icm

ACTA ARITHMETICA
XXV (1973)

Some results on the distribution of additive arithmetic
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0. Introduction. A real-valued avithmetic function % is said to heve
a distribution it there exigts a distribution function ¢(xz) on fthe real line
such. that the density of the zet {m >=1: h{m) < »} of positive integers
exigts and is equal to G (x) at each continuity point 2 of G (x).

Tt is known that the distribution of a real-valued additive arithmetic
function f, if it existy, iz pure, that is, eibher discrete, continnous singular or
absolutely continuous. It is also known that the distribution of a real-
valued additive arithmetic fanction is diserete iff D' 1/p << oo,

f{p)so
In 1939 P. Brdos [3] has shown that, ifl f is a real additive arithmetie
fonetion given by
1
fip) = O(F)

for all prime numbers p and for some positive constant ¢, then the distri-
bution of f exists and is singulat (i.e., either discrete or continuous singu-
lar). In this paper we show that if, for some ¢ > 0,

(1) 2———-———{ﬂ£)}2 = 0(%) as ,;N—>oo’.
%

whore ) i @ set of prime numbers such that
1

Sl
r

then the digtribution of f(m)—f(m 1) oxists and is singular (i.c., either
digcreto or continuous singular). From this result we shall deduce that
if f satisties (1) and f has a distribubion, then the distribution of f i sin-
gular. In particular, every Dbounded  real-valued additive arithmetic
funetion hag a singular distribution. We shall obtain similar results for
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the digtribution of values of f(,lf" (m)), where F(m) is an integral polyno-
mial taking positive values for m =1, 2,

Most of the proofs depend on the following obscrvation. Let [ be
a0 real-valued additive arithmetic funetion, having a distribution. The
distribution of f is singular {absolutely continuous) iff the distribation
funetion eorregponding to the characteristic funetion g(t) given by

S (1) -
If(:a)
is singular (absolutely con{}i.mwlw).

logg(t) ==

1, Notations and definitions.

Py §; D1y Py - always denofe prime numbers.

N, By t, m, n, ete., with or without suffixes always denobe posifive
integers.

P{...} denotes the :[JI'Ol)«.hbl]lty of the event in {...}. For any randoem
variable X, L(X) denotes the distribution funection eorresponding to the
randont variable X.

o(m) denotes the number of digtinet primo divisors of .

81y Cgy ... denote constants.

2. Results.

TumoneM 1. If f is @ real-valued additive arithametic function satisfiying
(1), then the distribulion of f{m)-f(m--1) ewisle and is singular.

TrmoreEM 2. If f i8 o real-valued additive arithmetic function having
an absolutely contintous d@ambumn, then the cﬂ%twbuﬂww of f( m)— f(m--1)
ﬁS absalutely continuous.

' CoROLTLARY 1. Suppose f is a real- mlewd additive m*fa,thm(uﬂfw i wnetion
having o distribution. If f sotisfies condition (1), then the distribution of f
is singulay. N ‘ .

COROLLARY 2. The distribution of cvery bownded veal-valued additive
apithmetic funotion is singulor. i particwlar, ne additive arithmelio fanotion
can have a wniform distribubion.

Tumormse 3. Suppose g ds wny real-valued additive avithmetio function
for which there emists o constand K such that
(2) lg{m)—glm-- 1) < K for
Then the distribution of g(m)—g(m-+1) ewisls and is singular.

Tuponkm 4. Let f-be a real- wlued additine arithmetic function sobis-

o= 1y By

foing o 0 C e 2
. ' ‘ limint {1 /¢ loge]) \:1 i&-}{-ﬂ,
- g>{) . -
e . |pl<e
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where
‘ Ty & fp) <1,
.fgp i .
1 i Afp) =1

Then the distribution of f s absolutely continuous.

Tt 2 denote the set of all polynomials 7' with fegral coefficients
sadisfying the following conditions:

(i} F(m) =4 Lo an == 1,2, ..,

(i) # s nod divisible by fthe square of any irreducible polynomial.

Prwoniy B, Lot Fel* ond Tot s denole the degree of the polynomial P.
Tt f be o veal-valued additive arithmetio function satisfying
B3y SNl p--0 as feml, .0, 8—1, if 832,

Y {(p)yr (F, p)

(4} LA }Tmm._

proo  for

1 .
=) T a8 N—oo
W

ity
awhere (I T denotes the number of incongruent soludions of the congruence

relalion }
B(m) = 0 (mod 1),

¢ i% o positive constant and ¢ is o sst of pfrimes such that

>1 r (I, » .

