B4 Milton Parnes

CoROLIARY. The set I'(D,) has Lebesgue measure C.
Proof. This follows immediately from Theorems 1 and 2.

5. Some closing rerarks. It is not hard to show D, always has
the cardinality of the continuum. It is also easy to show that D, < D,
properly. In fact in some ways it seems to be a very small subset.

Thege theorems would seem o have much possibility for generaliza-
tion. For instance they suggest similar theorems for invariant meansy
or perhaps even the possibility that the “pumber” of Lebesgue monsur-
able sets is very small as compared to the clags of all subsots of the
reals.
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An extension of Schur’s theorem on sum-free partitions
by ‘
Roperr W. Irving (Glasgow)

1. Imtroduction. A ret & of integers is said to be sum-free if
e, bef >a-+bis. '

a and b need not be distincs.

The following i a well-known theorem of Schur [5]:

TumoreM (Schur). Hven a positive integer k, there exisis a greatest
positive integer N = N (k) with the property that the set {1,2,..., N} can
be partitioned info & sum-free sets. Turther,

(1) ' : AEF -1 < VNI < [hle]—-1

where [x] denotes the grealest Mt&gm' not exceeding x.
The upper bound in (1) has recently been improved slightly by Whi-
tehead [8] whose results show that .

N (k) < [kl (e—g) ]~ 1.
Abbott and Hanson [1] hawve recently proved
N (k) = o 89%

for some abgolute constant ¢, go improving an earlier result of Abbott
and Moser [2]. '

A natural cxtension of the concept of a sum-free set i3 contained
in the following definition:

A set 2 of integers ig said to bo r-sum-free i

Qpy Gy ooey BaeSF = Uy + g+ v T G e,

wheroe the a;, necd not be distinet.

T tollows from results of Rado ([4], Theorems 3 and 4), that, given
positive. integers % and #, 7 > 2, there exists a greatest positive integer
N = N(r, k) with the property that the set {1,2,..., N} can be parti-
tigned into & r-sam-free sets. Cleaxly N (2, k) = N (k). _
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Znédm [9] gave a lower bound for N{r, &) generalizing that of (1),

m

@ Nr, ¥ (__;;_){(T___.Un- 13,

Fuorther, implielt in [9] Is the upper bound N{r, k) =L R{r, k) — 2, where
Lifr, k) is the Ramsey number that i the smadlest integer » such that
'in any colouring of the edges of the complote graph on # vertices, I,
using & eolowws, some subgraph ., has all of ik edges the snne eolowr,
Hence,

(3) N(ry oy < (R} (o 1) -9

using a well-known result of Grecwwood and (Heason [3].
Zném also showed [10] that equality holds in (2) in the case % - 9
The main result of this paper is an upper bound foxr N (r, k) which
i§ a gencralization of ‘Lha.t in (1) and 2 considerable improvement upon
that of (3).

2. The wmaim result.
TamoREM 1.

1
N, k) < [Ic!( - 1Y exy ( WW'I_‘)] -1
-Most of the proof of Theorem 1 iy confained in the following lemma.
Immva 1. Let b oand v be positive integers, v 3= 2, awwl tat

N [}’c' (r— 1) exp (Ti})}

If @y <@y < ... <ay is o sequence of non-negative integors and if the set
of differences a;—a; (034 <j< N) is j)(wfv,tmmd i any way dnte T olasyes,
then at least one dlass eontaing a sequence of differences of t/w fm*fm a, )
Qip_y ™oy woey by == 0y for some iy, 4y, ..y 6, with O <4, Ay <

< N, together with hy, == by o

Proof. Tt M 1.)0. a positive integer sueh that there exists o sequence
o < Gy << ... < gy ol non-pegative integers for whish the siatement of
the lemma is false, We ghall say that such a, sequence has property f
It ig sufficient to show M < N,

Let ayp < oy <. < ag Do wq uence of non-negative integory having
property P let F= {a;~a;: 057 < § < MY and 1ot & = ZoE,0... 0,
be a partition of the required kind. ' :

-Consider the set of integers a;,—a, (L < i< M 3 Choose a class of
the partition, say &, that contains as many as 1)05.51"[01 8, §a¥ My, of these
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~3

integers. Then
feng = A

by the pigeon hole principle. Denote the integers of this type in #, by
bywmtty (1 =1,2,...,0) where b;<b; (1<i<j< )

We now partition the set @ = {b;: 1< << n} into r—1 subsets

= BOHEN . UB,.

accoriding to the fellowing rules.

