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§ 1. Introduction. Let

(1.1) . N = gy gy oy Byt
be a {non-empty) set of N digtinet natural numbers. Write
N
(1.2) ' B(a) = > e(na),
i=1

with the usual notation
: e(f) = eznwa
and also write

N
(1.3) 0(a) = HB(a)+ B(—a)} = > cos2mn,a.
We define l -
(1.4) AN = [ |B(a)da,
(1.5) L(#) = inf O(a).
. 0Kagl

Littewood [b] conjuctured that (¥)
AN} » logh;

this estimaite, if true, would be best possible (as is easily seen by. consi-
dering the case when the clements of {1.1) are consecutive rnembers of
an arithmetic progresgion).

) In all relatlons in whieh the » notation iz used, the imp]icit,cgn_éta.nt is
absolute and N is supposed to be large. (But this latber assumption is not made
elsewhere,) . :
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But even the problem of establishing any lower bound for 4.{47),
depending only on N and tending to infinity with N, proved highly resi-
stant. Nething of this kind was known until Paul Cohen [3] devised
a remarkable method with which he proved

(1.6) A(H) > {(log N)/(loglog N},

That cstimatbe, however, did not exploit hig method to the full, for his
proot of (1.6) included a combinatorial lemma (see [37, Lemima 4) which
was not the most offective possible of ifs kind.

In [4] Davenport replaced this result by his elegant, and cssentially
best possible, Lemmag 8 and 6 (which in combination corvreapond to
& refinement of Cohen’s Lemma 4). The substitution of this improved
version of [3] Lemma 4 in Paul Cohen’s method automatically vields

> {(log N)/(loglog N)}'/*,

Tn fact Davenport proved (1.7) with fhe constant here implicit in
the » notation equal to j (where N is large in this context). Another
point of interest in Davenport’s paper is that he achicved a gurprisingly
stmple- exposition of Paul Cohen’s method by defining explicitly certain
coefficients whose cxistence (#) Paul Cohen had established indirectly
by an appeal to the Hahn—-Banach theorem. (See [3], Lemma 3, Corollary).
. Tn connection with a problem concerning zeta functions, N. C. Ankeny

and 8. Chowla [1] conjectured that [L(47)| was bounded below by a fune-
tion of ¥ tending to infinity with &V. This conjeeture algo remained unprov-
ed until Pawl Cohen obtained his above mentioned result, despite the
fact that here nothing betier than

Tnf (L (A
A e N

(1.7} A (A7)

j| < e
(where the infimum is taken over all sets ( 1) having & elements) is
known in the opposite direction.

Lower bounds for |L(A47) are implicit in (1.6) and (1.7) hecauge
there is the following simple relationship (see [67) betwoen the problems
of Littlewood and Ankeny-Chowla. Since

0

I0(a)} = § [{( — o) + B{a)}o(ma)l,

(*y Paunl Colen proved that thers exist exponential sumes of preseribed atructnre
having eerfain desived .properties. Affer explicit choice of eoofficients in the expo-
nential sums of this structure, Davenport was able to verify the properiios directly.
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(where the integer m may be chosen to be large), we have
(1.8) LAY 2= 44y,
where ./ 15 & set of 2 distinet natural numbers, Thus (1.7) immediately
yields (3)
(1.9) ()| » {(logN)/(logiog V).
In the present paper we prove, by a method fundamentally different
from that of Paul Cohen, the stronger estimate
(1.10) \L(#)) > {(log ) [(loglog N)}2.
We shall ebtain our result in the following more explicit form,

Tumones, Let N be o naural number and let Topy Tyy o
set of IV distinet natural numbers. Write

oy By be any

N

(1.11) L = int >'cos2mna,
Oagagljﬁl
ond define the natural number M by
(1.12) M = —[2I].
Then we have
(1.13) (8 M) = 77,

We remark that whilst Paul Cohen’s method applies equally to sums
of type

N
Ecje(%ja),
whenever =
=1 (§=1,2,..., ),

we have not established any corresponding generalization of the above
theorem. We make use of the fact that the coefficients of cos2mn;a are
all equal (for § = 1,2,...,¥) and our method (at least in its present
form} appeary to il:l:ll’rl.lt only slight reélaxations of this condition.

