new functions can be seen in the fol-
lowing section. '

2. Local theory of Waring’s problem in algebraic number fields. We
shall sketch, in the first place, the non-Archimedean valuation theory
of a field K. Let p be a prime ideal of K and let X, be the completion
of K with respect to this valuation. Let « be a number of &. Weo denoto
by wy(a) or briefly w(a) the exponent with which, p entery into the canon-
ical factorization of a. Suppose that A is & number of K, and. js defined
by the Canchy sequence {a,}, a,< K. Since there oxisls & Hmw (a,), we de-

. N=ro0
note it by w(4d). Then we have
w(AB) = w(4)+w(B), (4 + B) > Min (w(4), w(B)),

for every 4, B in K,. The last inequality can be replaced by an equality
- when w(4d) = w(B).
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In K,, the series '
At A+ A, 4+

converges if and only if w{d,) - oo (a8 # = oo} Let f(z), ¢(x) and k(z)
be power series in K, formally satisfying fla)g(x) = h(z). Let 4 K,.
If f{4) and g(4) is convergent, then h(4) is also convergent and satisfies
flA)g(4) = h(A). Let p be a prime contained in p and p¥p. We denot-e
by w,(n) the exponent with which p enters into the canonical factori-
zation of », where o docs not necessarily mean the degree of K for a little
while. Let

o= agtagp bt op (0< a4 < )

be a p-adie representation of n, and
s(n) =agg+a,+...+a,.

Clearly s(n) =1 for » = 1. It follows from

wy(n!) = ﬁj—;é(l—”’l
that
A" e s(n)—1
w(mﬁ?—) — w(d)+ (n—1) (w(A) p_l.) o
and from
< logn < n—1
N
that '
B" B 8 )
w(T)BW(B)—H%—l)(w( -

(see [21). Because of what we have just proved, we know that the series

1 1.
1_I-A_|———2‘—?A2—1_...4~"BTA '“I?---

is convergent provided
¢
p=1’

w(d) >

s0 we denote it by expd, and the series

1 3 1 . 71,-—11 1
— R B (1 —B% ...
B ZB 1—3 F(—1) 7 |
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is alsc comvergent provided

w(B) > —

p~1’

g0 we denote it by log(l--B).
We now define an additive group {4} in K, by

e
{A; Aely, w{d)> ;pwlg’

and a multiplicative gronp {M} in K, by
e
{M; Me _Kp, w( M —1) > m}.
On account of
wlexpd—1} =w(d} and
we have
Ae{d} =expde{M} and

w(logh) = w(M —1),

Mc{M} =logMe{A}.

By usual computation, putting B = epr—-:L, wo have

1 1 u -l
. 2 11T pn — [
B=o B ()" B A+Z Z (_I: "

>0 Dy-Foot Dy ek
lL<msn

whence follows
log[expA] = A

it w(d) > —

T namely if 4de {4}, since

1 AP1Fetom
(?n“:pl! ...pm!)-
P1—5(p1)

i ?m“‘s(pm) m-—1
> et w(d) — A —

Algo by usual eomputation, putting .4: = log (14 B), wo havo
' ( 1 BPrketoy
e T ]y

1. . ' .
I4+d 4o +—A" =148
* +%! * +2 ML Pyees P

A Dyt bDy,=k
) l=men
whence foﬂows expllog(1+B)] =1+ B if w{B) > p 61' ; in other words,

eXp [logM] =M
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if Me{M]}, since
1 Bp1+"'+pm
i s )
m! Dy P
ﬁl“l .’pm""l fmms(m)
> Ao+ P w(B) —s —
(i + )0 (B) =T oot
¢ e
= klw{B)— .
( ) p“1)+p-1
We ean also prove that
A3 43 _—— :
w _ngrI > (g-+r) ln(w( 1)rw(A2))_ il

Hence we have
Ay, Age {A} = oxp(d,+4,) = expd,-expd,.
We put X = logM,--logM, when M, M,e {M}. Tt follows that
expX = expllogM,]-exp[logM,] = M, M,.
Since Xe¢ {4}, we obtain ' '
My, Mye {M} = log(M,M,) = logM, +logM,.

