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We can therefore gelect a subset &* of 2", satisfying (%% = 2M? and
containing no elements of any of the sets

—o—a N (r=1,2,..., |B).
This last property is equivalent to the desived condition # - < 4.
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§ 1. Introduction. Let & be 2 fixed natural number and Thyy Ry Mgy
all the natural numbers (in the inereasing order) which have at least
one prime factor exceeding &. It is eagy to see that
Fk) = max (”’imn_'nfi)

i=1,2,.
is finite. P. Erdos was the firet to give the estimate f(k) = O( ) {([3D

which goes’ beyond the trivial estimate f(k) = O(#). (The problem of
the O-constant here was also difficult and a non-trivial value for the
O-constant was obtained by Sylvester and Schur independently. See [2].)

. . E o\
His argument gives that the upper limit of f(k) (igé?) as k tends to

infinity does not exceed 3. Even the lowering of this constant 3 seemed
difficult and Erdos remarked in [8] that the proof of f{k) < (k) tor all
large & would prove to be considerably difficult (it is now known by
Tijdeman’s result to be mentioned immediately). The firgt amthor of the
present paper rednced 3 to 1 in [5]. Further he made some partial Pprogress
in the direction of reducing this constant to %, in [6]. A part of the proof
in [6] depended on an adaptation of the Roth—Halberstam method (see
[3] of [6]), and an ingeneous mdaptablon of this method was made by
Tijdeman [11] who reduced 1 to %. The other part of [6] depended on
Baker’s methods and in this paper we develop. this method and use the
results of [5] and [7] to prove the followmg

Mary Trmorem. We have

loglogloglogk )1’”)

] —
# u) O(logk( logloglogh

where the O-constant is computable (but it is tedious to do zo).
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In our proof the approach of Roth-Halberstam—Ramachandra~Tij-
deman i3 not necessary. In § 8 we can argue completely along Baker’s
lines [1] with suitable modifications but we use a result of Tijdeman [12]
(which is an improvement of a result due to Mahler) since it will simplify
our proof to some extent. We have also to use a choice of eertain parame-
ters Ty, by, ... due to the first of us (see [7]). We also follow a simyple
version of the pattern of proof in [10].

§2. Some preparations. Let P(u,' k) denote the maximum prime

faetor of the product (% -4-1) (w+42) ... (u+E).
TLemua 1. Let k< uw < B2 Then
Pw, by =w+1.

Proof. Apply Hoheizel-Ingham-Moentgomery~Huxley theorem. [4]
that

1 1

.’pn+1 .p'n < pz 2

where 5, denotes the nth prime and &> 0 is an arbitrary constant.
LmwMna 2. Let B® < < B8 10F% . Then

]

MP(M,I k) > B where A = A, k) == — (8—}—' —].

Proof. This is the main theorem in [8].
Lemma 3. Jf u > EO515% then

loglogu )”2}

int ke, kl
Plu, k) » mm{kf ¢ ng(loglogfc+1ogloglogu

where the implied constant is absolute.
Proof. See the introduction in [7]
LA 4. If & 2= 2 then Pu, k&) » loglogu, where the implied conslant
is absolute.
Proof. See the introduction in [7]. This follows by B&kew’a work
on the diophantine equation 4* = aa®--ba?-+oy--d
. Let now % > Ly, o large absolute constant,

'kloglog]c Su 6(10375)1‘ (logk)ljd

and we shall specify L later. (If % > > ¢MeW” Tommas 3 and 4 give P(u, k)
» L' klogk where the implied constant is absolute.) In this range we
Iknow by the vesults of [5] that P(w, k) > §klogk. We shall suppose that

where 20

P(u, k) < 3Mklogh (log )¢

(we shall gpecify T and M later and arrive at a contradiction). Let us

where i< M <

icm
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write n = m'm" where u < n <<% +k and m' is the product of all powers
of primes not exceeding k which divide n and m"’ consists of primes exceed-

ing k. Let w({m ') denote the number of distinet prime factors of m'’.
Then it is easy to see that
Zw(m") <iME.

