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Introduction. In the first part of thiz paper (§ 1-§3) we study the
specialization of a symmeiric bilinear or guadratic form over a field i
with respeect to a place A: E—ILuUoc, provided the form has “good reduc-
tion”, We have to distingnish between symmetric bilinear and quadratic
forms ginee we do not exclude fields of characteristic 2. A typical result

obtained by this theory is the following: We denote a symmetric bilinear

form by the corresponding symmetric matrix of ity coefficients. Let k()
be the field of rational functions in independent variables #;, ..., 1, over
a field k. Congider symmetric bilinear forms (fy;(8})y {gu () over k(1) whose
coefficients f; (1), 9:;(?) are polynomials. Agsume that the form (gm(t)) is
represented by (f;(2)). Assume further that o is an »-tupel in %" such
that the form ( fﬁ(a)) over k ig non singular. If chark # 2 the following
holds frue:

(i) Tt also {gy;(e)) is non singular, then this form is represented by
[fis(0)) over ¥ (see §2).

(ii) Tf (gm(t)) is a diagonal matrix with m rows and columns and
if ¢ iy & non singular zero of each polynomial g,,(t), then the form (fy(e)}
has With index == m/2 if m is even and > (m+1)/2 if m is odd (see §3).

The assertion (i) may be considered as a generalization of the principle
of gubstitution of Cassels and Pfister ([15], p. 365; [10], p. 20). At the
end of Section 8 (Proposition 3.6) we shall also generalize the subform
theorem of Cossels and Pfligter ([15]. p. 366; [10], p. 20).

Using the result quoted above and a similar result for chark = 2
we prove in the last section § 4 a theorem about the polynomials in k[#]
which can oceur ag norms of similarity over %(¢) for a fixed symmetric
bilinear form.defined over k. Special cages of this norm theorem have
been uged in a crucial way by Arason and Pfister in [1] and by Elman

- and Lam in [5].
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In general our results about guadratic forms are much less cowplote
than those about bilinear forms.

Although the language of forms is quite natural to describe the
main results of this paper, we use in the body of the paper the geometric
Jlanguage of quadratic and bilinear spaces, since the geometrie langunage
seems to be more suitable to understand the proofs.

The- theory develeped here will be applied in a subsequent 1)4.1’)(\1
about the behavior of quadratic forms in transcendental field exton-
siong [97. '

§ 1. Preliminaries about bilinear amd quadratic spaces. Wo recall
some standard notations and well-known facty about symunetvie bilinear -
and quadratic forms over a (mot necegsarily noetherian) local ring 4.
For proofs of statements given here without further referonce and moreover
for the basic theory over arbitrary commubative rings the rcader may
consult Chapter V of [3], [13], [7] and § 1 of [8]. In the present paper
essentially only the case that A is a field or a valuation ring will play
a réle. .

A free (symmetric) bilinear module (H, B) over A iz a finitely gen-
erated free 4-module # equipped with a symmetric bilinear form B:
I xB—+A. We often denote (H, B) by a symmetric matrix (ay) with ay
= B(w;, #;) for some basis #,, ..., w, of & over 4. We say that (&, B) —
or B — iy non singular, or ﬂmb (I, B) is a bilinear space, if det{ay) lies
in the unit group 4" of 4, ie. if z—B(—, #) is a bijection from 7 to
the dual modnle Hom 4 (¥, A.) A free quadratic module (B, g) over A is
& finitely generated free A-module I equipped with a guadratic form ¢,
ie. with a mapping ¢q: B-+4 such that g(cx) = c®q(x) and Bz, y):
= g(z+y)—q{w)—q(y) is bilinear in » and y, for ¢ in 4, » and y in Z.
We say that (H, g) — or ¢ — is non singular or that (1, q) is a quadratic
space if the associated bilinear form B is non singular. A quadratic module
(B, g} will often be denoted by a symmetric matrix [a,] in square bracket
with @y = g(@), @y = By, a;) if § 5§, for some basis @, ..., 2, of H.
If 2 is & unit in 4 there is 1o essential difference between gquadratic and
bilinear modules, gince then any bilinear form B corresponds ko a unigue
quadratic form ¢(») = 1B(=, ).

Tor a free quadratic modnle we always denote tho quadratic form
by the letter ¢ and the associated bilinear form by R as far as no con-
fusion is possible, and we often write ¥ instead of (B, ¢). Siwilarly we
denote the bilinear torm of a free bilinear module usually by the letter B,
and we often write  instead of (I, B). If we uge the word “space” withouot
further specification we regard bilinear and guadratic spaces at the same
time. The rank of a free finitely generated A-module V¥ will be denoted
by dim V.
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Let ¢: A—+A" be a homomorphizm between (iocal) rings (of course
p{l) = 1). For any free bilinear or quadratic module # we denote by
¢ (F) the A'-module E@,A" equipped with the bilinear resp. quadratic

form which is deduced from the form on E by base extension ([4], §1
no 4, § 3 no 4). We often write B® 44" or HRA’ instead of oo (B) if it is
clear which map ¢ is considered.

Let B be a free quadratic or bilinesr module over 4. We eall a sub-
module V of the A-module # a direct submodule it F = V@ W with some
other submodule W (D means the module sum, without regarding forms).
It A is a valuabion ring then for any submodule V of B the module ¥
consisting of all » in ¥ such that B(V,z) = 0 is a divect submodule,
for B/V+ iy torsion froc and finitely generated and hence free.

We call the bilinear or quadratic module ¥ isotropic it E has a direct
submodule 7 = 0 which is fotally isotropic, i.e. ¢(V) = 0 in the quadratic
case and B(V x V) = 0 in the bilinear case. If & is not isotropic, we say
B 18 anisotropic. Notice that if A is a field any anisotropic bilinear module
over A must be a space, but that in case char4d = 2 there exist aniso-
tropic guadratic modules which are not spaces.

A quadratio space B over 4 iy called hyperbolie, if T contains a totally
igotropic direct submodule V such that V4 = V. Then ¥ is isomorphic
to the orfhogonal smm ¢ x H of § = $dimF copies of the hyperbolic plane

H = [?_ é] Similarly a bilinear space B is called metabolic, if ¥ con-
tains a direct submodule V = V- A metabolic bilinear space i3 isomorphic

to the orthogonal sumn of spaces (a 1 with some o in 4.

19
Hvery quadratic resp. bllmeam gpace E hag an orthogonal decom-
poswlon

(%) B =, M

with B, anigotropic and M hyperbolic resp. metabolic. Now in the quad-
ratic cage Witt's cancellation law is time, since A is local [6], i.e.