TUnder the full use of these results we get the following lemma. Its
formmulation, not nsing the ferminology of p-adic numbers, is due to the
late Prof. Takagi.

LummA L. Lel p be a prime ideal in K and let p be a prime contained
in p. Assume that N (p) = 9’, p’lp, p°ik, and
(1 (0 = 0),
Iy =
0z l[ﬂi-—]+ae+1 (6 > 0).
p—1
If the comgruence :
- £ = amodp o,
for ae v, is solvable with & not divisible by p, then the congruence
. " == amodyp’
is also solvable for any Lz 1,.
Proof (see [12], p. 328).
Lommma 2. Let ay (A<isr,1<i<s) be rational integers. Then
the congruence ‘
aallml"l"... —-[—011.3.'}03 =0 )
. mod p’
B @y et Oy =0
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has o non-trivial solution; namely, there emists a solution (y, ..., ;) in which

at least one w; connot be divided by a prime p, provided s > r.

Proof. Suppose that (ay, ..., ay) = d; and

PoEyy ., dy  for O&Lm <l

ginee the lemma is trivial for the case m = Then the

equations can be reduced to

=1 Let ay = 9™ ay.

mod pt~™,

Hence we may assume that p{d; and pt ay, without loss of gencrality.
Ag Artin indicated, the congruence equations can be reduced to

! ’ i

Byt e+ By, =0
4 ’
Doyt + . o + by 8, = 0

gl -+ brym, =0

mod p'=™.

Now the proof can be obtained by induwection, as Artin ghowed in the
first part of his Galois theory.

. Lemwa 3. Let p be a primitive root modyp and let m be an integer satis-
fying mep, 7 ¢ p? (write briefly by p|x), where p is a prime ideal. Then ae o
48 always empressible as

%(2%9 “(3,

Je=0

a,ug):rz—l- +(2ac_1jg) “Tmodp®

for amy positive integer 1, where N(p) = 9/, plp and ay; con be umguely.

determined mod p.
Proof. It is known that there exist ¢ymod p such thafo

& = Cogt Co1 @+ -+ G,y 1@ mOdp-

Furthermore, we can determine ¢, modp such that
le—1 J-1

= 2 (2 Cyy Qa)nfm()d-pk? ‘

=0 Juml)
@; being taken in o patisfying
r ER
Let v =eq-+-4 (0 <4 < e). T we pub

Y .
J’E,.»#‘p!ﬂ;,
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then the congruence mentioned above turns to

-1 e-1 f-1 :
o= S (S5 i) ) o
q= de=l)  fe=0

The lemma follows by taling

a’;ﬂ o c’i]' -‘I-“ ci-!-e,jfp —I‘ s —l—- Gi'i'(ﬁ—l)ﬂ,?pzﬁl
Tt J be the ring generated by the kth powers of all infegers in K.
On account of the identity

k=1

kly = 3 (=1 () (11

Ii=0
where e 0, “the 1ing J; becomes an order.

Lemua 4 (Siegel). Let p be a prime ideal of K, let p be a prime con-
tained in p and let N(p) == = p/. Tet 1 be a positive fmmoml integer. There
exist u, in o and positive ralional integers & (< < 10, ¢, (some power of p} such
that the linear form

Ay byl @y = 0,1, g1 (A<

uniquely represents all numbers of J pmodyp’. .
Proof. Liet g be the order of the module genemted by the cla.sses

represented by elements of Jymodp’. Take », ¢ p.. Then the set
{x; o rational integer, &’ = Omodyp’}

becomes a module and containg p'. Hence the smallest positive integer
in this set, say g, is & power of p. Next we take n, such that
nt # aynfmodpt for e, =0,1, ey g1
Tf there exists no such z,, then g = ¢,. Next we congider the set
| {; anf = ayyfmodyp’ for some ay}.