k3

Hence the number of integers » with o{m’ )= M does not exceed k.
Thus there exist at least [3k] natural numbers » with w(m’)< M. I‘or
each prime ¢ <<k we omit amongst these n, one n for which ¢ divides n
to a maximal power. If star denotes the omission of these numbers n,
then it follows by an argument of Trdds that :

*®
’ I m' < k"
()

The number of #’s counted in this product is = [25] —a(k) =}
g0 the number of numbers n (counted in this prodnet) for which m’
is at most %/100. Hence we have the following

LeywA 5. Lel

%k and
== JA00

Bk, OFIER <y < glosi e poe 9 < L < (logh)

and

Plu, b) < $MElogk  where  S<C M < (logh)'s.

Then there exist amongst the natural numbers uw-+1,u+2, ...
least [410] distinet notural numbers n for which

s ut+k o at

o
n = Mmm

where m' has all its prime factors <k, m' < k1% and the distinet pﬁ:me
Sactors of m” are all >k and their number w(m') is af most M, = [M].
For each n occurring in connection with this lemrma we can write

= m Pl ... ph
{where § = M, and p,, ..., p; are digtinet and exceed k) where all the
prime factors of wm' are <k, m' < & and I, ...,[; are non-negative
integers not exceeding (logk)”. For each n we fix a definite ordering of
the prime factors p;, Ps, ..., p;. The fotal number of j-tuples (1;, &y, ..., I;)
for various n does not exc(*e {log )" Hencefor atleast K = [3 YG(IOgI’c)‘”’[L]
natural numbers #, we have the same j-tuple (1,7, ...,4). We now
order the numbers m’ (occurring in various %) in the n0n~decreasing
order, say ' : ' '
LT My K My 5 oK Mg << B0
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Let J be an integer <L K (loglogk)™, to be chosen later, and #, a positive
real number with

Drve o (tamy), a=1,2,...,K—J.

& R
This would lead to a contradiction if #** < (L+4-w,)* ™ (so it suffices
to sot my = 400J K ogk to geb o conbradiction).
Hence 'we have

0 < log 2% < 400TK~log
ma

for ab leagt one ¢ in Lo K —J, Next we order the first primes p,

for those n’s for which the numbers m' satisfy m, < m' < my,, say

2 p? < pP < ... < 9P < kM Logk.

Arguing as above we end up with a natural number.J, < J (loglogk)™
such that
p(h ;)
0 < log - Ty S %
™ o
where x, satisties (Mhlogh)'t < (14,771 say 2, = (2J,logk)/J. Pro-
ceeding similarly we get’
’(“Tr+“r)
0 <log W < o,

2J.logh Y .
where mrmﬂwj:”",cfrgw and ?‘:2,3,...,32M0=[M].
' 1 : . .
Let o = M, J o= BN 7 e R woydy = K® g0 that K°

= 4 and so there exist two integers n, and », satizfying v < n, <n, < u-+-k
for which the corresponding numbers s’ and the primes p,, ..., p; satisfy

my | (logh)? B | (logk) ,
‘”gfﬂ:;: S oS =)
My etk n, & . .
Also since 1 < £ g we have 0« log —*« — and we armive
7y % : Wy U

at the following

Lumya 6. Suppose that the assumptions of Lemme b are satisfied. Then
" there ewisls o solution of the inegquality

kn _
0< 12ﬂilogaf <

g2l

icm
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where ay, 0ay ooy ag are multiplicatively independent positive rational num--
bers with height not exceeding I_!cm“, Bis ooy By, are rational integers not all
log (2u)

logk
.y Jo does mot ewceed

zero with obsolute walues nol exceeding < (logh)®, and finaily

logey| for ¢ =1,2, ..

