

ACTA ARITHMETICA XXIV (1973)

A note on zeta-functions of algebraic number fields

by

R. Brauer (Cambridge, Mass.)

to C. L. Siegel

It has first been shown by E. Artin [2] that if k is an algebraic number field (1) and K a normal extension field with icosahedral Galois group relative to k, then the quotient of the zeta-functions $\zeta_K(s)/\zeta_k(s)$ is an entire function of the complex variable s. Later, H. Aramata showed that Artin's method can be used to prove the same statement when K is a normal extension of the algebraic number field k with arbitrary Galois group; cf. Aramata [1], Brauer [4]. We shall give here further results of the same nature. It will be shown that if Ω_1 and Ω_2 are two algebraic number fields which are both normal over their intersection k, then

$$\zeta_K(s)\zeta_k(s)/(\zeta_{\Omega_1}(s)\zeta_{\Omega_2}(s))$$

is an entire function. More generally, we shall prove the following

THEOREM. Let $\Omega_1, \Omega_2, \ldots, \Omega_m$ be algebraic number fields which are normal over the field k and for which Ω_j intersects the compositum of $\Omega_{j+1}, \Omega_{j+2}, \ldots, \Omega_m$ in k; $(j=1,2,\ldots,m-1)$. For any non-empty subset T of the set $M=\{1,2,\ldots,m\}$, let Ω_T denote the compositum of the fields Ω_j with $j \in T$. If $T=\emptyset$ is the empty set, we set $\Omega_\emptyset=k$. Set $\varepsilon(T)$ equal to 1 or -1 according as to whether M-T contains an even or an odd number of elements. Then

(1)
$$\xi(s) = \prod_{T \subseteq M} (\zeta_{\Omega(T)}(s))^{s(T)}$$

is an entire function of s.

Proof. We begin with some elementary field theoretic observations. We set $K = \Omega(M)$. If n_j denotes the degree of Ω_j over k (j = 1, 2, ..., m),

⁽¹⁾ All algebraic number fields considered are assumed to be of finite degree over the field of rational numbers.

we show easily by induction that for any subset T of M, the degree of $\mathcal{Q}(T)$ over k is given by

$$[\Omega(T):k] = \prod_{j \in T} n_j.$$

For two subsets T_1 and T_2 , the compositum of $\Omega(T_1)$ and $\Omega(T_2)$ is $\Omega(T_1 \cup T_2)$. Using (2), we see that the intersection of $\Omega(T_1)$ and $\Omega(T_2)$ is $\Omega(T_1 \cap T_2)$.

Let H(T) denote the Galois group of K relative to $\Omega(T)$. In particular, $H(\emptyset)$ is the Galois group G of K relative to k. If we set $H_j = H(M - \{j\})$, then H_j is a normal subgroup of G and we see that, for any subset T of M, we have

(3)
$$H(T) = \prod_{j \in T} H_j$$

where the product is direct. In particular,

$$G = H_1 \times H_2 \times \ldots \times H_m.$$

We note that the order of H_j is n_j . Thus, the order |H(T)| of H(T) is given by

$$|H(T)| = \prod_{j \in T} n_j.$$

We can express the zeta-function $\zeta_{\Omega(T)}(s)$ as an Artin *L*-function, Artin [3]. If $I_{H(T)}$ denotes the principal character of H(T), we have

$$\zeta_{\Omega(T)}(s) = L(s, I_{H(T)}, K/\Omega(T)).$$

If φ is a character of a subgroup H of G, we denote by φ^G the induced character of G. Then

$$\zeta_{\Omega(T)}(s) = L(s, (1_{H(T)})^G, K/k).$$

It follows from (1) that

(6)
$$\xi(s) = L(s, \psi, K/k)$$

where we set

$$\psi = \sum_{T \subseteq M} \varepsilon(T) (I_{H(T)})^G.$$

Consider an element α of G and set

$$\alpha = \alpha_1 \alpha_2 \dots \alpha_m$$

with $a_j \in H_j$. The definition of induced characters shows that

(8)
$$(I_{H(T)})^{G}(a) = (1/|H(T)|) \sum_{\beta}' I_{H(T)}(\beta a \beta^{-1})$$

where β ranges over those elements of G for which $\beta^{-1}\alpha\beta \epsilon H(T)$. If no such β exists, the expression (8) is zero. Now, (4) shows that no β exists

if $a_j \neq 1$ for some $j \in T$. On the other hand, if we have $a_j = 1$ for all $j \in T$, then $\beta^{-1} \alpha \beta \in H(T)$ for all $\beta \in G$ and we find from (8) and (5) that

$$(I_{H(T)})^G(\alpha) = |G|/\prod_{j \notin T} n_j = \prod_{j \in T} n_j.$$

Let M_a denote the subset of M consisting of those indices j for which $a_j = 1$ in (7). We have now shown that

$$(I_{H(T)})^G(lpha) = egin{cases} 0 & ext{for} & T
otin M_lpha, \ \prod_{i \in T} n_i & ext{for} & T
otin M_lpha. \end{cases}$$

This implies that

$$\psi(\alpha) = \sum_{T \subseteq M_{\alpha}} \varepsilon(T) \prod_{j \in T} n_j = (-1)^m \sum_{T \subseteq M_{\alpha}} \prod_{j \in T} (-n_j) = (-1)^m \sum_{j \in M_{\alpha}} (1 - n_j).$$

If ϱ_j denotes the regular character of H_j , i.e. if

$$\varrho_j=(I_1)^{H_j},$$

our result can be written in the form

(9)
$$\psi(\alpha) = (\varrho_1(\alpha_1) - 1)(\varrho_2(\alpha_2) - 1) \dots (\varrho_m(\alpha_m) - 1).$$

As has been shown in [1] or [4], for any finite group H, the character $(I_1)^H - I_H$ can be expressed as a linear combination of characters of H induced by non-principal characters of degree 1 of subgroups of H such that the coefficients are non-negative rational numbers. Then (9) shows that ψ is a linear combination with non-negative rational coefficients of characters of G induced by non-principal characters of degree 1 of subgroups of G. On account of Artin's results, this implies that $\xi(s)$ cannot have a pole for any finite s. Since the zeta-functions are meromorphic, it is now clear from (1) that $\xi(s)$ is an entire function as we wanted to show.

References

[1] H. Aramata, Über die Teilbarkeit der Zetafunktionen, Proc. Acad. Japan 9 (1933), pp. 31-34.

[2] E. Artin, Über die Zetafunktionen gewisser algebraischer Zahlkörper, Math. Ann. 89 (1923), pp. 147-156; Collected Papers, pp. 95-104, 1965.

[3] - Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren, Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universität 8 (1930), pp. 292-306; Collected Papers, pp. 165-179, 1965.

[4] R. Brauer, On the zeta-functions of algebraic number fields, Amer. J. Math. 69 (1947), pp. 243-250.