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ACTA ARITHMETICA
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On the product of the conjugates
outside the unit circle of an algebraic number
Ty

A. BominzrEL (Warszawa)

To Professor Covl Ludwig Siegel

C. J. Bmyth [7] has recently proved the following theorem.
If P(m) =0 48 o monic non reciprocal irreducible polynomial with
integral coefficients, then
I' 1 [ajl = Oy

lag >

where a; ave the zeros of P(w) and 6, is the real root of the equation 6° == 04+1,
(A polynomial P of degree [P|is called veciprocal if @' P(z™) = +P(x).)

This theorem is a far reaching generalization of Siegel’s theorem [6]
about the least Pisot-Vijayaraghvan number being 4, On the other
hand, it has interesting applications to the arithmetic of polynomials.
The aim of this paper is to prove two extensions of SBmyth’s result to
polynomials with coefficients in an algebraic number field and to apply
one of them to reducibility questions. For a given polynomial F we denote
by || its degree, by C(F) its content and by |[F|| the sum of sguares of
the absolute values of the cocfficients. ¢ denotes the rational field and N gy
the norm from a number field K to . £, is a primitive mth root of unity.

Turorem 1. Let K be o inlally real algebraic number field, P o monic
non-reciprocal polynomial with coefficients integers in K and P(0) £ 0.
Then
(1) max I] log;| 22 Oy

2SS R o g | >1

where | K| is the degree of K, PY (i =1, ..., |K|) the polynomials conjugate
to P(e) and ay the zeros of PY(z).

TimoreM 2. Let K be a totally real algebraic number field or o totally
complew quadratic exiension of such a field and PeEK[z] a polynomial with

the leading coefficient py, such that 2T P(z™!) % constP(z), P(0) 5 0.
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Then in the notation of Theorem 1
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if |P(0)] = |pyl, and P is drredaucible,

(o) (1(P),

where the equality can hold only &f Vi e,]t, (.fl(l’) s (et and [P (0)/p]
== (- +1/5) /2. (The bar denotes the complex conjugation.)
CoroLLARY 1. If " P(2™") # constP(2), P(0) + 0 then
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It scems likely that the cquality in (2) holds if and only it P(2)/p,

. . . 1-VE ~
is a product of cyclotomic factors and of a binomial 27— -rJ-"—~-~ £re (This

hag just been proved by A. Bazylewicz.) Tt is also conjectuwd that in
Corollary 1 (1+V17) [4 can be replaced by ( VB! )2 provided the equa-
lity is allowed.

ToeorEM 3. Let K satisfy the assumptions of Theorem 2, L be o subfield
of K, f(z)eLlz] and f, be the leading coefficient of f. The number n of
irreducible factors P of f such that 2% Ple™) o cont P(e), P(0) % 0 counted
with their multiplicities satisfies the imequality

{3,) n < lc'g( N ool fILN 7601 1))(

[Lllog ll ]/17

If all prime ideal factors p of (f,, F(0

NOF)™ in K sabisfy § -
lowing stronger inegquality holds

P then the fol-

{32)
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with the equ_c_l.l'i‘ty attained if ond only if either L =@, f(z) = ¢(z"1 1)
or K = Q(V5, L), I =

(4) M f(e) f(%) s ( Al [(’1 %;1/5 )ﬁ’”‘ + ( 1 —21/ E)m] gy 1)

L, m integers, m odd.
Conorrawy 2. If K sebisfies the assumptions of Theovem 2 then

@) == o ey (o= 41, n = +1)

divided by its lurgest eyclotomie faclor is drreducible in I except when VB eI

)
‘ 145 1—v5
() = L (mq 4 _I;,]/d) (a"q:i: /5 ) .

2

The constant (14 l/ﬁ)/fi pcenrring in the first assertion of Theorem 3
can probably be replaced by (1 +V5)/2. Further improvement is impossible
gince for every pair 7, m (m odd) there exists a polynomial f(z) satisfying

(4) namely
‘ 1+VB\™  (1—¥B\"T .
fla) = z‘“m:h{( 5 ) +( 5 ) ]z —1.

(There ave algo other instances of such polynomials, e.g. fox I =1, m = 3

J(@) = & — 26" + 2% — 2" — 22 —1.)