(jé (log75)—3M.L)-1!(2(M+1)J(10g]5)2 < }'c“ﬂ/(lﬂM)(logk)sL < P

sinee
Ly o8k
20 10gloglc

We shall now fix L = (logk)}** amd observe that the heights of «;
and 8; do not exceed 5, We apply the theorem of the next section with
n = fo, 4 = 400§, 8; = E". (¥ 7, =1 we have |floga;| > & which
contradicts % > k¥ * whereas if j, > 2 we can write

o do—1
[Z‘Bilogai = |2 ﬁ,:.logai—logajo“
=] =1

where the heights of §; (8; rational) do not exceed %) Thus we have

T g
> XD {~ (400j3)0j°10g 200,

ie.,
u < Teexp {100 (20 M ™ 1og 5},

Thig leads to @ contradidtion if we set

12
a=al lngloglogk
loglogloglogk

(¢, a small positive absolute constant), tince we have already imposed
% > FOESE Thug we have proved :

LimMya 7. If K898 oy < exp (log k)48 WY fhen

s
Plu, b) » Tclog]{;( logloglogk )

loglogloglogk

where the implied constant is absolute.

From Lemmas 1, 2, 3, 4 and 7 the main theorem eagily follows. Flow- .
ever, the proof of Lemma 7 depended on the results of the next section
and o the results of the next section will complete the proof of the Main
Theorem stated in the introduction. : ‘
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§ 3. Some resulis relating to Baker’s theory. The main object of thia
section is to prove the following theorem. (The notalion in this section
is completely independent of the rest of the paper and should not canse
any confusion.) The proof of the following theorem can be simplified
slightly but we retain the following proof since it admits S0me genera-
lizations.

ToamorEM. Let # > 1 be an dinieger. Let ay, ..
satisfying

(i) a3 > 0,...

.y Oy De rational numbers
; @ > 0 are multiplicatively independent.

A
vy O B0 mot emceed 8.

1 ,
(it) [ogay < ex13(~~_—— log»S'l), lisn and 4 > 1.
- (iii) The size of ag, ..
(The size of & rational number %—, (@, b) =1 is defined as [bl-{— —1.)

. If 613
Bloga, +-...

where ¢ 45 an effectively computable positive constant, which is independent
of m, 4 and 8. ‘
The proof of the theorom depends on the following lemmas.
Leyra 1. Suppose that the cogfficients of the p-linear forms v, == @10
ok m, (B=1,...,9;p<q) are integers in an algebraic number

oy P are vational numbers of size not emceeding 8, thefn.

+ Bnaloga,  —loga,| > exp(— (nd)y™ log $,)

values of the conjugates of oy ;). Then there emist rational integers @y, ..., @y,
not all zevo, sa,m'sfgjmg Wi =0,...,4, =0 and such that

Phih+1)

ity << 1 - (2g.4 ) 2O-PRAAT

provided 2q > ph{k+1) and 4 =

Thig i o generalization of a lemmw due to Siegel. Sec Ramachandra [9],
p. 16.

Lizmvia 2. Let m, s and t be pogitive tntegers and sel v = st Let ag, ..
cmd ﬁu, .

h=1,...,0

r Oy
s Boey be m and s distinet comples numbers, wapecéwa?y, cmd let

@ = max (lgl,1), D = max (|§,],1)

gy cm Doy .
ay = min (g, —a,l, 1), bo = min (|f, —f,}, 1}.
Degrim, ]
b uam Doy
.M oo

Put for arbitrary compler numbers A,

n—1

2_{ A, e“”g

Yem )

icm
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and ,
A = max |4,], F = max [E9(8)|.
Q=gp <m, Os50 <
0o <s
Assume that
(1 7= 2m--13ab.

Then

1 \™~l 79p \*F
A<sl/'m'e"”b( ) ( )E
zaﬂb bovg

This is due to Tijdeman [12].