M
Then the disiribution of f(.'lf'(m)), if z"t eaists, 18 singular.
Tuworny 6, Under the conditions of Theorem 3, fIF(m
has o singular distribution.
TumoniEM 7. With the some notalion as above, suppose
> W@l p
p

)) —F(F (m4-1)}

limint (L /e® {log i)
s T

then the distributlon of j"(.;!.f’(m)) 8 abeolutely condinuous.

3. Prelimivary results.
Tiomiva 1o If (X} and [T} are fwo sequences of discrete and inde-
pendent vandom. variables defined on the same ;paﬂobcubq,lw  space satisfying

DR, V)< oo,
()

then f.\ X, converges abmost everywhere and L( | X} ds absolutely continuous
e

(sim thw iff X, converges almost s@ei'@;whmo and L(EY} is absomteh'

%
-condinneana  (stngulor).

The proof of this Lemma is woll-known.
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Lovia 2. Let f be a real-valued additive arithmelic Ffunction satisfying

{3
3

»

Let {X,} be a sequence of independent random variablos with

N PR

I

PX, = a} = P{X, =

(5) 1#(7%) ==z
2 o 1, oy
-l «
PIX, = 0} = Lo—— -2 ],-w-u—)( \ -w«).
P =0 7 ( pI\ 4 PP
f(}‘lk)uﬂb
Then 2, X, converges almost everywhere cmd the distribution of Fm) —f(m4-1)

is L(ZX ).
Thl& result is contained in the proof of Proposition L [2].
TmvMA 3. If FeP, theve ewists o p, such thai p > py émplies v(F, ")
= (I, p) for any t = 1. Also
F(B, a-b) = v (¥, ayr(Fyb) if (a4, 8) =1
and
r(F, ph) <
See [6].
LeMMA 4. For any positive integer k = 2 and if © = 3 we have

k for some integer T depending only on K.

N = (q:(k) ¥ o(

mse

1 )) w{logm)*
logw

1 y A ,
where the constant indueced by O (-1—(;%--) depends only on &, and
. E~1

1 e R k
(k) = (h—«l)!_'.[ | (.Lwi;) (.1.-| }p'-'_if"')'

»

' Seo Kubilius [6], p» 140.
Lionya B, For any 2 3 and & 2= 3, we have
Y ka»(’m] @ (TG)

; = —— (log
Lmd
W

¥4 0 (log m)F~1

fe—1

. where the constant induced by 0{logn)* ™ depends only on k.
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Proof. Partial swmnmation gives

S 2 [ 5 (D

el e

= O{logn)~14- J ¢ (k) (loga)*—* + O (logm)**

&

= O {logn)" - ‘lﬁj‘_)
r

(logn)*
Lawvna 6. Suppose {a,} is a sequence of real numbers satisfying

- a,?) 1,
) . Z o () (___H) a8 N—oco  for some o.

/ Jvc
PN » '

Further, suppose g(1) is defined by

git) == exp {Z( Hop — 1 — ita,) ——~1
»

Then g(t) 48 a characteristic function of a disiribution funclion and
the distribution funclion corresponding to |g(8)*® is singular for any in-
teger Tt = 1.

Proof. It is clear that g{t) is a characteristic function. Fix an integer
k=1 Let {X;, ¥,: p and ¢ are primes greater than 2%} be a set of inde-
pendent random wu'iihbl.es satigfying for each p > 2k

kA k
PLX, =1} = P{¥, = —1} = (}u:-) (1-_%) for £ 0.
Note that for any integer £ 20
. -\
P{X,+ ¥, = —1} =P{X,+Y, =1} = (%) (1+0 (%))e‘”‘"”.

In view of (6) and Lemma 1, it follows that }'a,(X,+¥,) converges
»
almost overywhere and L{ Y 6,(X,--¥,)) is singular iff the distribution

xr
coreosponding o g (1)1 is singular.
Without loss of gencralily wo can assume ¢ << 1, in (6). Let N Dbe
a large intioger. Lot m < V9 and

x, 1 T f -
M 2’13 v pﬂ,:?';n H km{ = 1.
Congider the sot
d?'.'J,

Dy = {E"‘ik""f‘“’mm" g = +1 or —1,4=1,..., tm}.
foes L
Put Dy e 1) Dy
N s I0I6 ey



44 G. Jogesh Babu

Since there are 2°0 saquences (gq, ..., &,) of +1 and —1, and
P{l + Yj“tm

i1,y ty and XY, = 0 it p = N and (p, m) = 1}

Pim, £ kmi?

i the same for any sequence (g, ...y & ) of -1 and -1, we havo

N e u ‘
P {‘}I\JI thy, (A -+ Yzﬂ)E‘DN}' '
X
-

S YD i 26 A

L I CITRR h"m)