The major problem is to find an estimate analogous to that given
in Theorem 3 for the number of all non-cyelotomie factors of f.

Corollary 2 for A = ¢ has been proved by W. Ljnnggren [4] and
H. Tverberg [8] by different methods and by Smyth on the same lines two
years ago (in a letter to the writer).

Proofs are Daged on two lemmata both essentially due to Smyth.

[=4]
LeMMA 1. Let f(z) = D ed be holomorphie in an open dise containing

Ewl)
(2} 55 1, and satisfy |f2) <=1 on o =1L Then
(B) [EHES

and if o, are veal (8 = 0,1, ...

T—le* (i=1,2,..)

)y & 3= 0, then

. A 3 , e .
(6) w(lmeﬁm _[‘e)éez,;glmeam—l ‘ (1 =1,2,...).
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val’s I‘mmuh to f(‘ )(ﬂ z) and oblmn

e 1 BIE 4 Loy - A1

2

1 " i 19
== - & * iy (?J = ’J)
o f If 42 dy

0

letlﬁ|3+ |81ﬁ|2'|"

am
t o
<= [ 1P
ﬁ
¢
S0
o B2+ leg -+ e B1% < 1 1B(%
Putting g = le;|/ge; (this choice of # wag suggested by Dr. L Twaniec;
Smyth considered only real &) we get
el | .. -
b+ = | = leg| ™
%

and henao (5) holds. The preof of (6) s given by Smyth [7], p. 170,
LEMMA 2. If P(2) 4s a polynomial with the leading cogfficient py,
IP(0)] = |pol, Q&) =2¥P(e") 5 constl{2) then
POP() _ flo)
(

) g

where f(z) and g(z) ave holomorphic in an open dise containing |2] < 1, hove
absolute value 1 on |2 =1 and f(0) = g(0) = =+ [] o;* where a; runs over

logl =1
the zeros of P.
Moreover if P(z) hag real coefficients then the Taylor (’OEffz(wwts of f and
¢ ore also real, f(0) = g(0) 45 positive.

Proof. We set

o= [ 12w s [[57)

Jitgl =1 fry) <21

and verify dircetly all the statements of the lemmg, bub the last one.
To sec the latter notice that for P with real cocfficients the sequence {a}
is a permutation of {&}, hence

@ =1z, g = g(3;

J{0) > 0 can be achieved by a suitable choiee of the sign -,
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Proct of Theoorem 1 follows closely Smyth’s proof of his own
theoremy, We seb
= Inax H fag!,

Tl B

and denotc ”1_;hu zorog of P by a;. Since Vo > 0, we arc entitled to assume
that A < V2. First of all we must have P(0) = +1 for otherwise by
a theorem of Kronecker [3] about the conjugates of a totally real algebraic
intoger

Az [PO)f = V2

' ([a] (1(»1101.0\ the maximum absolute value of the conjugates of a). Secondly

p(z) /@ (2) is non-comgtant. Accordingly, put
PO)P(2) )
I = = Lo e a2+ ...
Q) o e

where k, I are the first two indices for which the corresponding o’s are
non zero. Since a, @ are totally real algebraic integers we have by the
theorem of Kroneckoer a;| = 1 and cither la,k = V2 or a, = +1. If m
> V2 wo may assume that |a,| = V2, otherwise if (o = V2 we replace
P(~) by PY(2), which does not atfect 1he value of A.
Now by Lemma 2

) POYVP(2) _ f(z) etz 02"+ ..
@) #{#) d—J—d gt dye?+ .
where f(2) = c+teed-02%+ ..., g(r) = d-+d,s+d,2°+ ... are funchions

holomorphic in an open dise containing |2 < 1, have real coefficients and
{9) 1f(2)

10) o=d = []lo

laj =1

= lg(z)| =1 for |z| =1,

On ¢orparing the serios in (5) und (8) we obbain
ey (b 1,8, Be1);

Wt by, 7= Oy

(11) o :
Aplg-- g =0y (0 =1,2,..,1=k=1);
(12) ettty - = 6.

Now # |ag| 32 V2, max(legl, |dl) > ¢/V2 by (11) and so from (5), ¢/V2
< 1—e¢% This gives by (10) A > ¢ V2 a contradiction. Th(;refore
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4y = :+1. We may assume that a; = 1; otherwise, by interchanging the
rdles of P(z) and Q(z) (this does not affect the value of A), we may 1‘@1}‘1ace
1+ @@+ @@+ ... by its formal reciprocal, and so chango l}(%e-mgn of a,.

