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1. We are concerned with certain subgroups of the modular group
(1), i.e. BL(2, Z); this iy the set of all matrices

e[

with rational integeal entrios and determinant 1. We denofe the identity
element of I'(1) by I. '

Let ¢ be any positive integer. Certain well known subgroups of I'(1)
have the property that they can be defined by a single linear congruence
satigfied by the entries of their members, for example the groups

(2) Ty(g) = {Tel'(1): ¢ =0 (mod g)}
and :
(3} Igy = {1 e '{1): b = 0 (mod ¢)}.

These are conjugate subgroups of I'(1) conta.mmg the principal con-
gruence group

(4) I'g) »= {l'e]’(].): T == I (mod g)}.

The object of this paper i to invegtigate when a gingle linear con-
gruenco :
®) A BY 4-Ce+Dd = 0 (mod g)
determines a subgroup of I'(1), where A, B, ¢ and D are fixed integers
and we congider matrices T whose entries satisfy (5). It is clear that we

may assnme that the highest comuon factor of 4, B, 0, D and ¢ is unity;
ie.

(6} (4, B, C,D,q) = 1.
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The solution to this problem is given in Theorem 3 (§4). Tt turng
out that when ¢ is prime to 6 the only groups that arise in this WAy are

conjugates of I'y(g). When (g, 6) % 1 a number of other groups exigt
and are found. .

2. There is a more convenient way of expressing the econgruence (8),

but this was only discovered affier a mumber of special cases had been

considered. When ¢ = 2, 3 or 4, the number of sets of incongruent values
A, B, ¢, D modulo ¢ is small a.ncl it is a straightforward matter to de-
termine thoso that give rise to subgroups of [7(1). These are now summa-
rized, since they 111(11(,.;:.1,0 the pattern of the more general results obbained
latber.

(i) g = 2. The only groups obtainable are the three conjugate groups
Iy(2), I'"(2) and
(n {Tel(1): a4+b40+d = 0 (mod 2)}.
This last group is the one corresponding to the theta function iy, and
the congruence representation (7) is known; see Petersson [2].

(i) q == 3. The only groups obtainable are the four conjugate groups
Ty(3), I"(3),

(8) {Tel(1): a--b—0—d = 0(mod 3)},
and
(9 {Tel'(1): 6—b+4-¢~—d = 0 (mod. 8)}.

(iif) ¢ = 4. Here things are more interesting. We obtain the three
conjugate groups Jy(4), I(4) and

(10)  {Tel'(1): a+b—0—d = 0 (mod 4)} _
= {Tel(1): a—b-+o—d = 0 (mod 4)},

which have index 2 in 1’0( 2), I"(2) and (7), rospectively, But we algo
obtain three Im‘l;har conjugate growps

iy TY(4) = {T'<I'(1): 2b-o = 0 (mod 4)},
(12} IO (4) = {T'eI'(1): b-}-20 == 0 (mod. 4)}
and

(13)  {Tel(L): a+b+e~d =0 (mod 4)}
' = {Tel(1): amb—0—d = 0 (mod 4)}.
These also have index 2 in Iy(2), I"°(2) and (7), regpectively, Morcover
[To(N T (4) : 1(4)] = |

and. similar relations hold for I™(4)n 1’“*(4.) and for the intersection of
(10) and (13).
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TFurther, Iy{4)/1(4) 18 a eyclic group of order 4, while I7 (4)/I(4)
is isomorphic to the Klein 4-group.

Trom these examples it is not ]mmodntely clear why some values
of 4, B, ¢ and D should give rise fo groups and others not. However,
it we regard 4, B, ¢ and D as entries of a matrix

(note unusual positions of B and ), the congruence (B) takes the form
(1.5) e MY = 0 (mod ¢),

and. it teens ont that the valve of deb M is crucial in determining whether
we got a group or not. Thus, we see that, when ¢ = 4, groups arise if and
only 1 det M == 0 (mod 4) or debtd = 2 (mod 4).

In the following sections we reformulate the problem in terms of
the matrix M.

8. Trom now on M denotes o matrix (14) with integral entries satis-

© fying {6), and we write

(16) (F (M) == {T'eI'(1); tr MT = 0 (mod ¢)}.