(1.0) Py L6 o Ty LGy o Iy

for gquadratic spaces Fy, By, ¢ over 4 (“==2® means “isomorphic”). Fur-
thermore 8 gz dx I with gomoe ¢ 0. Thug in the decomposition (=)
the mumber ¢ == dm M and np to isomerphism the space K, are uniguely
determined by . We eall ¢ the index of B and B, o kernel space of F and
write ¢ = ind#, B, = Kor(F). If 4 is a field of char2 then in the bilinear
case the cancellation law Eaﬂs, but the space Hy in () 8 up to isomorphism
still uniquely determined by B ([7], § 8.2, [11]). We again call 7, a kernel
space of I and ¢: = }dimM the mdcx of B and write B, = Ker(H),
b= ind A, :
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- We eall two bilinear resp. quadratic spaces B and F over A, equivalent,
and write F ~ F, il there exist metabolic resp. hyperbolic spaces M
and N such that B | M = F | ¥. If well-defined kernel spaceg exist,
this means Ker{H#) =~ Ker(¥). The equivalence class of a space B will
be denoted by {H}. For any space E we denote by —I the module B
equipped with. the form —B resp. --g, whore B resp. ¢ denotes the form
of the criginal space. The space B _{ ( —X) is always metabolic resp. hyper-
bolic. Thus the equivalence eclagses of bilinewr or quadratic spaces form
an abelian group under the addition {B}-}{F"} = {8 | F}, and the in-
verse of & class {E} is {—F}. This group i callod the Wikt group W(4)

of bilinear spaces resp. the With group Wg(4d) of quadratic spaces over 4. .

In fact, W(4) is even a commutative ring under the multiplication
{8} AT} = {E@T}. Here EQ.F denotes the tengor product of the A-modules
B and F equipped with the tensor product of the bilinear forms of &
and £ ([4], §1 no 9). (Furthermore Wq(d) is a W(4A)-module; we ghall
not need this fact.) Clearly a ring homomorphism p: A-—>A’ (with g(l) = 1
of course) induces homomorphisms W(p): W(4)—W(4') and Wgq(p):
Wq(4)—~Wgq(A') which map the class {1} of a space I to the class {p o (B}

We now give a description of the ring W(A4) by generators and
relations. Any bilinear space # over .4 which contains an element @ with
B{m, ) in A" has an orthogonal basis, i.e. '

B o (a’l)__-L'-'Jm(“n)

with some a; in A", As usual we denote the right hand side also by {yy..0
cory ). Notice that if 2 13 a unib of 4 every bilinear space B s 0 con-
taing some # with B(x, #) in A" Anyway for an arbitrary local ring A
the ring W(4) is additively generated by the classes {(@)} of gpaces of
rank ome. We write {a} instead of {(a)}. Let & denote the group 4*/4*
of square classes {a) = aA™ We bave a ring homomorphigm @ from
the group ring Z[@] onto W(4) mapping <a> to {a}. Let m denote the
maximal ideal of A. The following well known theorem will he used in
this paper only for in = 0. o

Tomormm 1.1 ([193, Satz 7, [7], § B, [8], §1). Assume Afm eontains
. more than two clements. Lhen the kernel of ® is additively generated by the
. elements {a)--{—a> and the clements {a,>-+ aod (b > — b,y such that
(21, @) z¢ (by, by), which is the case if and only if {ayond> = {bybyy and
by = c*ay+d%a, with ¢ and 4 in A.

We cloge this section with some romarks on gquadratioc modules.
The following generalization of Witt’s cancellation theorem is an imme-
diate consequence of Satz 0.1 in [6].

ProposuTION 1.2. Let M and N be Jree quadratic modules over o local

ring A and let G be a quadratic space over A. If G | N vepresents G M

then N vepresents M.

icm
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For any quadratic module B over a field K we call the submodule
consisting of all & in B with B(x, B) = 0 tho guasilinear part of . We
say that W iz mon degenerate if the quasilinear part of B is anisotropie
(in differcnce to the terminology in [61). Notice that in the case char i == 2
the quagilinear part of a non degenerate module # must be zero and
thus B must be a space. Any non degenerate quadratic module E over K
has o decomposition

By x[g ;5:! 1y

with some = 0 and ¥, anigotropie (ef. [2], p. 160). By Proposition 1.2
the number » and up to isomorphy the quadratic module ¥, are uniguely
determined by B ([2]). We call » the index of ¥ and B,  kernel module
of B. Any maximal totally isotropie submodule V of B has rank 7. Indeed,
¥ has imbersection. zero with the quasilinear part & of B. Thus ¥ = BE®
@ VEW with some other module W. The module U = V @W must be
a gpace. Thus V iy contained in a hyperbolic space M < U of rank 2dmV
(e.g. [7], Satz 3.2.1). We have B = M | M+ and M+ must be anisotropie
due to the maximality of V.

§ 2. Good reduction of spaces. We consider a fixed place A: K—+Luco
with I and I fields of arbitrary characteristic. We denote by o the valua-
tion ving of 4, by m the maximal ideal of o and by  the restriction o—L
of A _ :

LEMMA 2.0. Assume M, ond M, are (guadratic or bilinear) spaces
over o such that M, ®,K =~ M,®, K. Then M, ~ M,. In the quadratic
cuse even M, o~ M,,

Tf charL == 2 there is of course no distinction between the quadratic
and. the bilinear case. :

Proof of Lemma 2.1. Since o it a Priifer ring the maps Wq(o)—

Wq(K) and W(0)—W (K) induced by the inclusion p—+K are injective.

Thiy is proved in [7], § 11, or [13], p. 93, in the bilinear ocase.
(In [13] only Dedekind rings are considered, but the proof holds for
Priifer rings.) The quadratio case can be setiled in the same way. Thus
M, ~ M,. Sinee M, and. M, have the same rank we obtain in the quadrabic
case M, o= M, (see §1). q.0.d. _
We say that a quadratic or bilinear space # over K has good reduction
witlL Tespect to -4, if J containg a quadratic vesp. bilinear space over o
of full rank, in other words, if B o M ®, K with some space M ovexr p.
By Lemmia 2.1 the space (M) is up to Witt-equivalence unigquely ‘deter-
mined by B. Wo denote the class {u. (M)} in W(L) by L{E}. It clearly
depends only of the class {£} in W (X). In the quadratic case by Lemma: 2.1
even. the space w. (M) over L is up to isomorphism uniguely determined
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by Z, and will be denoted by 2. (). We call 1, (¥) the reduction or Spg.
cialization of I with respect o A. Assume now that charl =2 and
is bilinear. We say that B has very good reduction, if B containg a bilinear
space M over o of full rank such that the space M/mM = M ®n fm over
ofwi is anisotropie. Then for any other space M’ over o of full rank con-
tained in & we obtain from M fmM’ ~ M/mM that M mM is isomorphice
to a kernel space of M’ /mM’ (see § 1) and thus M /mM' =~ M/mM, since
the ranks are equal. Thus alse M’ fm M is anisotropic and g, (M) oz p (M "
We again call u, (M) the reduction or specialization i (#) of B.