Further, we may assume that |a > 1, otherwise 1f.|a,z =1 we re-
place P(2) by PU(z) which affects neither the value of A nor a; = 1.
It follows from (11) that

(13) leg] + |d] = ¢

for otherwise we would have max(|eyl, 1dl) 5 ¢z 0/1/2 and again A = Vo..

Thus max(|ey), &) = ¢/V2 and from (5) V2 s L0 sl (V17 1) .
Since by (10) ¢ ' is an algebraie integer

(14) C e< (V1T—1)/4.
The argument now divides into two cascs.

The ease [ < 9k Following Smyth [7], pp. 172-173, we gei from
(9), (11), (12) and &, = 1 that for all real 8, v

MO+ Cpp

2
a o i ¥
5 ) + (“,7;‘“ — Gy ﬁc) w5 2t o A5

(15) B.=i'+ (e ptyo) +( g

B--y?—f% is a quadreatic polynomial say, BB, v, e} The matrix of

. . am{B ¥ Gl
the eorresponding guadratic form ¢*F (m{; L T is
- ¢t o aye
- 2
2 2
R, N ¢
— 3et—1 ¢
2 &
¢ ae
_7 3, 5 -
2 ¢ 4
2 o - 4
B LA SRR P
2 4 4 4 4

The diagonal minors satisty in virtue of (14) and of |ay = 1

My = c?—1<0, Mysct—2c L0, My §--2¢"20,

(16) P (}Za'% 3G 5
M, =Bl et — Bt Bt
I follows (cf. [1], p. 160) that
LM .M, M,
FiByy, ) = My(Bt 2ok (y o2 =2 (G e )b =
M, M, y

1
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and by (15)
M

&4 N
- = Minmax B (8, y, ¢_p) < 2
My -k Y

)
which gives by (16)

406" — 930240 = 16 (2 M, — ) > 0
and (ef. [7], p. 174)

A ;/?' (J_l T 90,

The case !z 2k It follows from (11), (12) and @, = 1 that

(17) g, ¢+ G+t = Gy
We now apply (6) to f and g, and obtain
o G G
d; T ;.
— Lg% < —dyp <1 —6F— —,
( 1——0) e ¢ 1+4¢

Adding these inequalities, and uging (17), we have

(12 6‘2
fa (]
+

2], — ) - —_
(18) (=) g2

. . . d G
K a0+ € 2(1L— %) — 1+c+ =3/

Now from (5) and (13) we know that
l—¢*z |dp| = ?+e—1.
T = 2k, ay, 2 1 we use the right hand side inequality of (18) and obtain

A o
1+e " 1-—¢

et e—1 < e — |dy] %2(.1—02)—(

where

M o= max

el g— LGl —e?

@ ¢— )t
(2(1_402)H ite (1mc) )

IE b == 20, agy, < 1 we nse the left hand side inequality of (18) and obtain

d; e '
deo—lslo—|d) L2 -6t~ —em - = L M,
Femtg oy € 20— [ B
If T > 2k the inequality ¢*+¢—1 = M follows at once from (18). However
a8 Smyth has shown ([7], p. 175) this inequality implies 1 —¢—c* = 0,
thus Az ¢ 'z 6,. The preoof is complete.
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TieMMA 3. The following inegualities hold:

AR VN (T 2 T

(19) H (Wi~ 1) < (% -

with the equality attained only if ¥y, = Yo == . = Uns
1

(L+-Ve-F1)ylert

(20) yHVetyrz (¢ 0,y 0)

with the equality attained only for y = 1.
Proof. We have

0

a — (,u:
melog (P —1) = g < 0
gt 1 = (e ~1) ’
@ — 5 ee”
log (‘em‘[_l/ﬁ “l" sz) == -(_‘;:Fé_z_w_)_m = 0.

