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On the measure of measurable sels of integers®
by
Mron Parnms (Amherst, N.Y.)

1. Introduction. Let N be the seb of natural numbers and 2% the
sot of all subsets of N. E. Borel [1] introduced the function I" from 2%
onto [0, 17; where I'(4) = Yy, (n)27" A2V, and y, is the charactexis-
tic function of 4, in order fo study measure theoretic questions on se-
guences. In particula,r, if §<= 2%, we may ask what is the value of {I'(8))
where A is the Lebesgue measure on [0,1] This notion makes particular
sense when we note that I" is bijective except for a countable set of ele-
ments of 2Y (namely, those sets of elements which are finite or that have
finite complements). In this paper we show that a class of sets, the g-mea-
surable sety as defined by R. Bumby and E. BEllentuck [3], are under
a mild condition of measure zero. As a corollary we answer a question
raised by R. C. Buck [2], p. 580.

2. g-invariant mesasure. We are infterested in measures » on the
natural numbers N with the following properties:

1) »(N) =1, . _

2) If 42%; v(4) is defined and. lies between 0 and 1,

3) » iz finitely additive,

4) y i8 non-atomic, i.e. »({n}) =0,
where nel.

‘We shall denote the collection of all auch mearures by M.

If ¢ = M and A = N we define C(4) = {»(4}| veC}.

Tt C'(A) i » single point we say that A is C-measurable.

Now let g be amy hmc*laon trom N into N. A measure v is g-inoa-
viamt it for all sety A e2%, »(4) = »{g7} (4))-

Lot of , Do the set of measures of M that are g-invariant. The set J,
i§ not empty [31

Our main theorem ig the following:

Turores L. Lei D, be the set of all J -measurable seis, where g las
no finite orbits. Then A(L(D,)) = 0.

* TThis resoarel was partially supported by the State University of New York
Regoarel Foundation.
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3. The preof of the main theorem. Let g,(n) = g{n} ond g(n)
= glgp_s(n)} for » =1, 2, ... Then Theorem 1 of [3], p. 36, implies that A
is J, measurable if and only if
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Now suppose that the seb A iy J measmvable and, that

fo 1, 1
05— e (A =
@) g =y s

where & and L are ,i.ntegers, L= 8, (A slight change s necessary in case
J(A) == 0 or J (A) = 1.) Then by (1) for I Iarge enongh and all w
(8) the cardinality of

(A N Lgy(n), go(n), ..., .’iJ;M--1(7"f)>)

lisg between (k—21)M and kI,

Now let D(n, LI, (k—1)M, 7«:_Zl[) be the set of all gefiy A with the
propertics listed under (3) (for a particular #). Then
(4) - A[r(D{n, LI, (k1) 41, M{))] S
i
where p = 275 ¥ (L@M) < 1.
(=DM

Let my =1, ny = gr5 (1), Ny = gyrye (1), ... Since ¢ hag no fiuite
orbits the sets G = {g,(n)}, b =0, ..., M —1; i= 1,9, ... ave disjo-
int and we have

a[r (m Ding; LM, (o~ )3, 1)) ] = Limp® = 0.
g=1 A
The sob of all J smeasurable sets with meagure between (--1)/7 and
k(T i contiained in

Lg [ﬂ J)(fm,, LM, (k—1)M, }’{rfllfl')]
Mo '

and I8 of measare zero. Cleaxly D, iy contained in a conntable union of
fech sets obtained by varying % and L. We can therefore conclude thi
(D, i8 of measure zerc.
_ Remark 1. Let 7(n) = n—|~1 then the J, is the st of funslation
invariant measures.

Remark 2. Ttisgnot hard to show that these smme s hmw» nneonnt-
ably man y Jymeasurable sets.
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Remark 3. We have not attempted to prove Theorem 1 in ity
greatest generality. It should be noted that we only used one m:Elmte
orbit.