The later Example 2.6 (i) shows that in the bilinear case with charL
= 2 “good reduction” is not enough to ensure the uniquencss of ().

ProrosrrioN 2.2. Let B - F LG be an orthogonal decomposition of
a space F over K.

(1) If I and I have good reduction, then also G has good reduction and
Ml = L {F} - 4G
In the quadratic case even '
A (B) s A (T) L2 ().

(i) Assume B is bilinear and charl, = 2. If  has very good reduc-

tion and F has good reduction, then ¥ and G both have very good reduction
- and again

.

X H) o2 A (F) LI (G).

Remark. We ghall see in. § 3 (Proposition 3.2) that in agsertion (ii)
the assumption that # has good reduction ean be dropped.

Proof. We chose a decomposition & = @, | ¢, with &, anigotropic
and &, hyperbolic resp. metabolic. It is eady to find o space B, over o
of full rank in & . It remains to find such a space in &,. Clearly &, is
& Iernel space of I} (—F). We chose spaces M. ; ¥ over p of full rank
in & and F. We further chose a decomposition M LN} = R, LS into
an anisotropic space I, and & hyperbolic resp. metabolic space 8. The
space B, ®, K is again anisotropic (sec [7], §11.1), henco

By ®, I a2 Ker (B | (—F)) = &,

and G o= B@ K with B: = By | B,. Wo geo that & hag good reduction,
and obtain from B o (¥ | B)®@,K, that A {00} = A [F} - L {G) and in
the  quadratic case A4 (%) &2 A (I | Ae(@).

“Assume now that charl == 2 and F is 2 bilinear space with very
good reduction. Then N/m¥ | E/mR is anisotropic. Thus both summands
are anisotropic and assertion (ii) follows. q.e.d.

If M and N are quadratic or bilinear free modules over a local ring
4, we say that M is represented by N and write M < N , it & contains
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a direct submodule M’ ox M (isomorphism respecting the forms). Tf M
is a space this implies ¥ o M | T with a suitable quadratic resp. bilinear
module 7. Of course if N and M are both spaces also T is o space. Up
to the last part of this section we shall only deal with representations
of spaces by spaces.

CororLarY 2.3. Assume A is a regular local ring with guotient field
K and mozimal ideal 3N and that M and N are spoces over A.

(i) In the quadratio case M@ K < N® K implies MMM < N [INN.

() If 2 ¢ I the same holds true in the bilinear case, if in addition N [NV
ts anisolropic.

Proof. It iy cagy to construct a place A: K—4/Mvoo which on 4
coincides with the evident map A—-A/M. In fact, let ¢, ..., denote
a regular system of parameters of 4. We show the existence of 1 by in-
duetion on #. If » = 1 take the canonical place associated with the valua-
tion ring 4. Assnme now r> 1 and let p denote the prime ideal A¢,.
Clearly A, is a valuation ring and L: = 4,/pd, may be regarded as
the quotient field of the ring A/p, which is again regular. By induetion
hypothesis there is a place a: L—d/Miuecc which eoincides on A/p
with the evident map from 4/p to 4/M. Let f: K—Luco dencte the
canonical place agsociated with A4, The place i = wof fullfills our re-
guirements.

We now obbain the asgertions of Uorellary 2.3 applying Proposition
2.2 with B: = N¥N@,IK, F: = M®,K and G a space over K such that
Bx=F |6 gqed. '

. Remarks 2.4. (a) I in part (ii) of Corollary 2.5 we do not assume
that N /MMM is anigotropic, then it still can be shown that M/MIH is
“stably represented” by NN, Le M/INM |8 is represented by
NN |8 for some space S over 4/M.

{b) It iz uwoknown whether for a regular loecal ring 4 with guotient
field K the canonical maps W(A)—=W{EK) and Wq(d)—>Wg(X) are in-
jective. Corollary 2.3 gives a small hint that this might be true.

Ag a gpecial ecase of Corollary 2.3 we obtain

OoroLrARY 2.5 (Principle of substitution). Let (fi;(8))icsjen ond
(g'k,(«'.'.))mhl,ﬁm be symmetric matrices of polynomials in an arbitrary number
rof variables t w= (8, ..., %) over an arbitrary field k. Let fuyther ¢ = {¢1, ..., 6,)
be am r-tuple with coordinates o; in o field extension L of k.

{i) If the quadratic modules [gy(0)] and [fy(e)] over L are nonsingular
and if the module [g5,(t)] over k() is represented by [fy(t)], then [gu(c)]
is represented by [fy(e)]- ' _ _

(i) The analogous statement holds for the bilinear modules (gm(t)),
(7a®)s {gule))y (file) if we assume in the case chark =2 in addition
that (fy(0)} is amisotropic. : :
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Proof. [gy(t)]resp. (gm(t)) i o fortiori represented by [ fﬁ(t)]reﬂp.( fii (t))
over L{3). Thus it suffices to congider the cage I == k. Now apply Corollary
2.3 with A = k[{],, where p denotes the jideal of k[t] genorated by &, —oy,
ooyt el

Remark. Corollary 2.5 (il) is in the casc m =1 and all f5(t) con-
stant the well known principle of substitution of Cassels and Plister
([157, p. 365, [10], p. 20). In this case 1o additional aggumption is needed
it chark = 2. In fact, we may assume again that L = k. Lot I denote
the space (fy) over k. We congider. n deconrpogition

] 1 O 1
B =1, (il ?)) J_L(i o) Ls (2 0)

with E, anisotropic and minimal r. Then the aubspace
I;‘; = Eoi.(alr sevy a’r)

ig anigotropie. (gn(t)) is already re;preﬁ‘entecl by B®k(t), and our Corollary
2.5 shows that (gy,(c}) is represented by [, hence by H.