= F’i?"'mi? g :L, vawy [’IJL 1“[(].. Ap [ .‘ -'-“51(

it op= N and (p,m) = 1}
M) 1L
=y 9‘“(”” L+O o\.p’ LVED Y= \
. < P
e N EO PN aN

Since Y 1/p =loglog N --0(1), by Lemma b it follows thatb
LN :
Pl 3 0y ( X+ Yyp)e Dy} a0
RN ‘
Tor some congtant ¢ and for wll laxge N,
Put b == [¢/3]+1. For all sufficiently lurge N, wo have,

P{ }_J Uy (X, + ¥, >
.'ﬁ>V
gP{ iy (X, + T, > F and for all P> N, X, ¥, < n+a}
PN

w1
ol DN ‘p
" _ .
o o Bap vy
= () e B | D213 )( Moy
- (__,,> A-—-J> ' ) RV
NN ] PN
= O(N7®) < BN for some b= 0.

So :
Bf Y 0, (X, + V) eliy} > 6 — BN > /5 0.
2 .

for all suificiently large N, where Gy = t%} [d—N", 3 N, By
e,
Lemuma 4, the Lebesgue measure of the set (}1V fends o zero ag N-»oo.

Ifence T (E% X4 Y,)) is singular. This completes the proof of the lomma,
: o .
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4. Proofs of the theorems.

Proof of Theorem L. By (1) and Lemms 2 2, we can find a sequence
{7} of independent vandorn variables satisfying (5) and the distribution
of f{m)—f(m-1) i L(\‘X) It is not hard to find a sequence {¥,} of

independent random xm,m.hlos defined on the same probability space
on which &7, ave defined and satistying the following condition.:

{7) P(Y, = 0)=1 "if peQ,

(8}  thoe charactevistic fonetion of ¥, i

_ loxp {6 — 1 —itf,) /p|}®
in|
(%) P(X, # X,) = 0(1fp%
Now the theorem follows from Lemmas 1 and 6.
Proof of Theorem 2. Let {5} be a sequence of independent random

variableg with
—
1') J ] 1m_
(1 == @) = ( p) L -
' f(pf)=m
I is casy to see that ([5]) if f has a distribution, then 'n, converges al-

most everywhere and the digtribution of f coincides Wlth L{}n,). Let

! . . 4
{ XYy %yt 0y ¢ primes} be o seb of independent random variables defined
on the sare probability space on which {n,} are defined and satisfying the
tollowing conditions:

(D) T, # 1y} = 0 )

. 1 1
P{Y, = B} =P{Z, = _7"}=}F(1“}7)’ k=01,

Sinco ']}( S'np) I8 absolutely continuous, by Lemma 1, it follows that

_ L(\ Fip) I,) i abgolutely continnous. Consequently (Zf (Y, +2Zy,)

is M)Hnlutuly continuous, Again by Lemma 1 and from 1311@ proof of Theo-
rem L it follows that the digtribuiion of f(m) —f(m -1} is absolutely conti-
neeous, This completos the proot of Theorem 2.

Jorvollory 1 now follows ensily from the above two theorems.

root of Corollary 2 Sinee f{m) iv bounded, 2, flp) converges

absolutely and bonee [f(p)| < 1 for all suﬂwmnﬂv large p So for N suffi-
ciently ]wgc, woe have

S D) )”"(Z =0l S5 ) e o=,

e pE
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Now this corollary follows from Corollary 1.

Proof of Theorem 3. Tf a real additive arithmetic function g
satisfies (2), then by a result of Wirsing [7] there exists a constant, D and
a bounded real additive arithmetic funetion f such that

g(m) = Dlogm+f(m} for m=1,2,..
Siee f is bounded, it satisties condition (1). So the distribution of f(m)—~
—f{m-+1) is singular. But g{m)—g(m--1) = fem)y—f(m-+1)--o(l} as
oo, Henee the distribution of g(m)—g{m 1) iz the same ag that of
flm)—f(m-+1). Congequently the distribution of gim) —g(m-}- 1) i win-
gular,

Proof of Theorem 4. Define a function g(¥) by

. . 1
logg(t) = 2 (60— L—=1f,) .
Since {exp (l (e“"z:——l_it)"ﬂ))} iy the characteristic function of a centred
P

 Poisson. random varviable and since

“
\ fw < oo
.a_-d‘
= P
g e ’ al .tf - " 1 . 13 [} o
and b, () = expy D (¢¥r — 1 —idtf,) —¢ is o chavacteristic function for
PR p

cach i, b, (1) converges absolutely and unitormly to g{#) in every bounded
inferval, and g(f) is an infinitely divisible characteristic function.
As in the proof of Theorem 1, it is sufficicnt to show that tho distribu-
tion corresponding to g() is absolutely continuous.