Prooif of the Theorem. Without losy of generality, assume that 8,
(and also § to be introdneed) exceeds certain absolute pogitive constant.
Define :
B = |Blogay--...

+ Bp-1loga,_; —loga,|
and assume that § < 1. Assume that the gize of 8y, ..., fa_; < 8. Consider
the following auxiliary function
D1y ooy Bny) = 21 ‘_}_, P4y, . @ L. ol

Ay =0

where y, == Aﬂ« /lnﬁ,;, 1<r<n, a.nd P41y -.vy 4,) are rational integers,
not all zero, to be determined under the condition

(2) _ g, my, ...,

for 1T
0 m ...

'm’n-—I) ==

h and for all non-negative integers m,,
+ My _y < &, Where

vory M,y SUch that

Uy Mgy ey M) 2

A=l

Z R L e AR o
(L, b, & are la,rgo integers to be sulmbly chosen)

Condition. (2) is a set of at most A(k+1)"" linear equa.mons in (L--1)"
variables p(4;,..., 4,). Assume that

(3) (L) > 2h (T 1)

The coctficients of DAy ey Ay in equations (2), in absolute value, do not
exceed SPEH(28LYE, Multiply cach. of the equations (2) by a mnatural
number < §14(28L)% so that the coefficients of p(,..., 4,) are rational
integers. Flence by Lemma 1, there exist rational 1ntegvls PlAy ooy Ay
not all zexo, satisfying (2) and

12 (A -: 5 Aad | < Si’”_””(%‘ﬂ)”“
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Suppose (2) is true for 1< hy (= h), my=0 and 0 << m 4,
4,y << By (< k). Then we shall chooge qulte small and claim that
for suitable k., k, (integers)

Gy Mgy ey ) =0 for  1<TI<hy (B> Ry)
and for all non-negative integers m, , ..., m,_; such that my+ ... +m,_; < &,

(kg < k). If not, then there exists (I, my,...,m, ) Wwith 7y <<I<h,

and 0w+, .. +m,_ <k, M2 0, such th.m
Gl My oy Myg) 0,
Consider the following function
P@) = Py (2 0y 2).
] 7 \™ 8 \"mey
(d)ml,_.__mﬂ__l(‘z, «oey 2) is the value of (-6_22) (—d-;«T) D(2yyeny&yy)
o

at the point g, =2, 1< r < n.) Notice that
(4)  [logay)™ ... (logay_.) =1 f{1) — g{ly ty, ..., )]
< (L -|—1)”S’}”‘”(ZSL)*’“;S’,"_’"L"%(2;8‘L)”“/5'em‘2 < ﬁS{"L"2(2SL)"‘

Notice that q(l, my,..., m,_;) is a non-zero rational number whose
denominator does not exceed S (28L)*%, Hence

(5) lgtly gy ooy )| 2 BT (28) 72,
~Oombining (4) and {b), we get
(6)  I(loga)™™ ... (loga, o)™ "n~1f (1] > By "P(28L) % — BRTMM (28T,
Set
w = |(loga,)™ ... (Ioga,}m.l)mﬁ""ll.

Now we shall approximate f(I) from above. By Hermite’s interpo-
lation formula

By Ry—ity
1 f QLU >‘1’ fm> ) f (2= I (1)
(7)  2ms pitia E= 0T (@) L L omlgm ) (@ DF ()
Im---r\:ﬂll'). ’
where
By :
Blz) = (z—u)fr "+l and A = Bhyexp (u;i—logﬂi).
Yy

Notice that
max |f(2)] < w(L+1)" 89 (28LY* (280  max o ..

Py e 18
laj==ud (2 P ' aﬂ?l-ll [-
R 1[’51';:4!?"

icm
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Observe that

®)  Iylogai ...+ yp_sloga, ;|
= |An (f11log oy + .. +ﬁn_ loga,_,~loga,) ~|-(JL loga, +...+4,loga,}|

< LB -+-nLexp ( I log S,,) =L 2ndiexp ( — log 81),

1
ginee # can be agsuned to be leys than exp (—- :mi—-logﬂl). (Otherwise wo are

through.)
Tlence
max |f(7)] < w2 (28T
|&| w=al
Yow when |z| = 4,
Il By (B — By --1)
'MF @ . (— i log &, ].