This i& alyo & module and containg p’. Hence the smallest positive integer @
in thisy set, say 4z, is a power of p. Then the numbers

oy = 0,1, .0, a1,
652 = 0,1, --.?q:a""l

are relatively incongruent modlp’. Next we take #; such thab

by ok
Iy N1 A Qo 7y \

ap = 0,1,..., s —1,

k [ (] i
R Mg aq Lol for -
’78 1%_ Vi P- 2 ? [a“z .=0:1=‘---y‘12—1-

If there exists no such 7, then g = 1,
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In this way we can infer that
g = lz--- s
and any number in J; can be uniquely expressed as
. asnif modp?,

where % rung over 0,1, ..., ¢4—1 (1<j<s). Since < ¢302...¢, = ¢
< Nip) = o™, we obta.m

s < fl.
LuvMA b, Under the same assumplion as in Lemma 4, we have

s<¢f,

for whatever 1, e being determined by p°|p.
Proof. For gimplicity, we denote by

@iy ey @ (7 = f)

the basis =’ p’modp® in Lemma 3. As to % in Lemma 4, we can deter-
mine a;; such that

If s > r, then we can take @, ..., x, such that

e @ A aw, =0

Gy By o v gy == 0
where at least one «; cannot be divided by p. This leads to the contradiction

D+ 0 = 0modp®,
whence follows :
$K 7 == gf.

Denote by HM{y, a) the number of golutions of the congrueneo
A’f—;~.._.~;- A == wmoda. '

Levwa 6. Assume that N (p) = o', plp, Ik, y = 041 (p > 2), 042
(P = 2). Write I, = ye, s, = dkef. If 121, 9= S cmd vedy, then

My, p') > N(p)” e,
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“Proof. It is well known that if m > 4% (k>
rational integer » can be expressed as

3), then any positive

@ =yt 4 yE modp?

satistying p{y. Hence we can infer from Lemma 5 that, for any »e Jy,
the equation of congruence

= f+...+inmodpl (= p™)
is solvable with pt ¢y prowded s = ¢f.
Take » such that p| =z and set

£ =L+ahd (2<r<s),
where A Tuns over a complete residue gystem modp™. Then
p e~ and also w—Ef-...—EE,

becomes a reduced kth power residue modp'. With the aid of Lemma 1,
this iz also a reduced kth power residue modyp’, and we know that the
number of such residues is greater than

N(p)(ﬁ—lu) (S--I)

by virtue of the above choiee of £.. The resuh) is almost the same ag was
obtained by R. M. Stemmler (see {107).
Collecting these results we can prove, as in [12], the following

THEOREM 2. If &> 4kn (= 4kef) and ve J,, then the. singulur series

G(») = Y 'H(a)

is absolutely convergent and there exisis o constant ¢y = ¢y(k, K) satisfying

S(v) > 6.

3. Fourier integrals. Before going into the Siegel formula, we ghall
develop the Dirichlet integral theory for many variables.

¥ @y, ..., 4,) is non-decreasing for variables ¢ ,...,%, and non-
increasing for other variables ¢, ,...,%, (I+m =n) over the interval

I == {(tla P S HEC LS 7R bj (1<jsm}y
then @ -is said to be monotonie over 1.

LeMMA 1. Let Dby, ..., t,) be o bounded monotonic function over the
interval T. Then @(t,, ..., t) is summable; namcly i, is measurable and
absolutely integrable, over I.

Proof. For brevity, we shall congider the case where the number
of variables n equals 2, and assume that ®(t,, ;) is non-decreasing for ¢,
and t, over

I = {('51, tg) t1 = Ej1: Uy 1y b2}
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Trom points {a, by} (@ < a < ay) and (a;, §) (b < B < by)y we draw lines
parallel to the diagonal of I, joining (a,, b;) $0 (4s, bs). Let y be any given
number. On one of these lines we take a point p, or a point p, with the
smallest coordinates (r, 8} such that

D(w,y) =y
except a set of measure zero congisting of points lying upon the lines
x =r and ¥ = ¢. We denote by ¢, or I, the set

whenever wzr and ¥y = s,

{{=, ¥); Dle, =y, 221, y‘;:s}
and by 8 the sef
{(@,9); (@, y)el, Plw,y) =y}
Clearly

Take rational numbers a, & from the intervals [a,, ;] and [by, b,] respec-
tively and set
§ = UQUURUVE.
For any positive & we can make
Al < &
by' taking sufficiently many @, b. Consequently, we can infer that
| 8 = U@, VUR, U B,

where @ and b run over all rational numbers lying in the infervals cited
above. Therefore, § becomes 2 measurable sat.