The inequality {19) as well ag the subsequent statoment follows by the
substitution ¥ = ¢* from the concavity of log{e”"—1). The inequality
(20) and the subsequent statement follow by the same substitation from
the Taylor expansion of log(e® Vo ey at w =

Proof of Theorem 2. Note first Lhat if aek then T and

(21) @ =a0,  |aDP = (),

Since the conditions on P and the inequality (2) arc invariant with
respect to multiplication of P by a constant factor we asswne that the
coefficients of P are integers. It |P(0)| = [p,] we consider the product

LB

22)  [TIPO0)

=1

ipn‘z)‘
NK,,Q((,F (.J:’))“" .

fp), 1) have & facbors equal [P (0)/p| cotros-

19(' ‘ |NL/(3(JP
2 NygglC PV (P)) =

Let [T = H max (P (0)

ponding to i =1, Ié and  set Nyp(pe) == Ny Nggo(P(0)) = Ny,
Ngp(O(P)) = Ny.
We have the identities
T Mo ) N 010 ‘
,];:1[“1) ( IP ” ”z !_[ (z) ™ ‘][1 ]“)U 0 ~ “"lﬁ

=

2?8, ..... I N”
P& (0) N
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Hence by (21), (2

Vz
(23) Nis (]]Wx] N, MR )

2

2} and (19)

== ([N )15 — | 37, IV =2

WY <2 (TN B! |, (2l otk
VEE H[i-l/zj_ | No N | TR iz
2N-2/\K1 .

0) with ¢ = d, 4 = |[N}N,N|

TR

Thus by (2

‘ N U 1 o] £ LEE
(24) A N_" e l_l,[/jé_ s
. ( H/’r‘,)lh]l“ N, 12+1/vE Ny He—1Vs
“\s N, N,
and since  [] lay] = max(|P90)/p, 1) the inequality (2) follows.

lagl=1
The oqumluy is possible only it we have equality in (23) and (24)
henee by Letomn 3 only if

[‘m)m) (PO tor
o | POt o
-NE == |—N0N1‘-

i= 1,0,k

4 = k-1

(25)

oy 1K

Since No|.Ny and N, NV, the last equality hmplies [N, ==
C(P) = (9,). Moreover by (25) the equality in (24) gives

|V, = ¥, and

PO) 145\
i P _( 2 )

Besidog by {(2b)

1 r\
" |(_W”.*TJ )) tor i=1,..,k,

hence V5e K.

PO 2
- -‘{?)- b3 I N f/f...: |f;:‘
to i(m ;,l)) tor  § = k-1, ..., K],
o chLVE
which implies & o [K|/2, [PO) D] = - p—.

In this way the theovem is proved in full for the case where [2(0)]
i pel. T 1P (0)] == |pg| then by Lemma 2

POO)PI)  file)
)

26 e ==
(26) 280, (2) gi(2)’

i - Aclta Arlihmetlea XXIV,4
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where (%) = 2P PP (z™"); fi(2), g,(2) arc holomorphic in an open dise
confaining Jz| < 1, have absolute value 1 on Jz| = 1 and

@n) OO =) = = ]

laggl =1

However by (21) PH(0) :F(OS(*‘), 0;(2) = Q(z), thus

(1) D n ,
_'F’n Qi ()

wheie o) is the first non-zero coefficient. Setting

(28)

filz) = oq-tenatep?®t ...
gl(”) - d;n {'dzlf"_{ dAW 4.

we get from (27) and (28)

“}: ) o+ By = Oy
By (5)

gl << L —lgl% il = L — idyl?,

hence
laf o] <5 2 — 2 eyl

and Dy (20) with ¢ =16, ¥ = |a§")1

o e m}’)l 1RVAT
&g 1%——4— 1 14 ) = i ](LL-)]:IVH.

Hence by (27)
1K : 1K
1 S VITVEL i
[1 IT 1o = [ (2 g gatyros.
i=1 |ayl>1 1

Now, if (P(O))O(P) = (p)O(P) then by (28) pPaf® iy an intoger
divisible by C(PY), thus

o&r)
| N0 32 Nygp- o
and
K / )
LY 17 Y& ( (P) Wit
letgl 22 (,_ _w) ( N, .._".,.,m) .
!—‘l[ln,,[jiL ! KIG (el

- The equalify is 1mposslb1u here sinee it ivoplies by Lemma 3 that
#ff) =1 and C{P) = (p,), but then the left hand Slde is an algebraic inte-
ger while the right hand side is not.

