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-

It has first been shown by E. Avtin [2] that if % is an algebraic number
field () and K a normal extension field with icosahedral Galois group
relative to %, then the quotient of the zeta-functions {x(s)/f,(s) is an
entire function of the complex variable s. Later, H. Aramata showed
that Artin’s method can be used to prove the same statement when K
is & normal extension of the algebraic number field % with arbitrary
Galois group; of. Aramata [1], Brauer [4]. We shall give here further
results of the same nature. It will be shown that if 2, and @, arve two
algebraic number fields which are both normal over their intersection %,
then '

/(C.Ql )i, ( 3})

is an entire function. More generally, we ghall prove the following
TaROREM. Let £4, 2y, ..., 2, be algebraic number fields which are
normal oq:ea the field & and for whwh Ly intersecis the compositum of 2;,,,
Qg e, 2 in Tc, (=1,2,.. ,m-—l) For any non-empty subset T of
the st M = {1, 2, ..., m}, let Qp denote the compositum of the fields £y with

Jel If T =@ is tke empty set, we st L2y = k. Set ¢(T) equal to°1 or —1.

according as to whether M —T contains an even or an odd mambew of ele-
ments, Then

(1) £) = JT (Coms)™®
: Ienf

8 an entire funchon of s.

Proof. We begin with some elementary field theoretic observations.
We set K = Q(M). If n; denotes the degrec of £, overk (j =1,2,..., m),

(*) All algebraic number fields considered are assumed to be of finite degree
over the field of rational numpbers.
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we show eagily by induction that for any subset I' of M, the degree of
L2(T) over k is given by
(2) LT B anj.

Je

For two subsets T, and T,, the eompogitum of 2(T,) and LQ(T,) is
£(T19T,). Using (2), we see that the Intersection of 2(T,) and 2(T,) is
21N T,).

Let H(T) denote the Galois group of X relative to £(7. In par-
ticular, H (@) is the Galois group & of K relative to %. If we set H;
= H (M —{4}), then H; is a normal subgroup of & and we see thas, for
any subset T of M, we have

(3) (1) = [ H,
' 7T
where the product is direct. In particular,
{4) G o= HyxHy. .. xH,,. _
We note that the order of H; iy ;. Thus, the order |H(T)| of H(T) is
given by
(5) = (1) = [ [
W

We can express the zefa-funetion (oq)(s) as an Artin Z-function,

Artin [3]. If Zg, denotes the principal character of H(T), we have

Loy (s) = L(s, Iuwm, E/Q(T)).

If p is a character of a subgroup H of &, we denote by ¢ the induced
character of & Then

CQ(T_)(S) == L(S; (IH(T))G? K/k)
It follows from (1) that
(6) E(s) = L(s, v, K[E)
where we seb

p= D E(Tj(lﬂ(m))g-

renm
Consider an element o of @ and geof

(7) € == Oy ... Gy
with o;eH;. The definition of induced characters shows thab

(8) (@) = (IED) Y L (o™
B

where f ranges over those elements of @ for which g~ af e H (T). If_no
such £ exists, the expression (8) is zero. Now, (4) shows that no exigts
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i o; 1 for some j<T. On the other hand, if we have a; = 1 for all jeT,
then f~'af<H(T) for all f¢& and we find from (8) and (5) that
(Ta)®(@) = @) [ [n; = [,
iy gel?
Let M, denote the subset of M consisting of those indices § for which
a; = 1 in (7). We have now shown that

0 for 14 M,

@poy
(Lermy)™{a) = [In; for Tgir,.
feit

" This implies that

vie) = D el [ [mg= (=17 37 [T(—n) = (1" S(i—n,).

TEM, et TEDE, el P
It ¢; denotes the regular character of Hj, i.e. if
o = (1%,
our resulf can be written in the form
(9) pla) = (Q1(a1) —1}(92(%) —1) (Qm(am) "1)-

As has been shown in [1] or [4], for any finite group H, the character
(1,)¥ —1g can be expressed as a linear combiuation of charaeters of H
induced by non-principal characters of degree 1 of subgroups of H such
that the coeificients are non-negative rational numbers. Then (9) shows
that v is a linear combination with norn-negative rational coefficients of
characters of & induced by non-prineipal characters of degree 1 of sub-
groups of ¢. On account of Artin’s results, this implies that £{s) cannot
have a pole for any finite s. Since the zeta-functions are meromorphie,
it is now clear from (1) that &(s) is an entire function as we wanted to
ghow.
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