Txawprms 2.6. (i) Assomo % is » field of characteristik 2 which ig
not perfeet, and let @ be an clement of k which is not a gquare. Then
with one variable ¢ the spaces (1, 1-+at?) and (6, a(1--at®) over k(f) are
isomorphic. Substituting ¢ == 0 we obtain the spaces (1,1) and. (a, @)
over k, which are not isomorphic. (1, 1-+at?) vepresents (a) over k(%)
but (1, 1) does not represent (a) over k. This showsy that even for m =1
an additional assumption is needed in Corollary 2.5 (ii) if char foom= 2
and the f;{f) are not constant. .

(ii) For m =2 and chark = 2 already an additional agsumption is
needed if all f; are constant. For example with the element & from
above the spaces (1,1, ¢) and (a--1% a4-1%, a) over (t) are isomorphic
(see [11], Theorem 3, or [7], Satz 8.3.1). Thus (1,1, o) reprosents the
anisotropic space (a, a--1%) over k(). But (1,1, ) does not represent
(a, a) over k. Indeed, otherwige (1,1, o) woull be izsomorphic to (a, g «)
which it absurd, sinee (a, a, @) does not reprosent (1). :

We now want to prove a generalization of Proposition 2.2 in the
guadratic case. As above lat ir K-~LuUce denote o fixed place with
valuation ving 0. We tacitly assume up to the end of this section thatb
charl = 2, gince otherwise Lemma 2.8 and Proposition 2.9 below are
alveady proved. , .

TmyMa 2.7, Let N be a free quodratic module over o such that N fmN
© 43 now degenerate. Then N is mawimal among the tattices N' over o in N @K
with g(N") < o. ‘
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Proof. There exists some decomposition
NmN =K, N,

with N1 a space over o/m and N, the quasilinear part of ¥/m¥N. This
decomposition can be lifted to a decomposition N = N, | N, (e.g. [6],
p. 259). Since N, ig anisotropic it is eagily seen that N, is the set of all 2
in the submodule N,® XK of J with g(2)en. Now assume that « is o vector
in I such that ¢(N -+ ox) is still contained in o, We have o=, +m, with
@, in N,@IK. Clearly B{w, N,) = B(z,, N;) = o. This implies o,eNy,
since N, is & space. Thug N oz == ¥ 4-ox,. In particular ¢(«,) <o, which
implies ®yeN,, as stabes above. This completes the proof. g.e.d.

Lmmns 2.8, Let M and N be free quadratic modules over p sueh that
MmM and N mN are non degenerate. Assume that NQK represents U@ K.
Then N fmlN represents M M. If M is a space over o or if NV/m¥N i ani-
sotropic, then ecven N represents M.

Proof. {a) We shortly write M for M/mM, N for N/m¥N, and & for

- pfin. We first consider the special case that M is & space over p and have

to ghow M < N. By Propogition 1.2 it suffices to prove M | (—M) < N |
1{—M). Now
¢ 1
M (—M) zvx{l 0]
for gome 7 0. Thus we See again by Proposition 1.2 that it suffices to
01

prove our assertion in the speeial case M %L 0

], which we congider

now.

We regard N as a lattice of B: = N® K. Since # represents a hyper-
bolic plane, there exigby rome @ in ¥ with g(z) = 0 and pe a direct gummand
of the p-module N. The ideal B(z, N) of o is finitely generated, thus
B(m, N) == ap with some a 5 0 in . Assume aem. Then one immediately
seed, that ¢ takes on N -« lgo only values in o. This econtradicts Lemma
2.7. Thus neo* and there exighy some y in N with B(m, y) = 1. (This ig
a very clagsical argument, see c.g. [14], p. 235). The submodule oz -0y
of ¥ is non singular and in particular a direct summand of N¥. Further-
more o --oy g isotropic and thus hyperbolie.

(b) We now congider the general case. As explained in the proof
of Lemma 2.7, we have a decomposition M = M, | M, with M, a space
over v and B (M, X M,) « m. We know by part (a) of the proof that M, < N,
and thus N g M, | N, with some quadratic module ¥,. By Proposition
1.2 we obtain from MK < N@K that M,@K < N,@ K. It suffices
to show that M,jmM, is represented by NofmN,. We thus have reduced
the proof to the special case that B(M x M) < min addition to the assump-

- tions of the proposition.
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We again regard N as a lattice in B; = N@K and regard M as
a lattice in F: = M @K. We agsume without loss of gencrality that #
is a sobmodule of T over K. Now the interscetion Ni: = NN i eon-
tained in M since M is the get of all g in ' with ¢(2} in. 0. By the clemen-
tary divisor theorem there exists a basis @q,..., %, of M and a bagis
Yiy o-vy Upe of Ny such that y; = a;#; with o; in p. We may assume that
there is some s in [0, m] such that op = 1L for 1<i<s and oem for
s<<igm It s =m, then N, = M and thug M < N. Cerlpinly 5§ =m
it ¥ is anisotropic. 8ince now we agsume s < m. Lot V' denobe the image
of the direct summand ¥, of N in N. bumc B(M x M) =m we have
B(N,;xN,;) =m and thus B(VxV) = 0. Lel a; denote the image of
g(z;) in % Then
() T o= [0 Lo L6,
and

Voo o] L. L[] L (m—s) < [0].

Let further V, denote the intersection of V with the gquasilinear part B
of ¥. Bince ¥, is an anisotropic submodule of V, clearly V, is represented

by [@].L... Lla] ie.
(=) (4] dee L @] 2 Vol led L. L[]

with ¢ == dim ¥, and suitable elements oy, ..., ¢, in &*, (Read ¥, for
the right hand side if ¢ = s.) Thus we have a decomposition V =V, | U
where U ig & submodule of ¥ with

U [e] L. LGl L {m—s) x[0].

{The [¢;] have to be omitted if { = s.) Now we choose a submodule W
of ¥ such that
V =ROUBW =R (TOW).