Our method is not applicable to Littlewood’s problem.

For results dopending on the rates of growth of infinite sequences,
see [8], [2]; and for results concerning speeial sequences, see [7].

§ 2. Notation.

Lower case Roman tvpe The letter » may be used to represent
any nfeger, but all other small Latin letters denote natural numbers
(except where they are used to denote Iunetmm, or coefficients in expo-
nential sums),

(®) [8] containg a more explicit form of this result.
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Seript capital type. We reserve scxipt capitals (without super-
fixes) for non-empty finite subsets of the sst of all natural numbers.

Operations on sets of integers. In the definitions below U, ¥
denote subsets of the set of all integers, and 4, p denote real numbers,

We write

, Wp ={Ak+u; ke U},
We define *
UV = {k; Iy e U, Ane V| & = b+ Fu};
In other words, U+ V congisbs of all the dislinet integors & representable
in the form .
E=Ek-+ky (bpell,lye¥V).
We define U~V by '
' UV = U4 ({-1)V.

The meanings of A +p, U--¥, %—% (where, as always, scriph
letters bave the meaning prescribed above) arise as special cases of the
above definitions. Needless to say, % - # and 24 have completely different
meanings.

Sety & and &*. We denote by & the complement of & with respect

to the set of notural numbers.
We define the set & by

(2.1) G s () U(~F);
s0 that & consists of the elements of & together with their reflections in 0.
This definition will be mueh applied throughout.

Symmetry. We shall say that & is symmelric if there exists a num-
ber v guch. that

22) B

and we shall refer to = as the centre of symmetry. This terminology is
clearly appropriate, since (2.2) asserts that & is identical to its reflection
in = ‘

Cardinality. We use |S] to denote the number. of elements of a finite
ot &. In particular, we have
(2.3) A = N,

where 4" ig the set (1.1)
Cosine polynomials, We define

[-/V* = 2N,

(2.4) 0W;0) = > cosgnua,
. wuep
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go that in particular, )
(2.8) O(a) = O(A; a).

We note that ¢(2%; ) == O(%; 2a), so that (for the purpose of proving
(1.13)) we may assume

(2.6) A containg only even integers.

§ 3. Simple lemmias involving exponential sums. We write

(3.1) Fa) = M+2C(a) = M+ D o(ka),
Fe
where M ig defined by (L.11), (1.12), and note that
{3.2) Fla)z=0 for all real a.
- We use ¢ to denote functions of type
(3.3) mngwmm
fe

and introduce the notation

(927 92) = | g2(@)ge(a) T (a) da,

Tg1® = (g, 9).

Lo each % we associate the function g == g[#], on the interval 0« a
< 1, defined by

(3.4) g(a) =[] () = D e(ua).

=7
Lemma 1 below results from applying Schwarz’s inequality to

1
[ {g(a) (P (@)} (F (o)) de.

Lemmas 2 and 3 are trivial, and Lemma 4 is an immediate consequence
of them.,

Lmwwa 1. If g 49 given by (3.3), then

2 cjiﬂ.

jed NS

lgl® = 2~

Lymama 2. We have for cvery %,
(8.5) I (21 = M@+ ) r(%; k),

Tet'*
wheve (% ; k) denoles the number of solutions u’, w'' of

(3.6) ; w—n =T (we¥, uled),
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COROLLARY.
N (2N < (M —1) 1| -+ |2 .

Iewoea 3. If ¥, & satisfy ¥ —#" < A, then

(@[ 7T e[#] = (#], e[ 7]) =
LEMMA 4. If ¥V —W < & and [V = ¥, then

SEaNcar

Hp[# T [# |* < 200 |#7).

Proof. This follows at once from Lemmy 2 Corollary and Lemma 3,
in view of the identity

B gall* = gl — (91 92) — (925 52) -+ I gll*.