We are intorested in matrices M fox W]'ﬁch &,(M) is a group, and since I
mugt therefore belong to G (M)} the condition :

(17) tr M = A-+D =0 (mod g)
must be satigfied. It 18 then clear that
I'(g) & Gy (),

50 that our problem is really one concerning subsets of the modulary
group I'(1}/I'(g) satisfying (6), (15) and (17), where the entries of all the
mabrices c()mu’lurm”l helong to the ring Z/¢Z; here, as usnal, Z is the set
of .all rational intogers, Wo shall, however, continue to work in ter ms
of cOngrIeneoH,

TinoreM 1. Let M salisfy (6) and (17) and suppose that, for
some integer & ond % x 2 malrie L with integral entries,

(d, q) == (debL, q) =
Then '
(18) G (M) = Go( M)

and _
(19 : LG (M) T = G (LML),
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Proof. Olearly L~ is defined modulo ¢ and ity cntries may be taken
to be integers. The theorem follows, since
e @M = dte MT
angl
(L ML 1) == e (M- LT,
THEOREM 2, Let M satisfy (6) and (17) and suppose thai

g =18, awhere (r,8) =1,
Then

(20) GoM) = G, (M) G, (M),
Turther G, (M) is a group if ond only if &, (M) and G, (M) are groups.
- Proof. Since (20)iy obvious, we need only prove the last sentence.

It sutfices to assume that @, (M) is a group and prove that G, (M ) i3 one
also. Take any § and T in &, (M) and choose 8;, Ty in I'(1) so that

8y = 8 (modr), 8 =TI(nods),
and
T, =T (modr), I)=1I(mods),
ay is possible, since (7, ) = 1. Then
tr M8y = tr ML, = 0 (mod g),

and so 8, TGy (M) = G, (M). Bub 8T = 8,7, (mod ) and so ST e, (M),
From this the required result follows. ‘

4. Theorem 2 makes it clear that the problem. of finding when &, (M)
is a group may be reduced to the case when g I8 a power of a prime.

THEORBM 3. Let g = ", where p i3 a prime and n a positive indeger.
Suppose also that M satisfies (6) and (17) and that v is the greatest integer
Sor which p* divides det M. Then G (D) @8 a group only in the following
cases:

- {i) det M =0 (mod 9). When this holds G,(M) is conjugate in I'(1)
to Ly(g). '

=3 and v =p-1521

(i) p =2 and either (2) » = n—Lz1, (b) »s=n—221 or (o)
ve=n—8 28,

.Proof. It is clear from (15) that we need to find sowne relation con-
necting the traces of M8, M7 and M8T for 8§ and T in I'(1). There are

several such relations, but the most convenient for our purpose is the
following : :

(21) . Atr M 8T = (Aa+Cpyte MT — (Ce4-Diytr M8 +
-+ (v — o) det M 4 {o(AB +C8) -+ (B - Do)y ir M .
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This holds for any throe 22 matrices M, § and 7, where I iy given
by (14), T by (1) and

(22) 8 = {“ ‘3].

y &
If we take L = I or
10 11
11 01

in Theorem 1, the first entry in LML is 4, 4 4C or A —B, regpectively.
Since p does not divide (4, B, 0, ) and since D = —4 (mod p), at least
ono of these three numbers is not divisible by p. It follows from Theorem 1
that, for the purpose of examining the conditions under which &, (M)
is a group, wo may assumo that pt A and, in fact, by (18), that

(28) = —I) =1.
Then (21) takes the form
M8 = (Aa--COy)tr MI'— (Co+Ddytr MS + (yb — fe)det M (mod ¢).
Accordingly @,(M) is a group it and only if
(24) SeG (M), Tell, (M) = (yb—foydet M = 0 (mod ¢).

In particular, ¢,(M) is a group whenever detM = 0 (mod g).
Now take weZ with pfw and choose z' so that @z’ =1 (mod g).
Then we can find S,¢ (1) guch that

0 o
(28) 8, = [a: OB’ ] (mod g). |
Since tr M8, = 0 (mod g), it follows that S @ (M). In particular,
Syl (M) and hence, by {24), the condition
(26) (b+ec)det M = 0 (mod ¢) for all TG, (M)
is necessary for G, (M) to bo a group. Moreover, sinco
. yb—fo = p(b+e)—o(B+7), |

the condition (26) 18, by (24), also sufficient. Further, if ¢ is odd, we may
bake @ =« 2 and ¥ = 8y in (26) and dedues that
(27) 3det I =0 (mod g) (g odd)
is a necessary condition for G,(23) to be a group.

If p> 3, (27) bhecomes
(28) : det M = 0 (mod g).