The submodule P: = UGW must be a space. Let 4y, ..., 4,,_; denote
& basis of T with glu) = ¢;for 1 <i < oe—1 and q(u,) = 0 for s—t <4
<m—t Since B(UxU) =0, we can find clements 2y, ...,2,., in P
such that B(e,, %) = 0 and Bz, ;) = dy for 4 and jin {1, m —1] (e.g. [7],
Satz 3.2.1). Thus we finally obtain a decomposition :

N =R (buy-ke) L oo L (Kb, g-- Tty y) |G
with some space Q. Now R representy V, and kw4 ey mprosontﬂ Fegl
for 1<i<s—t For s—1<i<m—t the gpace ku--ke is hyperbolic

and cermmly represents [ay,;]. We see that N indeed represents M,
gince by (%) and (#*)

M~ Volled Leoo L] L[Ggpa] Lot Lty 1.
g.e.d. :
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We say that & guadratic module B over K has nearly good reduction
with respect b0 1: K—LUco, if I containg a quadratic p-module ¥ of
full rank with M/mM non degencrate. We then denoie by A+(E) the
guadratic module p (M} over L with u: o—=L the restriction of A By
the just proved Lemma 2.8 the quadratic module 1, (%) depends up
to isomorphy only on I and A

We now obtain from Lemma 2.8 the following generalization of
Proposition 2.2 for quadratic modules:

ProvosrrioN 2.9. If B and F are quadeatic modules over K with
wearly good veduction with respect o A K-+LUco, and of ¥ < B, then
Ae(F) < Au (1),

Cororrary 2.10. The assertion (i} of Corollory 2.3 remains true if
Jor the quadratic modules M and N ocourring there we only asswme thet M [501M
and N[N are non degonerate. The assertion (1) of Corollary 2.5 remains
true if the word “non singular” there is replaced by “non degenerate”.

§ 3. Subspaces with had veduction. As in §2 we consider a fixed
place A: K ->LuUeo. The following theorem is well-known in the special
case that the valuation ring o of 2 has rank 1, see [7], § 12, and for o dis-
crete also [177] and [13], Chapter IV, § 1, We shall prove it by generalizing
the argument given in [13].

THIEOREML 3.1. There ewists o unique additive map Ay: W{(E)—~W(L)
with Ao} = {1{a)} for every @ in K* such that A(a) # 0, co, and with
Aefa} =0 fcw tmm Y a i K such that A{ac®) = 0 or oo for every ¢ in K™

Proof. We may assume without loss of generality that I = o/m
and 4: K—ZLUco ig the canonical place associated with o. We may fur-
ther assume m 0, since clse the theorem is faivial. Then ecerfainly K
is infinite and we can apply Theorem 1.1 with 4 = K. The image of an
element @ of p in L will be denoted by @ We have a well defined additive
map A frem the gronp ring Z[4], G: = K"/K™, to W(L) with Ala>
= {@} if & in 0", and Ala} = 0 if the square class (&> does not contain a
unit of of Clearly this map 4 vanishes on all clements ¢ad -+ ¢ —a) with
in ¥ According to Theorem 1.1 onr theorem Wlll be proved if we show
thai; A vanishes on an arbifrary clement

o () - (@) — (g — {dy)
With (4, @) =2 (ay, a,). I none of the square classes <a,> containg g wnit
of o, this i3 cvident. Thus we agsume without loss of generality a,eo®.
Then 2z = {a,>y with an clement

= 1 (0 = () — (b

such that (1, ¢) o (b, be), which means b = u®+o?¢ with suitable ele-
ments w, # of K. For arbitrary elements & in o and @ in Z[¢] we clearly

- 8 = Acte Arithmetlea XXIV.4
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" have A{{a>w) = {g}A(»). Thus it suifices to prove A(y) == 0. We agsume
that hoth « and o are = 0, since otherwise already y = 0.
We first consider the ease that ¢ lies in o™ Then

A(y) = 1+ {HA(1— ).

We have nothing to prove if {8} = {—1}. Thus we assume in addition
{8} # {—1}, which means that the space (1,3} over L is anisotropiec.
Changing b by a square we further assume that « and » both lie in o but
not both in m. Since (1, ¢} is anisotropic, we have b = @2--25% 5 0 and

Ay) = (L+{E) (1 —{a2-+ev}) -

We now consi(ler the remaining cage thab <(,> does not contain
a unit of o. Then % *%¢ is not & unit and thas either b == w2(L-+4) or b
= p2¢(1 4-d) with some 4 in m. Henee A(1—<(b}) =0 or = 1—{&} and
A{y) = 0 in both subeases. q.e.d..

Remark, For a bilinesr space  over K with good reduction the
element A, {E} constructed in §2 iy the same element as the image of
{E} under the map 1. construeted now. This follows easily from the fact,
that for every space M over o at least the space M (1) has the form
(@1, ...y @) With @, in o* (ef. §1). _ '

The map A W(I)—-W(L) gives some information about spaces
with good reduction whieh contain subspaceés with bad reduction, Le. not
good reduction.

PrOPOSITIION 3.2. Let B be o bilinear space over K with good reduction.

(i) Assume charL s 2. If T represents a space (by, ..., b,) such that
A(be?) = 0 or oo for each b; and every ¢ in K*, then Ay (B) has indew = {m/2}.
(As usual {m[2} denotes the least infeger > m/2.)

(ii). If charl = 2 and E has very good reduction, then each subspace
of B also has 'uem; good reduclion. _

Proof. (i) B o (byy ..., by, 01500y Cypy) With some ¢, in K*. Thus
L{B} = Afler, -, Coom)} l‘rom the definition of Ay It iy clear that the
equivalence (,Ichbﬂ of L.(H) contains a space of rank < »—m. This means
that A, (¥) has an index = {m/2}.

(i) B must be anisotropic since F hag very good reduection. Thus
certainly every subspace of H hag-an orthogonal basis. If 1 would con-
tain & subspace with bad reduction, then F would contain a space (b)
of rank one such that A(be?) = 0 or oo for all ¢ in K*. But then we see
again, that A () is equivalent to a space of lower rank. This contradicts
the agsumption that i.(B) is dnmobropm Now ﬂle agsertion follows from
Proposition 2.2 (H), q.e.d. :

ProPosiTION 8.3, Let (fﬁ(t)) be a symmetric (n, n)-matriz of polyno-
mials f(t) ekt ..., 1] over an arbitrary field &k, and g.(§), ..., gm (%) be m

icm
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further polynomials in k[i]. Assume ¢ = (61, ...,0¢,) is an r-tuple with
coordinates in o field extension L of & such that det(f,(e)) + 0, and that ¢
i8 & non singular zero of each g,, i.e. g,(c) = 0, (0gp[0t)(6) = 0 with some ¢
depending on p. Then if the space (fij(t)) over k(t) represents the space

(ga(®)s ooy gm(B))s the space (fy(e) over L has an indew > {mj2).