4. On a measure introduced by R. C. Buck. In [2] Buck introduced
the following outer measure. Lot D, be the clags of subsets of & expressible
as the disjoint union of arithmetic progressions {F ¥ 4§ all with a common
fixed K or a set which differs from the above type of set by a finite number
of elements.

Dy is closed nnder complementation, finite unions and intersections
and the functional w({J{EN+j;}+ finite set) = (earvdinality of L)/K

dels

is finitely additive on I,. It can therefore be used to define an ouwter
megsnre on &, by defining for cach 8§ « &
©(8)

A set S 18 measurable if and only if p*(8)-+u"(8) == 1 where &
iy fthe complement of § or equivalently, if and onlv if for every &> 0,
thers exist sels 4 and B in Dy such that

= infu(d) (8 c AeDy).

A=8cB and pB—-A4)<e.

Buck denoted the seb of all measurable sets by D,, proved that
there are uncountably many members of D, and then asked whether
the et (D) 18 measurable ([2], p. 580). We L1how that I'(D,) is measurable
by showing that D, < D, where D, was defined at the end of the last
sectlon and i3 therefore of meagure zero.

TimorEM 2, If SeD,, then SeD, and J.(S) = u(8).

Proof. Let » be any v-invariant measure in M., Then »{EN +j}
= 1/K, since the sets z{KN+j}, = {KN+ j}, ooy To {EN +4}  are

—1

digjoint and have equal »-measure and their nnion, U (N +j+i} = N—

~ {finite set} By the finite Mldltlvn,y of » any member D, such as the 4
defined at the beginning of this section has y-measure (cardinality of L)/K
and i Jmeasarable. Suoppose S i in D, then there exist 4; and B,
wuceh that
‘ Ay 8 =B, and  p(B;=A4;)<1fi.
Then
p(Ay) = p(A) < p(8) < p(BY) = v(B) < p(A;) +1fi

but ' - :
()< n(8) <v(By).

The result follows by letting @ go to oo.
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CoROLIARY. The set I'(D,) has Lebesgue measure C.
Proof. This follows immediately from Theorems 1 and 2.

5. Some closing rerarks. It is not hard to show D, always has
the cardinality of the continuum. It is also easy to show that D, < D,
properly. In fact in some ways it seems to be a very small subset.

Thege theorems would seem o have much possibility for generaliza-
tion. For instance they suggest similar theorems for invariant meansy
or perhaps even the possibility that the “pumber” of Lebesgue monsur-
able sets is very small as compared to the clags of all subsots of the
reals.
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An extension of Schur’s theorem on sum-free partitions
by ‘
Roperr W. Irving (Glasgow)

1. Imtroduction. A ret & of integers is said to be sum-free if
e, bef >a-+bis. '

a and b need not be distincs.

The following i a well-known theorem of Schur [5]:

TumoreM (Schur). Hven a positive integer k, there exisis a greatest
positive integer N = N (k) with the property that the set {1,2,..., N} can
be partitioned info & sum-free sets. Turther,

(1) ' : AEF -1 < VNI < [hle]—-1

where [x] denotes the grealest Mt&gm' not exceeding x.
The upper bound in (1) has recently been improved slightly by Whi-
tehead [8] whose results show that .

N (k) < [kl (e—g) ]~ 1.
Abbott and Hanson [1] hawve recently proved
N (k) = o 89%

for some abgolute constant ¢, go improving an earlier result of Abbott
and Moser [2]. '

A natural cxtension of the concept of a sum-free set i3 contained
in the following definition:

A set 2 of integers ig said to bo r-sum-free i

Qpy Gy ooey BaeSF = Uy + g+ v T G e,

wheroe the a;, necd not be distinet.

T tollows from results of Rado ([4], Theorems 3 and 4), that, given
positive. integers % and #, 7 > 2, there exists a greatest positive integer
N = N(r, k) with the property that the set {1,2,..., N} can be parti-
tigned into & r-sam-free sets. Cleaxly N (2, k) = N (k). _