§ 4. The two basic lemimas. The resulty of the previous section are
requirec for the sole purpose of establishing the following two lemimas,
uporn which all the remaining work will be based.

LEMMA §. Suppose that % < N and |U| > 2M* Denote by r(k) == r(%; k)
the number of solutions u', v of (3.0). Then

(4.1) D)z

Le ™

(200)* e,
Prooif. Applying Temma L with g == p[%], we obtain (in view of
(3.5))

M+ 3
Ree ™

r(k) 3 M.

Since M < $ M 1%|, this yields (4.1).

Lumya 6. Suppose = ;57, W N, V=W & and |¥] = [#].
Then |77| < QM2

Proof. On applying Lemma 1 Wlﬂl ¢ =1 or —1 gbccordmg a8 j
lies in. #” ox #", we oblain
(P Rl [ A Fal o

Hence Lemma 4 yields 220 |%| > L
result agserted.

= M9, which is equivalent to tho

§ 5. Structure of the proof of (1.13). The two Dbasio Jemmas in the
previous section are of course a consequence of the relationship between M
and. 4 inherent in (1.11) and (1.12). The deduction of (1.13) from these
lemmag will however be independent of this relationship; we shall make
no further reference to the definition of the natural number Jf. In this
sense the remainder of the work will be independent of the original problem.
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In thig section we deduce (1.13) from Lemmas A and B below; thege
lemmas will in turn be deduced from the two basic lemmas in the final
goctions. Butb first we introduce a further coneept,

Paradoxical sets, The set o will be said to be pamdamcal if it
has the following three properties.

(i) & Is symmetric with centre of synimetr};r in o {so that, in pax-
ticular, the centre of symunetry is a natural number).

(i) || 5= 1OMY,

(il Corresponding to cvery subset @ of s, with || <
there corresponds a sobt & o= (@) sueh that J5”*|

2 M 41,
2M* and & &F°

RV
Lmvwma A. Suppose that
(5.1) (MY < N,
Then there evist d, ¥, 7 such that
(5.2) 1T = 2F,
(5.8) | 2™} 2= 10 2%,
(5.4) d+2 4T =N
(so that, in particular d- 2" contains only positive tntegers).

We remark that if
(5.5) 2t 207,

then we can seleet n subset &* of I having exactly 22 elements. In
thig case the conditions (5.2), (5.3), (5.4) imply that the set 4+ &
paradoxical (indeed, for condition (ili), we can choose the same set & for
all #, which is not possible for general paradoxieal sets).

Cororwary 1o LiswMa A. I there ewists o natural number ¢ satisfying
both (5.1) and (5.5), then there ewists a paradowical set.

Lismwa B, If the set o, is paredorical and ¢ 18 the centre of symmetry
of oy, then the set oy == ¢ o, is also paradoxical.

Tepeated application of Lenina B shows that the sots A g1 = 2" le L
-y, aro paradoxical for all natural numbers m. Bub this leads to a con-
tendiction for large mi; for condition (i) implies that the centre of symmetry
of o paradoxical wet Iy legy than the greatest clement of the set 4.

SOROILARY 10 Tmmma B. Paradoxzical sets cannol exist.

It iy clear that tho two corollaries above are inconsisbent if there
exints & natural numbor ¢ satistying both (5.1) and (5.5). But if (1.13)
were false, the ¢ defined by '

QM 2 < 4 M7

would be such & number. Thus Lemmas A and B together imply (1.13).
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8§ 6. Proef of Lemma A.

LezMMA 7. Suppose ¥ < N and that
(6.1) |%| = max (2 M2, 4 MNY2),
Then there exist 1, & such that
(6.2) +a* e, (4" z27 N M2\ %p.

Proof. Let B(k) = R(%; %) denote the number of solntions of
{6.3) wu =k (uwe¥,u ).