Proof. As in the proof of Corollary 2.5 we may assume I — k.
7 =1, then our proposition follows immediately from Proposition 3.2 by
use of the place A: k(f)—~kUco over & (Le. A is the identity on %) with
A{ly) = €,. Assume now ¢ > 1. We fivst consider the ease that % is infinite.
Then there exists an s-tuple (ay,...,a,) in %" such that ’

2 ay {Dg, |, (

=1

for 1 < p < m. Thus performing a suitable linear tmnsformation of coor-
dinates with coefficients in & we may assume ( (Bg,/0t)(c) # 0forl < p < m.
Let ¢ denote the (r—1)-tuple (e, ..., ¢). There exrsts a place a: k(1)
k(i)W eo over k() with a(?;) = ¢; for 2 < ¢ < r. (Cf. the proof of Corol-
lary 2.3 with 4 the loeal ring of k(#)[t,, ..., 1] corresponding to ¢'.)
Using the map A«: W{k(®))>W(k(t)) we see that the space (Fig (b1 €)
over &(t,) iz equivalent to a space :

(9'1("51: &)y eey Gnllsy €7, By(ty),y .o, hs(il))

with some polynomials 7,(#) and m+s< n. (I m =n, omit the )

-Let A k(f)—=kuocs denote the place over Z Wﬂ“h A{t) = ¢;. Then umng

At W(k{t))=W (k) we sec that, since all A.{g(t;,¢')}, 1 <i<m, are
zero, the space ( fy(e)) over & is equivalent to a space of rank < n—m.
Thiz means that the index of this space is = {m/2}.

Assume now that % iy finite. Let 4 denote an indeterminate over k.
By what has been proved the space (fij(o)) iz equivalent over L(u) to
a space of rank < n—m. Applying fi: W(k(u}}~>W (k) with some place
B: k(u}—kUocc over &, we soo that { ﬁj(c)) is over k equivalent to o space

of an = — . .0 d

Remark., It chark =2 the proof could have been shortened by

applying fivst the principle of substitution and then Proposition 8.2 (i).

Provostrion 3.4. Assume B is ¢ quodratic module over K which has
nearly good reduction with respeet to A K-»LUco. Further assume that I
8 & submodule of B with Alg(2)) == 0 or oo for cvery « in F. Then Au(H)
has an indew > dim 3.

Proof. Let N denote a module over o of full rank in ¥ with ¥/mX¥N
non degenerate and let M denote the intersection NnF. Then N = M @M’
with some other submodule M' of N. The image M of M in ¥ mN iy
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a submodule of the same rank as F with ¢(M)= 0, since g{w)em for
all # in M. This implies the assertion (see §1). g.e.d.

ProrostrioNn 3.5, Lel (f,-;,-(t)) be o srymmetnﬁo matrie of polynomials
Fa) én B[] =Rk[t, ..., 6] and g.(0), ..., Gu(t) be m further polynomials
in k{t]. Assume that ¢ = (g, ..., ¢,) 9§ om r-buple with coordinates o, in
a field extension L of k, such that the quadratic module [fy(c)] over I is
non degenerate, oll g,(c) = 0, and the matriz (dg,[0t) (¢} has vank m. Assume
Further that the module [fi;(0)] over k(i) represents [y (8] ... Lig.H1L
Then the module f,;(6)] over L has indew 2 m.

Proof. We may assume b = L, Turther replacing the variables t by

ti0, We assume ¢ == (., Finally subjeeting the & 1o a suitable linear

transformation with coefficients In & we agsame

(*) (dgp/atq)(o) = 53:«17
for l<p<m,l g g < r. We consider the field K == %(t, ) with an in-

determinate s over %k(t), and the subfield k(u} = k(¥ ..., %) of K with

w; = 1,877 Let A denote the place from K = E{u, 8) to k(u) over ks
which maps s to 0. Regarding the module

o= [ga ()] L L lga(2)]
over K, we shall prove below:

! Mg(m)) =0 or oo for all @ in I,

Since the module [ fa ()] over & represents £, and A(f) = 0 for 1 < i <7,
it then follows by Proposition 3.4, that the module [f;(0)] over k(u)
bas index = m. By Corellary 2.10 algo the module [fu(®)] over & has
index = m.
We now prove (x). For any » {) in. F the value g(@) has the form

ZN™! with ‘

"

No=hiu8)h Z = >agu, g, (us, ..., 4,8),

=
h(u, ) and a,(u, 8) denoting polynomials in %[w, 8] such that hiwu, ) # 0
and not all a;(u, §) == 0. We now regard the a,(w, 8) a8 polynomisls in s
with coefficients in %[«]. For some I = 0 we may wyile for 1< iy

a;(t, §) = by(u) &' higher ferms,

with at least one b,{u) = 0. By (%) the lowest term of g, (ma, vy Upd)
with respect to s is u;s. Thus the lowest term of 7 is o(u)s’ g% with

= Zbﬁ(u) wiy

gom]
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provided e(u) == 0. But & glance on the term of lowest (or highest) total
degree in the polynomial ¢(w) makes evident, that indeed c{u) s 0. Thus
the lowest degree with respect to ¢ oceurring in the polynomial Z is 21 4-1.
On the other hand the lowest degree of N iz an even number. (Clearly
MZNTY =0 or = co. q.o.d.

We now consider the following situation: (f(#) is a Dbilinear space
over k(t) = k(ty, ..., ,) with indeterminates ¢, and the Jut) polynomials
in k{t]. Further g(#) is o polynomidal in k[¢], which is represented by the
space (fi (1)) over &(¢). Finally ¢ iy an - tupel with coordinates in a field
extension L of & such that the bilinear module ( fi(0)) over L is non sin-
gular and g(¢) == 0. If the zere o of g ig non singnlar, then by Proposi-
tion 3.3 the space ( Ji(e)) over I must be isotropic. But if ¢ is o singular
zero then it may very well happen that ( fr(€)) is anisotropic. The follow-
ing Proposition 3.6 deals with this case. Recall that any bilinear module
I over I has a decompogition

B Frx(0)

with ¥ a non singular bilinear module, which up to isomorphism is uni-
quely determined by F. We call ¥ the non singular peri of F.

Proposrrion 3.6, Assume Chark = 2 and that in the situation described
above (fﬁ(c)) is an anisotropic space over I and in particular ¢ is a sin-
gular zero of g. Then the space ( fi,(c)) over L represents the non singular
port of the bilinear module (a,), 1< p, g < r, over L with

Qyy = {02 0%, 00 (€).

Remark. In the special case that all f;(f) are constant, ¢(z)is a quad-
ratic form, and ¢ = 0, Proposition 3.6 is the well known subform theorem
of Cassels and Pfister ([10], p. 20). Tn fact, the theorem of Cassels and
Piigter provides the main step in the proof of Proposition 3.6, which
now follows.