Lpvwma 2. Let @3y, ..., 1,) be a positive bounded monotonic funclion
over the intervel

mEQ == 0,

m= By iy b)) 0t gy (1S J 0}
If we wrile
' sin 2adt
alt) == e
ooowt
then
ay Oy
lim [ B, e ) g () e s, () B
Jf(lgjﬁn)-—wo 2 H

1 n
2(,2,) B(+0, ..., +0).

Proof. For brevity, we shall consider the case where # == 2, and
_ assume that @4, ;) is non-decreasing for ¢, and non-increasing for i,

icm
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over I. To prove the theorem, we may assume that D(40, +0) =0,
whereas ’ |

Hm § o200 ——f Sing dx W—M.
i.->ooD
We divide the integral ag follows:
a) Gy ¢ s @y dp ap b
FI=0[+]T+]F-TF
9 0 ¢y 0 [ £] €y

where ¢, and ¢, arve taken so as to satisty

0< |Plog, ) <e, 0<e <ay, 0<ey<as.

With the aid of the second mean value theorem, we obtain
& oo

n
f f Bty 1) 2, (61) s, () il lly = f bt -H-O)x;l (ta) ity [ 102, (o) it
L]

7
= D(e,—0, +0) f () iy [, (1) s,
& 0

where 0 << <oy, 0 <7< 6. Accordingly,

and the other integrals

@y @ @y dy L]

T

can be made arbitrarily small in absolute values by taking 1, and Aq
sufficiently large.

Lunma 3. The assertion of Lemma 2 is also valid for a finite product
of positive bounded monolonie functions.

Proof. For brevity, we shall consider the case Whore % =2 and

agsume that
(ﬁ(t“ ) = (25 (tu i")@a(ﬁir te)

where @, (t,,1,) is non-decreasing for ¢, and non-increasing for t; and
Dy (b, ) iy conbra.nwme We agsume further that -

(pl(dlf tz @ (fl? A
in I We take ¢ and ¢, such that
0 < D (e 02)

Doy, ) < &, 0oy <<y, 0Tty thy.

4 — Acta Arithmetica XXIV.2
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With the aid of the second mean value theorem, we obtain

f f (215 o) 2, (F2) 22, (e} b1 B2
£y [:2

= f fAéz(tlata)%al(tl)?{zz(tz)dtldtﬂ_“

o 0

”‘f f{-“l Dy (b, 1)} Paltay b %;&1(%)96;( a) dby ity

!
= [ ADy(iy, €3—0) y (1) Al f 2y (b) Bla—
0 7y

g
0) s, (b 8ty [ 2, (Ba)

iy

it
— [ A= By (b, 2= 0V} Palla, 2=
L]

131 ]
0) [ 1, (t) @ [ 3y (ts) it —
a

",

= A®2(+0,02_

£ i)
—{A D, (40, 0;—0)} Py{ -0, ¢y —0) f Xay (ty) dty f Zzz(tz)dtz
[} g
= 0(e),

&y £ < Ny ng\ ¢,. We omit the remaing part of the

where 0 <
proof.

We now deduce the Siegel formula. If we put

79 =1, W(m) = Tmewmr
then '
_ 11
e [ By = |d|‘”””J exp {2ni (EW )} vy ¢
P =10

retry 1w
X ” 2 f f CXp {271"5{5("") (Tm _eiq,m)h -+ (E(m})“l (’U'ru@mmm)k}} T drmd(]"m:'

m=tybr 0 -7

whence follows

Py
f f‘E Eﬂk 'll = O{HMln 5(1)1 llk H Mm i&(m)rzjk)}
Manpy -+l _
.where § = Ql.ml-l--'---i‘ Ont, ADA 7 == 0%y + ...+ ©,1,. Further, if wo

put

: 'f(”:xl? . s':()—x e"m

icm

On Waring's problem Bl
then
f...f!f...fE(En’“)dy[sdm
X
" e r1iry o
= {ﬂfMln (1, #7° ” f(me ""”‘)xmd‘xm) Brmes
=1 m—:rl-l 1 =

which clgarly converges for s> k. Hence the integral
T = [ [ B[ [ Been ) da
converges absolutely for s > %, and can he expressed as
= {8
o