Therefore the integral on the left-hand side of (7), in abgolute value, does
not execeed

: {0 hy(ley— ks 1
(9) w8 (28 L) exp (-ui(nEWA RER Sl).
Notico that
- m!
0 = D e Pttty 1)
e W M
ftens el =it

For 0<mely,—Fy LSr<h and t1+ oAty = m, We know

oy M1t itpeg) =0,
< &, . Hence in the same way a8 we

qiry w1y, ..
Slllce Ty "‘l"‘ tl 'I"" I —l‘ ‘Tlvt-n_.l“‘l”' ‘tﬁl“"l ;g ;,52 _i" ™
got (4), we goet .
T') | _\,{ ﬁ’giu.m] (BSL)?""’MJ

ld)mlub mn,,_l-lvt,,,ﬁ_l(?": )
The double sum on the right-hand side of (7), in absolute value, doocs
not excoed
(10w (b, — Ty -1 )ﬁw»S"’“‘"’*l(ZHL)""’(Qh Yoy —Feg+1)
v ﬁw%IG‘SVBnLIJI(QSL)SIa(zh )h](.fr]—fm H)

Assume th_at

It
(11) >0,

3
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1
Seb &y = [(1——;#-2—) 751] and obtain from (7), (9) and (1¢)

(12) 1f@

hyk
<w (Sgﬂth (ZAS'L)""exp (W All‘\:l logﬁl) I+ ﬁ”k}g?ﬂ-nh] (28L)“’“(2h2)2"1’“ﬂ”2),

2

‘We shall ¢hooso hy, ha, Iy, L suitably and fix f quite small and cop-
clude that (6) and (12} are inconsistent. This contradiction would establish

00,y <oy M) == 0

for all 1, 1 <1< h, and for all non-negative integers m,, ..., m,_, with
Moy F o mb By < Ky For this, it i3 sufficient to seeure that

Fou
oxp ) 5: logﬂl = SgnLhz(sz)lﬂic {1 +2ﬂ%75(2h2)2h1k1/n2 S%Iblklpmz}.
An .

Let E, d, b be positive econstants (i.e. independent of §;, 4 and »)
to be suitably chosen. Define

- [(n-_z) (ll—){—nE)—E— 5] o

. 1 ~1
- Let B = (l - ——TF) - Let ¢, be a large positive constant (depending on B, &

and b) to be suitably chogen. 1?'1111

) - [zcleﬁnsAa], o o= [%7?.1+“E], L = I:hl—}-(nm‘l)EL

hy=hy o= [20,_ B, v =2,..., 7,
By =k, & =[B'k_,], r=2,..,.

Notice that (3) and (11) are satisfied. Observe that bz 10, 2 1047
(I <r<<r) Assume that

A N L . ~ .
(13) . ‘3 < %%-—]"(2]&@'4-1) 2hdogtn Sl 2]1,:,.?(:,./.4-1?;2: § o .l, ey By 1.

We proceed by induction and claim that

q(t, ml, eray mn_l) ] 0

for 150 by and for non-negative integers my,...,m,_, such that
My oo kMg K By, 3 the following Inequalities are satisfied:

{ by _ L )
oxp (ﬁglﬂg’gl) R ) R e P A
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8et § = 8, in the above inequalities. Denote by %y, s, ... positive con-
ghants > 1, independent of n, 4 and §,. Let » be an integer such that
1<r <. It is sufficient to gecure the following inequalities:
bk > ulAB?l%"’Lh,_H, Ry > @LzA.ﬁrqua'“', Ihlogs, > uaAﬁrlnzlogL.
Notice that the second inequality is trivially satistied for large ¢,. For
the first, it is enough to socure that
BP0 o g, ABRS,
Choose I x> 15 and the above inequality is satistied for large ¢,. The
right-hand side of the last inequality € AB" % logBlogAlogn and so
the last one is also satisficd.
Hence ¢{l, My, ooy Myq) =0 for 1T hﬁ and for non-negative
integers miy, ..., My..g sueh that m ... +m,_; < by . Deline
D (2) = Dz, ...,2).
Henee for 11 Ry, 0Sm< Ry, we get
| (1) < fn SR (28, I with 8 = 8.
Tn the notation of Lemma 2, set B(z) = @,(e), m = (L-+1)% § = by,
L=l by oo by (k1) Arange 1, .o, Biyoa8 fy, ooy Sy (nOb To be
confuged with our previous f;). Further arrange yloga+.. .+ loga,

a8 Gy, .eny Gy (MO B0 be confused with our previous e;). Notice that
when [A]< L, 1<<i<n and (4, ..., 4,) #(0,...,0)

| [rlogea;+... +y,_loga,

= | B loga, +... + B, log an_ll—log ay) - (Lloge, ... 4 A, loge, )
= % Si«mr-ﬂ —Lﬁ = i'chmLz
if
1

T Gy—dnL
(14) < 4LAS .

In the notation of the same lemma:

/ 1 | i
@ e AKX (L’%L’ XD (w- T log b‘l), l) y o b=k, G 8 ",

(for a, oo (8))
by =1, Azl and Fspnl8Ih (28, T)%.
Before we muy apply Lemmsa 2, we must cheek that the inequality (1)
is satisfied. It in sufficient to secure the following:

. . 1 R .
hiyky 2 6(L+1)% byl = 78nLexp(— ;Ilog‘ﬂl) hiyy  hihs = 39k
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The lagt is trivially satisfied. For the firgt one,

6(L+1)" < L (1 + %} < L"

and
hﬂ kﬁ 5 B‘-;l P+ (=2 (L0 ) -6 14 n 5 hﬁLnB—;l , '

Hence it is sufficient to seeure that A% » BT, Notice that B < 1. So the
first imeguality is satisfied, if ¢, is large enongh. For the second, it is yaffi-
cient to secure that 7% » n, which iy satisfied if B> 1 and ¢, is large
enough, HMence by Lemma 2, :
1< A < by 6" rexp (201 og 8y) (72hy; )04 gnF S (2.8, )™
< Bexp((ndy’log §y).
Aggume that
f < exp(— (mA ) log 8y},

where w, = a5 and. i large enough so that (13) and (14) are satistied. We
get 1= A « 1, which iz not posgible. ¥ence '

B> exp(—(nd)"log 8,)

where ¢ 1§ an effectively computable positive conghant.

Remarks. (i} The bound obtained in theorem iy the 'best possible
a8 @ function of 8, in the sense that it is falge if A and » are fixed and
log 8, is replaced by (log8,) with f< 1.

(ii) Theorem can be proved independently of Lemma 2.

(i) Theorem can easily be generalized to linear forms in the loga-
vithms of algebraic numbers with algebraic coefficients.

The proof of the main theorem, stated in the introduction is now
‘complete. '

Added at the time of proofs: Lenmma 2 has boeen improved by M. Jutila
by ueing Vinogradoff’s method {(this will appenr in Journ. Indian Math. Boe.). Results
mory suitable for pur purpose, than tho 1theorem of § 8 have sinece beon proved by
. N. Bhorey (to appear). Ueing this two rvesults it follows by owr method that
. Elogloglogh )

(T5) e () |
Jlk) = 0 (lﬂgkl()g’l.t)gia

As far as we are aware the best known lower bound for f{) in

logkloglogkloglogloglog &
(logloglogk)?

fik) »

deduced by Erdds from a result of Rankin,
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