Proof. We proceed on a similar way as in the proof of Proposition 3.5.
Without loss of gencrality we nssumie % = I and ¢ = 0. Let

O :
) = 21 Uygtpty
md

denote the Heusian form of g(2), with the a,, from above. We have

g(t) = h(t)-+o(t)

with a polynomial ¢(f) which only containg monomials of total degree > 3.
If k(t) = 0, there is nothing to prove. Thus we assume after a suitable
linear transformation of coordinates that for some index m in [1,7] all

dpy With. ¢ >m or ¢> m are zero and the matrix ( Gpg)s 1 <p, g m
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hag determinant # 0. If m <+ we obtain by the principle of substitu-
tion 2.5, that the space (fi(t, .oy lyy 0400y 0)) 0ver Ely, ..., &,) vepro-
SCIES ¢ {1y «vny by Oy -ovy 0). Thus we may assume withowot loss of gener-
ality from the beginning, that the space (a,,) over b is non singular,

We again consider the fields K = E{t, 8) = k(u, s) and k{#) con-
structed in the proof of Proposition 3.5. The space (fj(us, ..., 1, 8})
over I represents the clement

with @ (%, ) a polynomial in k[u, s]. Substituting the value 0 for ¢ we
see by 2.0, that the space (ﬁ,—(O)) over b(w) ropresents hi{w). Now the
subform theoreni of Cassels and Plister yields that the spuce (f;(0))
over k represents the space (m,,) over k. g.e.d.

§ 4. The norm theorem. We congider a fixed bilinear or quadratic
module B over an arbifvary field k. Wo eall an element o of &A™ 0 norm
of B, il (a)@F == K, i.e. if ¢ is the norm of o similarity transformation
of B. (It B is quadrabic with associated quadratic forin ¢ then (@)@ F
denotes the module & with the quadratic form ag.) The ach of normg
of B iy a group N(#) which contwing oll sgoares in &%,

The miain goal of this seetion is to prove the Theorem 4.2 below

funetions in an arbitrary number » of variables iy, ..., 1, over k. For any
polynomial f(t)ek[t] we denote by f* the coefficient of the highest mo-

nomial occurring in f(#) with respect to the lexigraphical ordering.

(B . 0% > 40 gl if and ouly if the first difference a;— b5 0 is > 0.)
We gay that f i3 normed it f* = 1. Notice that this notion. depends on
the chosen ordering #, >, > .,.> 1%, of the variables. We further fix
the following notations for this section if » > 1: K denotes the field k(i)
with ¥ = (§, ..., 4,), deg,f denotes the degree of f as a polynomial of
K %]

We shall need the following

Lwsma 4.1, Assume that B is an amisotropic bilincar or quadratic
module 7 0. If @ polynomial (1) ek[1] is @ norm of B @Kk(t) then the highest
monomial occurring in f(t) has the form 8. 0 with even emponents m,.
Furthermore ™ i3 a norm of 1. ‘

Wo prove the lemma by induction on . Assume Hrsf # = 1 and
write ¢ instead of ;. We consider the place A: k(f)->kUoo over k with
©AE) == oo, Cloarly H@h(t) represents an element af(f) with o in &*. If
dogf would be odd, then the Propositions 8.2 and 3.4 would imply that ¥
is isotropie. Thus degf is an even number m, and hence
(%) BRE() = [t/ (1))® (B k().

icn
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Furthermore A{t™™f(#)) = f*. Thus by computing 1, (B®k(1) = 7 using
the right hand side of () we obtain B =~ (fYRF.

Agsumie now v > 1, and let he<k['] denote the highegt coefficient
of f as a polynomial of X[t ]. From the case » = 1 we obtain that deg, f
is even and 4 is a norm of HFQK. Now apply the induction hypothesis
to k. g.e.d

TFor any irredueible polynomial p(f) in %[¢t] we denobe by k(p) the
funetion field over & of the variety of zeros of p(t), i.e. the quotient field
of E[]/{p(t).

TarorEM 4.2. Assume that T is an anisotropic bilinear space = 0
over k and that p(t) is o aormed drreducible polynomial in Bty ..o t,].
Then the following ore equivelent:

(1) p(t) is a norm of ERE(1).

(H)} p(t) divides a square free polynomial f(1) {Le. g2(t)|f() = g{t)
= const}, which is o norm of EQRKE(D). : _

(iif) B@k(p) ~ 0.

If chark = 2 we may replace in this theorem — and similarly in
Lemma 4.1 — the assumption “# anisotropic” by “B not hyperbolie™,
gince B @k(t) and Ker(H)® k() mKer(Iﬂ@k(t)) have the same norm
group.

Clearly Theorem 4.2 amd Lemima 4.1 jmply _

CororrARY 4.3. Assume E is an anisotropic bilinear space # 0 over k.

Then a polynomial f(1)ek[iy, ..., 1] is 6 norm of BQL(t) if and only if f*
s a norm of B and BE@k(p) ~ 0 for all normed irreducible peklt] which
divide f with an odd power.
- We shall prove Theorem 4.2 by induction on » and consider first
the case r = 1. Write ¢ instead of ¢,. The assertion (i) = (ii) is trivial.
To prove (ii)=(iii) we congider the canonical place A,: k(t)—k(p)Uoce
over k associated to p. Applying the map (iy)y from W(k()) to W (k(p))
to the equation ' .

{1, =N} - {BRK(1)} =

we obbain {E@i’c(p)} = 0, ay degired. To prove (iil) =(I) we consider for
evory mormed polynomial w in k[¥] the map

By W{k(t)) ~ W {k(n))
defined by

aa(m) = (ln)*({n}m)*
As ig well known ({12], Theorem 5.3) the sequence

(A) 0->W (k)= W((kt)} 55 [ [ W (k) — 0
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is exact. (We shall not need the surjectivity of (8,).) Furthermore it iy
evident th&t a splitting of thiy scquence is given (for example) by the
map (Agh: W(k(t )—>W (%) which comes from the place Aot k(H)-»kuoo
over k Witll t—eco, We consider the element -

= {(1, —p}-{ERk (1)}

of W(k(t)). Olearly 9,(z) == 0 for all = s p and by assurmplion also d,,(2)
= —{E®@k(p)} = 0. Finally wo want to show (A)«(2) = 0. Then it ig
clear that ¢ == §, which meang, that p iz o nevm of B ®J‘.,( Dy a8 desired.

By a theorem of Springer X remaing anisotropic over any finite
field exfension of % of odd degree. ([16], Springer’s argument is also
valid if chark =2, both for the quadratic and bilinear case.) Thus p
must have even degree. Since p is normed we obtain (lo)w{p} = {1}
~which implies (A.)«(2) = 0. This completes the proof of Theorem 4.2
for v = 1.