£2 being the closed region of x determined by

Ty = lim J(@),

Ay Ao Moo

—wi){ [ Bl ayf aa,
»P

| ol < 2y ol <Ay Wl S Ay
where
e E(%)+ Elm ) . gy _ gtmtr)
'L’z - 5 H ’Um D 1 ”m e
Ve Voi

Further, it we put

B =P - (1< p <),

P"zm+r ' LBy
Uy == Ry, Ay, = e lI2 oyt e TR TR
ve " Vi
~ then
n ’ n
(B) (0} :
2 EW) (plodh f | g0y E gy,
Pl Pl
En B O ) . ry-bry :
:Zui"vl - Z Uy U, - Z u’:n?);'n:v
I} ey 1 ' IRSPAES |
and ' :
J(Q) = f . f dyy... dysf fcxp [0 Zg(ﬂ)(nwlk e ngﬂ)”——,ufm)} dez
8! D=
Py ry+ 1’2
= l/idl [ f{n Xy (1) n Xy, () H xlm um)} s -
Py By l=l =141, M=ty 41
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In place of
n(p)k =2, +M{p)—(77(p)k+ +,q(m)15)
we write more precisely
RO SR
and briefly

A<p<n),

= (Lol .. )+ ) — (g

T = [.. f*d'fh - By
L)

Make a change of variables in the followmg WAy

Q)——f Jay, .. Ay [+ Y, = foef by -

oo [ * 1T at

= f*d'ﬁflJlI&?/l e Yy = *[szu'f Waldyy - sy
where the Jacobians are afforded by .
A {1)};%_ ) ok (l}fcmﬂlw(l} ~1 CO(]) e m(l)
J 6(%1 "/sn) - e L ’]‘3 . ’f . S n.
1 8 (tl . tn) kﬁgﬂ')k—-l w:(lﬂ‘) . kn(n))‘; 1 wg't) w('f’b) m(n)
and
(%) (13 [~1
. CB . ) L © - wn _..QZ)—”;
2 a (ul 71+1%r1 -1 - %-m urr!-"z) wgn) ver wg")
go that
Wil = N (& n* %) [l -
= H .
| 1 3 ]de'\
Therefore -
Tty Ty Ty
J(Q) = {” 2y (7). H o W) H i, %m)} du X
1=1 sy 41 M=yt
J'N -—1“7 El ]ﬂ) dy.g--lil
1’1 Ps 1

where ¢ is the closed region containing the origin of u in its interior and

‘l Ty ry-+re
’
du = ’ Idul FI by, ’ l Ay«
S mamry -l me=ry

If we make a change of variables guch that
1

O ey 0Py, 0@ =k
L) ypl Jpn n k] (1 < P < 3“1),
1. Ppm

n(m) _'?] w(m)+ +ypnw91) — %2153 sy

icm
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then
a cee Ym)
} e = )R (0 ).

a(upl "t u;ﬂn Mﬂ.rl-H b 16P,rl+rzgpp,rl+l i ‘pp,rl-t-rz) . '

- Congequently,
r ey ?"1-}-1‘2
J(L) = f {H wbe) [T w00 [T g, (wn)}de x
=1 ey -1 mmr14-1
x e L HN B il H
Oﬁéupjrln“"*tw_pkgﬂ n=
x H du ep, 1'1+r2d% RS d@p,rl-wz)-
Pl
Therefore, by Fubini’s theorem,
ritry
J(n) =l J () = |ape=? H Py [] H™)
t=1" me=r+1
where . .
1 1
. uE_ u_"mlldu pees QU g
F(#() = llm— th U d%tf ok Lia 3—1"1 ’
ll—roo 0,‘, ) 1——E
|4 ety — (gy o A U 1)

¢, being the closed region determined by 0 < u
~(u11+...+u8_1,z)<1, and

() = lim 5 [ 1

Qm

< 1’ 0< M(l) 2o

m) du,, dum

1

f f ulm v .9--1 d’“‘lm du’s—l,mdqolm van d(Ps-—l,m
?
1
u™ My, = g .