Sinee the relation u; ;" = w, +u, can be rewritten in the form *u,l —
= 4, —uy , 'we have

Pk = 3 k),

k=2 o= — oo Fe ™

where #(k) is the function featuring in Lemma 5. But, by (4.1) and
Oanchy’s inequality,

2N k) = {(2M)
ke
Hence
2N M < Y B (k) < M Pmax B (),
lor=2 &
in view of
MRk = g
k=23

Bince .4° and hence % contains only even integers (see (2.8)}, it follows
that there exists &, = 2¢ such that

REN 227N M %) 2 227N M2 ) -1
For this 7, the number of solutions of
(6.4) | Wy =20, uw >

is ot leagt 275 N M ~% [%*. Let % bo the set of all those elements w' of %
to which there corresponds an element w'’ satisfying (6.4), and write
Z = —14 %, The I, & thus congtructed obviously satisty (6.2).

In the follomng lemma &* denotes a non-erapty finite st of integers,
satisfying —&" = &"; bubt we admit the possibility () ¢ B" (and have
- avoided using a scnpt letter for this reagon).

On cosine polynomiols 95

Levma 8. Suppose p, %, S are such that
(6.5) U N, (% =max(2M3 28M (S,
(6.6) (p-L)+2+G* < 4.

Then there exist g, ¥, T, with T* = 2|G*|, such that
(6.7) YVes, |¥>@NMy b,
(6.8) (g—1)+7+T .

Proof. Let 4, consist of all those elements of 4" which do not lie in
the get & —&", and let #(k) = »(%; k) be the function featuring in Lemma
5. Since |&™ — @S*| < [S%P and r (k) < |%| always, we have by (6.5) and

(4.1) (noting that r{—k) = r(k))

Dl vk = @M 1S ) =

(22 M),

Since 47, containg only even infegers (see (2.6)), it follows that there
exists h such that 2h¢ &* —G* and

(6.9) r(2h) = (2PN M)Y ).
We take ' .
T* = (—h—8 Y U(h+8* = (—h+6") U(h+C*);
and note that the requirement [7* = 2|G%| is satisfied becaunse 2k is
not an element of G* —&* _

Let ¥~ consist of those elements «'* of % to which there eorrespond

elements #’ satistying (3.6) with % = 2k. Then, in view of (6.9),

Vad, Sh+¥ <@ (V= (BNM)|UE.

Henee, on chosing ¢ == ¢ -+ &, all the assertions of the lemma are justified.
Completion of the proof of Lemma A. We write

(6.10) O my = (M (B =0,1,2,..),
go thab
mD R 23.M,

Since the natural number ? satisfies (5.1), we have

Mgy =mg (£ =0,1,2,...).
(6.11) (2P MY < my < NHS,
For each &t =0, 1,...,% we shall construct the entities

(6.12) Pey Tw G
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to satisfy

(6.13) &5l = 2%,
(6.14) Ve A, [P = 2N Mm
(6.15) (Pr—1)+ 7+ G« .
We remark that (6.13), (6.14) automatically ensure that
(6.10) ESET I Lt
for .
P MM < My < My < MY
‘whilst :
2N Mmi' > MNm;™" > MNY,
We chooge
(6.17) Po=1L1, Vo=, =0}

(where {0} consists of the single clement 0), and note that this choice
satisfies the requirements (6.13), (6.14), (6.15) for & = 0.

Now suppose that for a given &, satisfying 0 < % < ¢, the entities
(6.12) have already been constructed. We apply Lemma 8 with

(6.18) P =Py U =Y, G =G

the first assertion of (6.14) together with (6.15) and (6.16) ensure that the
premises of the lemma are satistiod. We use the resulting g, #7, 7 to define

(6-19) Prrr =, 6;54-1 =F",

Hince

e — v
‘)( k1 ™ ¥ b}

_ (N2 N Mm; ") = 2 N Mmi !,
the properties of ¢, ", & (a8 stated in Lemma 8) ensure that, with the
choice (6.19), the relations (6.13), (6.14), (6.15) remain valid when % is
roplaced by %--1. This inductive step enables us (starting from (6.17))
to make the successive choices for (6.12) up to & - £
We now apply Lemma 7 with % -= #%; this choice is admigsible in
view of '
mnax (M2 4 MNY) o max (i, BNV o 4N,

[V & 2N Mgt = 8B M N,
On. writing .
@ = (p=1)+1, T =g,
the 1, 2% resulting in this application of Lemma 7 provide the d, 2* which,
together with 7%, have all the properties asserted in Lemma A; for

_ 2TENTIM T = 22 N > dond = 4 (28 M),

80 that the condition |Z*| > 10M* is satistied.
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§ 7. Proof of Lemma B. We recall that a paradoxieal seb o7 hag the
properties (i), (i), (ii) stated in § 5.