- Assume now r > L and that Theorem 4.2 is true for » —1. This time
we prove first (1)«(ii) and then (i)<=(iii) for + variables. We use the nota-
tions introduced before Lemma 4.1. We further denote by I the gpace
H@K and by n the degree of p as & polynomial of K[t,]. Of course
(1) =-(ii) is agnin trivial,

(i) = (i): We first assume that % has infinitely many elements. We
consider the cases n = 0 and » > 0 separately. Assume fivst 5 = 0. We
have a decomposition J) = p(Yh(t) in k[t]. We choose an element ¢
in & such that p(t') does not divide ke, ') in %[t 1. This is possible since &
is infinite. (Regard the imagoe of A(f) in (1’0[6’]/ P)H1) Since p(t)h()
is & norm of PQK (4,) we obtain by the principle of substitution (Corol-
lary 2.5 (ii)) that p(¢')A(e, #) is a norm of . Since by induction hypo-
thesis also Corollary 4.3 is true for (r--1) variables, we obtain that p{¢")
is a morm of I and o fortiori of F@K (T0).

Assume now n > 0. We denoto by a{') ek[t"] the hlg”herst coctlicient
of p ag & polynomial in K Lt;] and by $(t,) the normed polynomial a~*p

of J{[#]. By the settled case 7 == 1 we know that Bt is v norm of K6 K {1},
hence:

(B) (DR (FRI (1)) 2 (0)® (lf’qgaif(ti)).

Thus it suffices to show that a (') is a norm of 7, Lot m{t') be an arbitrary

irreducible normed polynomial in %[4'], which divide a(t) with. an odd

power (if there is any such m). We shall show a(#)eN (1. Sinco a(t) ia
normed it then will be clear that a{(t')eN (F).

7 does not divide all coefficients of p () vonsidered ag a Ppolynomisl

. In ¢, over &[t']. Thus, since k is infinite, we find an element e in % such

that & does not divide the polynomial p{e, &) in k1¢']. By the prineiple
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of substitution we obtain from (B)
(0) (ple, ")@F =~ (a(®))oF,

ne. a{t)p(e,t)e N (). Binece m(¢') divides this polynomial with an odd
power we obtain by induetion hypothesis that = is a norm of F. Thig

" completes the proof of (ii)= (i) if & is infinite.

If now [ is Linite wo consider the field I = &{#) with one indeter-
minate w. Applying (ii) = (i) to the space HRL and p, f as polynomials in
L[] we obtain that p is o noxm of HQL. Then we sce by the principle
of subgtitubion, o.g. specializing « to 0, that p is also a norm of .

Wo now prove (i)<-(ili) for » variables. I p does not depend on the
variable ¢, we are through by induction hypothesis, since the field k{p)
corresponding to p ag a polynomial in %{t] is o purely transcendental
extengion of the field k(p)’ corresponding to » as & polynomial in %[#'].
Thug we may assume deg,p > 0. We use the letters K, ', o, p in the
game meaning as in the proof of (i)(ii).

(i) =(iii): By Lemma 4.1 () is a norm of F. Thus = ¢~'p is a norm
of PQK (1,). Trom the case r = 1 we obtain PRK(P) ~ 0. Notice that
(D) = k(p) and FRI(D) = B@k(p).

(iif) ={1): We know from the cage r = 1 that $ is a norm of FQ K (1)
=H@k(t). Thus a(t)p{)eN(#®k(). By the implication (ii)=(i)
already proved for 7 variables wo obtain p () e N {E@k(1)). This finishes
the proof of Theorem 4,2,

Remark. In the case that chark £ 2 and p is 2 quadratic form the
implication (i) =(i) of Theorem 4.2 has been used as a fundamental
trick by Arason—Pfister [1] and Elman-Lam [5]. Arason and Pfister
give in this case a proof of (iii) =(i) entirely different from our methods.

It would ho interesting to prove a statement similar to Theorem 4.2
for quadratic gpaces or modules if chark = 2. The main obstacle geems
to be, that no theorein analogous fio the exact sequence (A) above is
known. I only can stato

o Propvogvrron 4., Asgume B is o quadvatic module over k& and f(1) ds
@ square free polynomial in b1 which 48 a norm of BT (£). Then for every
wrreducible polynomial p (6 el [t] which divides f(1) and is sepa.mble, i.e.
Op b 0 for ab least one vuriable by, we huve

Lsx[0]

/ ] 1 |
i 1 N

with somie 1= 0 and ¢332 0,

Proof. Let 7; depote the image of 4 in %(p). T£ 0p/04; +* 0 then cer-
tainly p does not divide p/ot,, thug (§pot)(z) % 0. for 7'= (7, ..., 7,)-
Smce J 1% square freo we obbain f{z) = 0 and (0f/c'?t¢ (v} #0. We. hewe
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a decompoesition
01
HQh(p) =X L 0} Lex[0]1&

with some anisolropic module ¢ over k(p) which up to isomorphy ig
uniguely determined by B. Assume & # 0. Leti u = (uy, ..., %,) denote
a set of ¥ indeterminates over k(p). Clearly f(u) is a novm of Bk {(p)(w)
and thus also of F.@%(p)(u). Applying Proposition 3.0 in tho gpecial cage
m =1 we casily obtain a contradiction. Thus ¢ = 0. q.e.c.

Theorem 4.2 gives for an anisotropic bilinear space B a characten- .

zation of the irreducible normed polynomialy p(t) such that Lok (p} ~ 0.
The reader might ask for a similar eharacterization of those normed
irreduncible p () such that B@E(p) is inotropie. Thig has heen given hy
Witt [19]. I want to recall his result in a way similar to Theorem 4.2,

Let q(Xy, ..., X,)ek[X,, ..., X,] denote an anigofropic guadratic
form in an arbitrary number » of variables X; over an arbitrary field, k.
Let ¢ = (4, ...,4,) be another set of variables. We congider the subgroup
@y{g) of %(t) which is generated by all polynominls ¢(2) ek [t] such that
gy = g( Jo(t)y ooy fn(t)) with polynomialy f;(f) whose greatest common
divisor is 1.

TumorpM 4.5. For a normed drreducible polynomial Pt dn I[1] the
SJollowing are equivalent:

(1) 2 (1) G- .
(ii) ZThere omists a polynomial f(t) in ty{q) which is divided by p(1).
(1) ¢@%(p) is isotropic. _ ‘
In fact, Witt states the equivalence of (i) and (i} only for » =1,
bub his argument is valid for arbitrary .
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