P - 1
1/2 — (€7 A L A 'u’t—-l,m‘Jiw“3 Lmy E

C,, being the closed region determined by

0 S Uy <Ly =70 gy 70y (1™ oty — (wh @b b dPe-m) <1

By applying Lemma 3, we have the Iollowmg
THEOREM 3. If & >k, then

-ty

(@) = |d|(1—s}f2 ” T (u®) ” H #(m)

1=1 My 41
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where

F(M(l})ﬁf fn I Ic d“1

D, being the closed region determined by

ey, Y = !"”) — (Ut Uy,

0K, <l (Ii<s),

and

1 _
e ] .
H(,Am) —-;’a'”f ” ](;rlu; YA ... ity ydipy ... Ay,
Dy fe=l

Uy = | — (W Rl )

D, being the closed region determined by

0y <l (I<f<s), —m<gstd<i<s~I).

Finally we note that

1 &
I (1 -+ ".’2) s
P () = e (p0)

4. Supplementary domain and consequences. By virtue of the follow-
ing Lemma 1 of Mitsui, we can improve the Siegel result based on the
Weyl method over the supplementary domain.

"LEMMA 1. Let (2q,...,®,) be a point of the supplementary domain
§ =U— S B, Let A, B be positive and 1< B < 272" "h. If &

—1

yel'
= 0@y oot On iy Then
> Min{d, 1-B(Euw)™ (1<j<n)
| e B) .

Joa it 1 klogh .1ogh }
=0 {—AB (*ﬁ" “1"“‘173‘"1? “ﬁg“ A A ) .

Proof. See [71.

LFlV[MA. 2, Let £ = \‘.:’1;'17]."]~ ;i" @n W s L(‘E) = 2/

Py
be any positive mteger sat@sfymg 2k10 < 1 —q. If (.

ke and let 0

cyfhg) e S, then

L& =O(c (0)T"°).

icm
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Proof. Let 1< ¢ << & —1. By Hilder’s inequality,
I3 slarnr-a)
A A P (1)

M%mﬁ4+mﬁmﬂ4
[y (P27 AP(T)

< (01121)2’1‘“1w1
3

20—~1

A

ul ZE{AL(TG}']E—I'F---)E}‘ZGM
[Ay 13227} Rel (1 :
Y (et Y

iAqlel ) WglePRT) P(T)

< (e B2y Ao (B—1) 2 - ) £}

....................................

Bl Af(hy Ay .oy A E),

< (et LD
Bglseeoa |y _1i6PET) 4 A+3,eP(T)
‘where

(B—g+1)AF 24,

A, with integral coetficients. Therefore,

()]

T Ay oeey
is @& polynomial of 4, A,, ...,

Ay) = E{E—1) ...

[L(f)iﬂ“l . O{T’Ja(gkvluk)

MII,H.,W_J'{]E,_ALMP&T) AeP(T)
. Denote by 4 (x) the number of solutions of this
equality, subject to the conditions

WlePRT) (A<j<k-1).
Then obviously '

_wowmm)(ymm,
“ Ofo()T)  (u#0)-
Hence
(5‘)]2] -1 — (jm(?.r‘: —2))_{ O( Tn(2k A Jii-¢) ElZE M'W ‘)
“ A

where the sumrmation is extendod over all u, A satistying |u]e P (k12% 11’"“‘ 3,
Ae (TN,
As Sjegel showed, we have

{ Z Mﬁ?‘]}(l B purmy))

AETT)