We have therefore plovecl that, when p > 3, G,(M) is & group if and
only if (28) holds.
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We also observe that if, for any prime p and any matrix ¥ sat-
isfying (6) and (17) with g = p", the congruence (28) holds, then the
group &,(A) is conjugate to G, (M), where

REN
0=, 4]

and B, and €, are integers satisfying B,0; = —I (mod ¢); for in this
application of Theorem 1 we have only used matrices I belonging to
I'(l). We now apply Theorem 1 with

1 0] ..
L = I,Bl 1]&1(1),

—1 — 0 O]
L MlL_[O o]'

It follows that @ (M), and therefore &,(M), is conjugate to Lolg).

It now remaing o consider the cases when p < 3, and. from now on
we may assume that (28) does nmot hold, so that » < n—1L.

Suppose first that p = 8. If » = 1, so that ¢ == 8, the work described
in § 2 shows that there are no groups &, (M) other than those that sutisfy
(28); wo may therefore assume that n = 2. From (27) we deduce that

(29) ' det M =0 (mod 8™

i3 & pecessary condition. for &, (M) to be a group; it is equivalent to the
condition » = n-1.
Conversely, assume that (29) holds. Then, by (23),

BO = —1 (mod 3™,
so that 31 B. We may then, by Theorem 1, replace M by L~'ML, where

106
(30) 2[5 %)

80 that M is replaced by
1 “1“?_3?1—11
k| —1 !

where 311 Thus the condition (15) bocomos
_ t— -+ —e(1--3""17) = 0 (mod 3%,
In particulax, b—o¢ = d—a (mod 3), so that
(0+0) = (b—0) +4bo = (a~--d)*-- dbe
= (¢-+d)?—4 = (g }~d) —1 (mod 3).

80 that
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This is only possible if b-¢ = 0 (mod 3). Thiz must hold for all Te@, (M)
and, accordingly, if also SeG, (M), we have

yb—p6 = —~f({b+4-¢) = 0 (mod 3).
Then
{(yb—po)det M = 0 (mod 3%

and it follows from (24) that G,(M) iz a group.

It remaing to consider the cage when ¢ == 2% If 5 == 1, there are,
by § 2, no groupy with v <{n—1. ¥ n = 2, there are exactly three and
they satisfy part (iii) (a) of the theoran, We may therefore assume from
now on that » = 3.

Take @ == 3 in (20} and put 7= 8 in (26). Then, sinee 221 — 8,
2 necessary condition for ¢ (M) to be a group is that

det. M = 0 (mod 2%%),
and so
(31) n—38<<r<<n~1.
Now, by (13),

[3 al(3 q)] o).

It » = 0, (26) shows that (B, ) == 1, and, similarly, (€, ¢) = 1; but then
BC i3 0dd and so detM = —1-+-BC = 0 (mod 2), which is a contra-
diction. It follows that », in addition to satisfying (31), is positive, and
that B and O are odd.

Now, since B i odd, wo con transform M by I, as given in (30),
and so assume that B =1, § = —1—2"l, where | is odd. Then (15)
takes the form

(32) b {1 +2"1) = 0 (mod 27).

Weo show first that, if 6,( M) is a group, we cannot have v =n—3 = L.
Hor suppose that 7 = e (nod 4), where & = 1. Then, by (32), ¢, (M)

containg
1l —2e
-2e B "

-But this matrix does not satisty condition (26).

The only other case when » =1 is for n = 3. In this case G (M)
is a group. For b— ¢ cannot be odd as otherwise be would be even and
then ad would be odd and therefore a-d& would be even; but, by (32),
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b—¢ and a—d cannot be of opposite parity. Menco both b--¢ and a+-¢
are even, Now
(h+0)* = (b—c)* - dbe
= (6 —d — 2¢1)® -- 4be (mod 8)
= (a4 d) — 4 —4del(a—d) - 46*F (mod 8)
= (a+d—20)2—4 (mod 8).,

If b+c =2 (mod 4), it would follow that a--& = 20 (mod 4) and these
congruences are easily seen to be incongistent with od--be == 1, Henee
b-l-e == 0 {mod 4)

and so (26) holds and &, (M) is a group.

We may therefore assume from now on that » 2 2 and we shall
prove that

(33) b4-¢ = 0 (mod 2°7%)
from which (26) will {ollow, so that G (M) 15 2 grouy. Now, if w= y (mod 2™,
then #? = y® (mod 2"*') and we deduce from (32) that, if T el (M), then
(34) (b0 = (b—o)* 4 4bo
= (¢ —d —2"cl)* 4- dbe (mod 2%+
2 (g d) — 4 — 2" gl (@ - d) (mod 16).
In particalar, (h-+¢)* = (a-+4)* —4 (mod 8), which shows that a-d and
therefore a~d iz even. Accordingly, we have
(b+6) = (a+d)*—4 (mod 16)

and this i3 only possible if b+c = 0 (mod 4) and a++d = 2 (mod 4).