Levwma 9. Let o be paradoical and let a, be an element of o, Then
at most 2M*—1 of the elements of a,+ o lie in 4.

Proof, Suppose that the conclusion of the lemma is false. Then
there exists a subset & of o such that

(7.1) (6] =2M2, a,+&c 4.
Applying the property (iii) of paradoxical pety, with
& = {a,} U, '
(where {a,} consists of the single element a,), we obtain an & such that

(7.2) 1| =2M*,  ay+5*c a4,
But now, since

E+FF < A,

(@4 &)~ (g + F*) = E— " = &+ 9*,

. the relations (7.1), (7.2) contradict Lemma 6 with ¥ = q,+ &, W =a,+

4 &

Completion of the proof of Lemma B. The properties (i)
and (ii) of the paradoxical set o, are invariant under the translation o.
Thus it suffices to demonstrate that given a subset & of e¢-- oy, with
|#] < 2M2--1, we ean congtruct a set &* such that |&* = 2M? and
B+ < N, Let

c+a" (v =1,2,..., 18|
be the elements of the given set 4.

Since ¢ is the centre of symmetry of o7, (and o, has property (ii)),
we can write ‘ :

oy = e+ %, where |2%|= 10M°.
For each » we apply Lemma 9 with & = af,, 4, =euf®. This tells us
that at most 2H*—1 elements of the set '
)bty = (e a4 2
lie in 4" ; thus the set
(7.3) (F) N (—c—al)+47)

containg at most 2M* —1 clements. Taking &, to be the union of the set
(7.3) and its refloction in 0, we have |£|< 2(2M*—1) for each v, and
bence (since |#] < 2M*--1)

27— 31651 = 10M* —2(4M* —1) > 23,

7 — Aeta Arithmetica XXIV.1
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We can therefore gelect a subset &* of 2", satisfying (%% = 2M? and
containing no elements of any of the sets

—o—a N (r=1,2,..., |B).
This last property is equivalent to the desived condition # - < 4.
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§ 1. Introduction. Let & be 2 fixed natural number and Thyy Ry Mgy
all the natural numbers (in the inereasing order) which have at least
one prime factor exceeding &. It is eagy to see that
Fk) = max (”’imn_'nfi)

i=1,2,.
is finite. P. Erdos was the firet to give the estimate f(k) = O( ) {([3D

which goes’ beyond the trivial estimate f(k) = O(#). (The problem of
the O-constant here was also difficult and a non-trivial value for the
O-constant was obtained by Sylvester and Schur independently. See [2].)

. . E o\
His argument gives that the upper limit of f(k) (igé?) as k tends to

infinity does not exceed 3. Even the lowering of this constant 3 seemed
difficult and Erdos remarked in [8] that the proof of f{k) < (k) tor all
large & would prove to be considerably difficult (it is now known by
Tijdeman’s result to be mentioned immediately). The firgt amthor of the
present paper rednced 3 to 1 in [5]. Further he made some partial Pprogress
in the direction of reducing this constant to %, in [6]. A part of the proof
in [6] depended on an adaptation of the Roth—Halberstam method (see
[3] of [6]), and an ingeneous mdaptablon of this method was made by
Tijdeman [11] who reduced 1 to %. The other part of [6] depended on
Baker’s methods and in this paper we develop. this method and use the
results of [5] and [7] to prove the followmg

Mary Trmorem. We have

loglogloglogk )1’”)

] —
# u) O(logk( logloglogh

where the O-constant is computable (but it is tedious to do zo).