(Tn-— ).
Therefore,
IL(§)|2]“""1 — 0(117;(27"‘"—-2))4_

+0 [e(e)fﬂ»<2"’“1~’ﬂ-'-ﬂ2 O M T, [L—B{pe; )7 (L<j < %))}],
#

where the sum is over all u satistying [u|e P (k!2F 751,
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By taking 4 =7 and B = 19%=17%-1 e obtain from Lemma 1
o Min (2, [L— B(uo; &) (1< J <))
u .

e SR b § 1 hlogh = logh
= O{T AP A i) Tt T {- Tk_l)}

= Q{10 T,
since ¢ = 1"~ and b = T**+* If we put 1 — a—2%"10 = 2¢, then we have
(&) = Ole(oy™ ")

over the supplementary domain,
Levua 3. If s > 25, then

ff|L(§)|3dm = O(G(G)T“(s""-)—ﬂ)'_
S ’ .

Proof. Extending Hua’s method (see [4]), and using the previous
arguments, we get

L(&) = 0T+

+ 0 [pret-e) B

123 4s e g-—l\d’(ﬂ’) 2 AgePAT)

Ry Dy <os R B

where the asterisk means that
Lo Agf (B Ry ey Ag) 0.

Multiplying both sides by 1L(£)*" and integrating with respect to @ over
the unit cube, we oblain

S 0 [ f 1L(&) P da +
o

polreenf [ ¥ 3 5y

U [gls oo [Agm1 }ePRTY 4, A4A5eP(T)

a1
W g =

S B B Ay ey ) o e o o} dy]
B v_;fP[I) ) . i
4 1y] :

The contribution frotn the second integral on the right does not excoed
the number of solutions of the equation

gl Ay Aiy iiny Ay) _"'Vlf“i‘ ol —
under the conditions cited above. Therefore,

[ NLE ™ o = 0(2mD) [ (LM do+ 02D g () 1),
U : v

I
. 'u;a—l

icm
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whence follows, by induetion,
[ JIL(& [ dn = Ofo(g, syTm™*-1+),
o

Put
] 1—a
=gt
Then 2716 < 210, < 1 —a. By Lemma 1, we have
[ J 1@ de = 0fe(9,) 1= 006=) f AT
g

= Ofe(8 T(“—"l)(-‘f*zk))o(e(k 6, - §) THE—H+0=0)
= Ole{k, 6) T,

-

provided s > 2",

TurpoREM 4. If s > Max (dnk, 2%), 0 #vedy, u = »T7F
then '

and peP(1),

I() ~ S ()T () T
Proof. Tt follows from Lemma 2 that

n{g—l)~—

f...fL(&)sE(mvE)dw = O(T 2F)

by taking ¢ =1 /2" it 8 = 2% 41. Now the result follows from Theorem 1.
Let @G (k) denote the least value of r with the property that every
sufficiently large positive integer m is representable in the form
m=a+...+af.
The best value obtained so far ag an upper bound of G(%k) can be seen
in [15). ‘
LovmA 4. Let T, be a sufficiently large positive number and 8, = nG (k).

Let W, (Ty) denote the set of integers in K which can be expressed in the
form '

LSS
subject to the conditions
e P(I) (A<ji<s)

and Tt Ny (1,) denote the number of mtegefrs belongmg t0 W, (L1} Then

" we -have, fO'r suitably chosen cr,,

N (T4) = e 3.
Proof. Take 6 in o such that
1,6,...,67"
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are linearly independent over the rational number field. Let  denote
the kth roots of unity. If we take a suitable 2, & positive rational integer,
sufficiently large, then 642 becomes totally positive and satisfying

60z 2 (89 +2) 2
for every Zj. It follows that
1, (0+2)" ..y (042500

are totally positive and linearly independent over the rational number
field, on account of

N z}k(n-—l)

. (6(”)+z)"‘“ b
—1) be positive integers gabisfying
ap(0 2y P(TY).

(1<p,g<n, P 5#4q)

=[] (6@ 42

I p g

— (g 2 0.