It remains to consider the ease where |P(0)] = |p,| and P is irredueible.
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On the praduct of the conjugoles oulside the unil eirele 395

Let m be the greatest integer such that P(z) = RB(2™™) with BeK [2].
Then E(z) # B(—=#). Sinee P and R have the same leading coefficients,
R(0) = P{0}, O(R) = C(P) and both sides of (2) have the same valuo
for P and for & we may agsame at onece that P(z) s P(—=z). Also P(2)
# —P(-2)since P(0) == 0 and we can choose ¢ = -+ 1 such that 21P(z1)
#= const P (e2).

Jonsider now the polynomial 8 (2) = P(z)l_; {ez). It satisfies the condition

() const §(2),
sinee the irveducible factor 2412 (z!) of the left hand side is not propor-
tional to either factor of the 1‘.igh1: hand side. Moreover the leading coeffi-
ient s, of 8 cqualy -k lplt = - |[P(O))? = 4.8(0), O(8) = O(P)C(P)
and (S(0))0(8) = (s O(8).
Applying to 8 the part of (2} already proved and using the fact that
the zeros of 8 coineide in abgolute value with those of P we get

[T vl > (f-%ﬂ_T-)""(NKfQ B

el fdg(
hence
IX] _]_|/17 |Ef2 C(P) 117
II ]] E(MI = (W*‘) (NK/Q"E“"‘)
=l a1 . 4 Po)

and fhe proof is complete. 3

Proot of Corollary 1. Since 2¥1P(z™!) # constP(z) at least one
frreducible factor of P, say R satisfies 2% R(z™") 7 constB(z). Denoting
the leading coefficient of R by 7, and the zeros of B9 by 8,; we have

K] Fy
H H ey | 2= ” H 1)
=1 lagi=1 i=1 [yl
i 1--y5 5 C(R) V2HIVE 17 \EIR ¥ C(R) T
{5 e ) e )
{LAYIT\ER Py
B N
4 (o}

sinee by the multiplicative property of the content (g, C(P)™" iy divisible

by (n)C(R)"" In the above sequence of inequalities at least one must

o strict, which proves the corollary.
Lewyva 4. I f 45 o monie polynomial with complex coefficienis and

the zevos ; then
(29) | [T &2+ ] i< i

IS 2j1<1
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(empty producis denote 1) with the equality atfwined only if

AP F ) = F(0)& Il +£(0).

Proof. The inequality (29) is dae to J. V. Gongalves [2], it 18 only
the last assertion of the lemma, which requires the proof, This is obtained
easily from Qstrowski’s proof of (29). Outrowsli [57] shows namely that
IFll = llgll, whore

gle) = [] (z—=2) [T 1 —e5) = o I

lgfl>1 [ERES EHES I [;)'-“_‘1

A
hn._,?
—
e
a

Therefore equality in (23) implies that

g(3) __.dm”(_. ) 4 ]I — )

!$J|<I - | =3
whenoe

z‘ﬂf f ) 2ll)’ll - ”./Hzm - f )

Proof of Theorem 3. Since the Inequalities (3} ave fnvariant with

respect to multiplication of f by o eonstant factor wo nuwy assumne that f
ig monie. Let the conjugates of K be numbered so that all different conju-
gates of f occur equally often among % (¢ =1, ..., |L]).

Let 2 be the zeros of f*. Let finally

fm_'PU'PJ. ﬂJ

where P, ave monic and for » > 0 satisfy P, (e™Y) + constP, (). We

have
[1e@y = o).

p==y)

NK!@(O (—PU)) = 1 and

Hence by Corollary 1

UL 0™ = [T e TT] T

i=1 |zyl=l el g wealt forl "’w(“ﬁﬂ“"“
. 120l
: ERVATACALE 1 Y17\ R
= ('“—E““ ) 11 }\'A,'(J o ( : l ) NI,’(?(( (/))H\ i
and a .
|.L:| 1.- | V 1 7 | Fdaf
(30,) =[] T el ( ! ) Nl
=1 |agl =1 L
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If all prime ideal factors p of (1, F(O)C(N) ™!
view of the divisibility

in K satisty p = p then in

(1, P, (0)C (P71, fO)) 0 (N

wo Dave (L, ,(0)0(P,)7 == (1, P(0))0(
1 or

P! = q,. Hence either |P,{0)|

(B (0)0(P) (P, (0) (L, P, (00" (B, (0), 12,(0)]%)o;”

and using Fhoeovem 2 instead of Corollary 1 we get

4 " 1L|n,'z :
(303) - =[] [] = (i%?fl) IQ{O{f)