Accordingly, if » = n—2, (33) follows. We may thervefore suppose
that » =#—-3> 2. If ¢ is even, we deduce from (34) that

' (b+¢)® = (a-+d)*—4 (mod 32), ‘
and from this it follows that b6 = 0 (mod 8), which gives (33). On
the other hand, if o is odd it is casily seon that b-|-¢ = 4 (mod 8) implies
- that be =3 (mod 8), and #0 ad = 4 (mod 8); this combradicts a--d = 2
(mod 4). Henee in this case also we mmst have b-¢ = (mod 8), and
therefore (33) holds. :

We have therefore shown that, when g = 27, (M) i3 a group if
and only if the conditions of part (ifi) of the theorem hold.

5. In all the cases listed in Theorern 5 where Gy (M) is a group it '
can be shown that
, (G (M) : ()] = [Ty() : I'(g)].
This follows ag a consequence of
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THEOREM 4. Let ¢ = p™, where p 18 o prime end n = 1. Suppose thet
(6) and (17) hold and that det M = 0 (mod p). Then the number of matrices
in Gy (M) that are incongruent modulo g is equal to [To(q): I'(q)].

Proof. In this theorem we do not assume that &, (M) is a° group.

By Theorem 3 and the particular cases deseribed in § 2, the theorem
is certainly frue when » = 1L for all primes P+ We therefore assume its
truth for ¢ = p™, ‘where 1, and prove its truth for g = p*th

Take any Tyetf (M) and write M, == MT,, so that

G MTy o e My = p™,

for some integer 4,. 'We shall show that there ave % incongruent matrices
T modnlo p™* such that Te@, (M), where r = p™% and such that .

I == 4y (mod p™y),
- Lvery such matrix 7' can be written in the form
T = Ty(I+p"T,),

and it is enough to enumerate the namber of incongruent matrices 7,
modulo p for which '

(35) tr MT = 0 (mod p™*)
and )
(56) det(I--p™0) =1 (mod p™*').

It ig clear that (36) is equivalent to

(37) T, =0 (mod p),

while (35) is equivalent to : ,
' 0 = tr Mo (1 ++p"Ty) = p™ (o tr M, T,) (mod p"*),
ie.

{38) M, Ty = —t, (mod p).

Sinee det My = tr My = 0 (mod. p) and M, = 0 (mod p), there exists
a matrix Del'(1) such that :

LML = [3 3’] (gmod ?)s

where pta. Weite
o Tl T @y bz

B
Then, by (38),

(39) ey ==t MTy = e LML Ty = aey (mod p)
and, by (37), _
(40) T, = trTy = 0 (mod p).

7 — Acta Arithmetica XXIV.3 -
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We therefore have only to count the number of incongruent matrices 7,
gatigfying (39} and (40); this number is clearly p®.

It follows that the number of matrices in &, (M) that are incongruent
modualo p™*! is equal to

PLTo(E™ s (™) = [To(p™") : T(z™)

and the theorem follows by induetion.

6. The congruences that we have been eonsidering are homogeneous.
It is. also possible in certain cases to define groups Dy inhomogenecous
congruences. We give a few examples, omithing the proofs, which are
straightforward.

(41) I2) ={Tel'(l): atbtc =1 (mod 2}
(42) = {(Tel(1): betd =1 (mod 2)},
(43) T4y = {Tel(1): o--2d = 2 (mod 4)}

(44) = {Tel'(1): o420 =2 (mod 4)},

(45) T (4) = (TeD(1): 2b+0+2d =2 (mod 4)}
(46) = {T'el(1): 20+2b+0¢ = 2 (mod 4},

The conjugate groups to Iy(4) and I'{4) can be defined similarly.

7. The asymmetrical relation (21) hay been of bagic importance in
our discussion of &, (M). It is possible to derive other more symmetrical
trace formulae.

Let M, 8 and T be 2x 2 matrices over the complex field, the last
two having determinant 1, and write

8, 8y by Ly, u, U,
for the traces of the malrices
S, MS, B, MT, 8T, W8T,
resi)eetively. Then
(A7) g — (8y6-1 88) g+ 85 - 15 - sy g == deb M {2 —te (ST LY.

- T'have not come across this identity in the literature. It is, however,
reminigcent of Fricke’s identity [1]

(48) §2F At ut = stu 42 b (STR-1TY),
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