Let w (00

It follows from the definition of G'(k) that almost all numbers of the form
By @, (0 &)+ ... A1, (8 &)

- belong to W, (T,), which gives the desired result.
‘ If we take a totally posibive unit & approprm‘r(,]y, and put x# = pe*

for a given »eJ;, then we can make
' oM< <o M, oM< |H™ < oM

f L
where M = VN(v)
in W, (T,) where

and ¢, ¢, are congtanty chosen suitably. Take oy, o,

nf 1ik
! ( i )
43,

and set v = % —o;—0yand g = 1%z where
| T = {{o5+ o) MF™.
Then there exigts & positive ¢, sach that

e L, e (™,

so that, by taking e, sufficiently small, it follows from the definition
- that
Lyoe el Loy
=kt f f wb Ll duy
0.0 '

P{u®) Aty

. 1 . e 1,
H(u™) = = (2m) e ;f [ [k
] L

gy | .
IN
Wy by oo d_usq,

icm
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whence follows o (u) > ¢, provided s > k. With these preparations, we
obtain

THEOREM 5. Let v be a totally positive integer in J, and let N (») be
suffioiently large. If
& > dnk -+ 200G (k),
then the equation
vo= A AR

is always solvable in totally non-negative integers i, (1 < §
the condilions

< 8), subject fo

NAF<GN@E) (1<jgs)

where o, i¢ o posilive constant depending on K, & and s. -
Proof. Wo write

L(§) = B(x¢),

PYary)

VigE)= D Bl

sl g (T1)

where & = gy@y+...+ ou#,. It follows from Theorem 1 that

%‘f S L(Er V(€ B(—x)dw ”ZZf fL ¥ B —rE)de
—-2{6 'n(s E)—

Tn(s &) ‘ 0( )},

provided. s > 4nk. This yields

& 3. [Ty

yel' J‘

W (— w) d> o, TP N2 (T).

1 .
On the-other hand, by Lemma 2.(ta,ke 6 = E’T)’ }

Joofuer

P B(— xf)dw = O(T

olcj f‘v 12(150
:0(1'""“"5"“">f~-f 2 B

(5 (11, OQEIVsl(fl)

oy — 0g) }dm

e e

it R
= 01" F N, (Th).

. From these results, we have

(EV I — w&)dr

fffJ
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This means that » is expressible as
v = = 1§"+...—i—/‘1§‘.+rf—|—...—|—rﬁl

subject to the conditions

e P(T), 7 eP(T)),
whence follows the desired result.
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ACTA ARITHMETICA
XXIV (1973)

Zur Theorie der symplektischen Gruppen

von

Tericw Crrgriax (Gottingen)

Carl Ludwig Siegel zum 75, Geburistag und
sum &0-jéhrigen Professorenjubilidum gewidmet

Will man den Rang der Schar der Modulformen. mit IHikfe der Sel-
bergschen Spurformel berechnen, so st68t man aut ein Problem, welches
man grob go beschreiben kann: Bs sei M eine Modulmatrix.n-ten Grades.
Wann gibt es eine Modulmatrix n-ten Grades R, so daB die Matrix R™' MR
eine Randkomponente der verallgemeinerten oberen Halbebene im Unen-
dlichen festlafBt? :

Zur Lissung dieses Problems fithren wir zunichst einige Bezeichungen
em.

1. Man bilde die (2n) x (2n) Matrix

) 1 =(_p %)

mit n % # Null- bzw. Einheitsmatrix 0 und E. Fir einen Korper K be-
zeichnen wir mit X(n, K) die symplektische Gruppe, bestehend aus allen
(2n) % (2n) Matrizen M mit Elementen in K, die der Bedingung .

2 , M I(m)M == I(n)

geniigen. ITierbei bedeutet M’ die Transponierte von M. Zwei Matrizen
M, M*eZX(n, K) heiBien konjugiert iber K, wenn es ein ReZ(n, K)
mit - . _

(8) _ RUMR = M*
gibt. Bs seien M, Re T{n, K). Wir sagen, dab R-IMR auy M hervorgeht,
indem man M mit R ,konjugiert”. In der iiblichen Weise bezeichne man

mit @, ¢ die Korper der rationalen, bzw. komplexen Zahleh. Fir diese
gesamte Arbeit gelte

(4) : ‘ QcKcl.