=1 [yl

(P, (0), 1)or" = O(P,)

On the other hand, by Lemma 4

31 [] e T <O 6= 1, D),
l&gy0 1 Izt
henee
R
(32) | ] TT g+ H [] eyl < NL,@nfu
(ZF P tenl gl
Howoever
|
(33) I] n alf = 15N o O 3 LN l00)
el gyl

for NpelC(f) < min(l,

P+ Npoleh) i * < 1\7.r4c2||frL

INF(0)]). Thus

and by (30) the inequalities (3) follow. The equality in (3,) implies the
equality in (30,), (31), (32) and (33). The equadity in (31) and (32) inxply
that |L] = 1. The equality in (33) implies C(f) = [f(0)] = 1. By Lemma 4
the equality in (31} implies

(3/1) zlflf(g)f(—%..) N g'l\fl o [( - _i:)]/ﬁ )W' o (1 _;]/5 )_ ] P 4 1

: 14+VB\®  [1--Vb
Since ( _}2] )) —|—_( I‘)l !

If » = 0 then

—
) is an integer, » musk be even, n = 2m.

| zf'f(z)f(%) = + {1 41)
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and since all eyelotomic polynomialg are reciprocal

Gl RO O CE N CEEE e

If n > 0 then the equality in (30,) implies in virtue of Theorem 2 that

14V
2
Now, the right hand side of (34) cquals

e Yo )

V6 eE and |P,(0)] = for v = 1,2, ..., %

2
14+V5 ™
hence g{z) = 2/ 4+ (_;_a) hag in K 2m monic factors P such that
14+VE . 1 3B \2milh
[P0} == * . Bince the zeros of ¢(2) have absolute value (———-I;i/ﬁ)

it follows that the degree of each factor is | f|/2m, hence |f| = 2m, I integer.
Let a = ordym +% 41, where the gign i8 that ocenrring in (34). Wo have

mmmfwﬁ%ﬁy%m-

By Capelli’s theorem g, (2) is irreducible in Q(l/ E) heneo by (34)
‘ | . N
OO NN S A (;) :

Assuming without loss of generality the first possibility wa get

[ 1—=VB\
2 ! + ( 2 ) f{z)i
Pl +(— 1)2“ (}i]ﬁ_)z 2 f(i‘.)
2 "\

and if a> 0

g (2)%] & P [(_'_i'__*t@)m - (Iw,lzl/ﬁ_)m] g,

2

remains to show that K = Q(VB, ™). Assume that any of the considered
factors of ¢(2) in X is not binomial. Then it hag a coofficient of the form

am

G(1+|/3

Eft
"—o’*’") y Where 0 < k<1, ¢ 5 0 and ¢e@({y,). Tt follows that

4

1495
(_;;i) KLy
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which iy imypossible since the tield K (Zy,,) satisfies again the assumptions

Bl
of Theorem 2 and (~-- ‘5_5) has some real and some complex eonju-

gates. Thus the required factorization of g(z) in K is

JUY 27 .
atm ( 1 |,]/r} ).‘m ) [1nj1 (zr 1 —I—l/5 i )
phm 2‘._, t [ "
'y 2

and K o QOV/B, L), Conversely, it X = Q(V5,2,), L =9 and f satis-
fies (4) then &/ f(z)f(e~") has dm factors in K, f() has 2m factors and the
equality holds in (3,).

Proot of Corvollary 2. e(z) satisties fhe conditions of (32).
T 27 Pleh) = consti P(2) and P(z)|p(z) then P(2)[="p(x™), thus

P () (27 4 e+ 1) — (27 + ena? - 7) = a2 —ene” !

and P is eyclotomic, Therefore, it remains to consider the case where
oceurring in (3,) for f = ¢, L = @ equals 2. Then (3,) becomes an equa-
lity and by Theorem 3 VBeK,

1 ) ﬁ
:33’(/) (_F’.r)qﬂ (";") == G(Z'ﬂ — 327 -+ 1) .
Tt follows that ¢(z) = @£ 28—1.
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