Note that since

singl = ylf2 A <4,

we have for any z> 0

>1 qm(fj,/.m) . ( N Jp)
|10g‘?:\ P = (»e~]]o;,2.r! _4 P
1.0,
.. sm “' - 1
]']'];}Llun[ i]og ¢ 2/ -y
We have
lo. 2 [ iw;‘ _ o >1 -ty oL e 204 )1_ '
g|g( ) 1 P— uuf,p e “( - i2uf,, e
k “
= Z mfl’ ety _9)= o Y (J cos 2uf, — %) ;L - M'>Zu..(",lp,fr.-.{?.{)m__
Jﬂ P 5 D

icm

Dristribution of additive arithmetio funciions 47
So, :
1 - 7 (sinwf,)®
— ] 2 —= U L
Floglp(2u) = >~ B
n
Hence,
hmmf{—~ - (log lg(2w)]) - } - L
TR [log | 4’
Lo,

limim":{ —(logg ()]} ~

Qe 03

1 . 1
} Togu| 2’
Menee for some 6 > ¢,
1

() = 00 ) as

So g(#) is square integrable, consequently, by Plancherel’s theorem,
it follows that the distribution function eorresponding to g is absolutely
confinnous. This completes the proof of Theorem 4.
The proof of Theorer 7 is gimilar to the proof of Theorem 4.
I'roof of Theorem 5. Define
@,

. p I p¢Q,r(p) #0 and |f(p) < 1,
Hp) = .
¢ otherwise.

=00,

Let o (F,p) = % Tor all p.

In view of fI.‘hemem 1 of [1] and Lemma. 1, if follows that the digtri-
bution of f{F(m)), it it exists, is singular iff the distribution function
corresponding to the characteristic funchion

() == 63 oy 1 it 9"(1‘“,?)}
gyl wp{pZ(e 1 itay)

is singular.
Define
~ et

S
§(1) == mq}{ 2‘_, (et —

(I n)< R

=79,
r

Since Mad/p iy finite, () defines & characteristic function and |g(#)|™
jJ

R8s (£}  Clearly (4) implics thatb
1
R : . -
g fp = 0 (-m) a8 N -—roo.
T P WE

air ¢

S0 1lie distribution funetion corresponding to |g(¢)[*" is singular by Lemma 6
and hwenee the distribution corresponding to h(t) is singular. This comple-
tes the proof of Theorem 6.
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Proof of Theovem 6. It is not difficult to show from the proots
of Theorems 1,2 of [1] and from Leinma 1. that the distribution of f{# (m)) —
—F (F (m+1)) existy and Iy singular iff the distribution funetion covre.
sponding to the characteristic funchion

g () = OX] { ‘}3 (¢ -~ e~ % — 2) (¥ (I, p) /p)}

b

is singular, where a, Is a8 defined in Theorern B oang () (8, ).
(" (F, p) < v (F, p) Tor some p if there oxist two Tactors 2 (m) and ) (m)
of #{m) such that @(m) = P (m 1) for all m.) :

From Lemima 6 and from the proot of Theorem 5 it casily follows
that the distribution corvesponding to ¢* (1) is singular. This complefios
the proof of Theorem 6. .

Remarlk. Let FeP and let the degree of F be > 1. Suppove tilb
condition (3} is satisfied and there existy a sob @ of prime nwmbers sueh,
that

V

o}

(10) E—% < coand p¢f) implies cither 7(F, p) st ¢

or f(p) = 0 and »(¥, p) = 0,

Then we havo the following

Prorogrrron. If the distribution of f(n)—f(n--1) cwists and is abso-
lutely continuous, then the distribution of f (F(m))~~f (If“'(m»[« 1)) also ewists
and i absolulely continuous. . :

The proof of this proposition is similax to the proof of Proposition 3
of {21

Note that condition (10) is satisfied if F iy divisible by a lincar poly-
nomial. Condition (10) cannot be replaced, since if (10) i3 violated, then
the following exawple shows that the distribution of flm) —fl{m-1)
is absolutely eontinucus but f {If"(m))u SF(m1)) == 0 for all m L

Define a strongly additive arithmetie funetion by

1

e if

flpy = (loglogpy*®
0 othorwise,

Take F(m) = m2-1.

It i8 known ([2]) that if p == 3 (mod 4) then ptmt--1 for any m,
80 fF (m)} —F(F (m-1)) = 0 for all m. Bub, on the other hand, it is not
difficelt to show that the distribution of f(m)— S(m 1) is absolulely
continuous (see [2]). .
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