(1) byed,_, 1 and only if there exist integers f,,4,, ..., 9,_,, where
Ll §y < de oo < Jomg << 4, such that

b@-"'“‘bjr__z € ﬂ"l’

by, b ey,
bj2 b_.,-llel

Then successively for b = 7“—2, r—3,...,3,2:

(11) bye &y if amd only if b, ¢ U &, and there exist integers 4y, sy -y fn_1y

Cog=hl
where LS j, <2 e < ... << jpy < 4, such thatb
b‘i— bjhwl Efxl’

bjh B, __2652’1}

—~1 Ih,
— D, ¥
by — by, e %y
p—1

(i3i) b;ed, if and only it b¢ ) &..

g=2

For convenience, in what follows we let
1

Q T e

r—1

- . 4 o s .
We now choose & set, which we denote by &7, being a set with maxi-
b eardinality sanong the &, (1L i r—1). Thon

my = |B"| = o,

where || donotey cardinality, Weo denote the members of #* by b}

(6 = 1,2, ..., m), whare b <D (1<4<j<nl). We now have
b;"d;;f‘m”l (L<i<i<gng).

For, suppose that b} « @, (1< m<r—2), and that b,— b «Z, for some .

Then by ey, for some b > m. IE b; € B,_;, then bs—bm- ¢&, for all s, other-

wise proporty 2 would be violated.
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Hence, the set of integers {by —by: 2<Ci < mrt hag ecardinality st
least g%y — 1, and none of these integers belongs to 2. They must there-
fore be distributed among the remaining % —1 classes. Choosc a class, &,
say, that contains as many as possible, n, say, of thege integers. Then

(k-—1)n,

Denote the integers of thiv type in 2, by ¢;—
< g (L€ f = myh
We now partition the set 4 = {e;r Lsgi«g

(6) :::‘éf’luré’gu...

= Q%l_l.

Bl (L4 my), where

Ryt into r—1 suhroety

Iy’
U1,

according to rules analogous to those used above for set # and cl s ,@'q

Choose a set ¥* having maximum cardinality among the €; (1 = 4 =,y 1).
Then
g = |FY 2 oy

We denote the members of * by ¢ (3 =1,2,..., 1), wlwm
¢ < ¢f (L<1i<§<ng) Consider the set of iniegers {¢j —¢y: 2 {4 «img}.
By an argument identical to that used above, none of thege m‘mg(w Gan,
belong to 2, and dince cach ¢} i8 a b}, none of them can belong to Z,.
Hence they must be distributed among the remaining k—2 clagses- Chooso
a clasy, &, say, that containg as many ag possible, ng say, of these intogoers.
Thon

(k—2)ny = oy —1.

Continuing in. this way, we obtain a sequence of Integers i,

we=1,2,..., k) satisfying the inequalitios
(4) o, —1 5 y—[l(k'—,u) (o0 =1,2, s Bo-1).
From (1) we obtain
. Em’u- - '”’,u-]-l . 1 - R

B - &5 = e 1, 2, 0., —1).
B T S ETaSyT T G W B )

Algo, we must elearly have’
{6) Pz, & ¥ 1.

gince, in our partition of the set of ditterences into #—1 subsets at the
kth stage, no subset can eontain more than one member.

Now, if we multiply the pth inequality in (3) by (¥—1)" and add,
we obtain, using (6), _
1 (r—1) {r — 1y -”)‘In—-ll‘

s(fr—_l){ G TR s b g e

Ty
C (Fe—1)!
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Therefore,
L e, 0 g fo &
e R B e e R B — ¢ ——
G SY ){"1!*"21F 1) <t )F k&'
Hence,
i 1
g < {B—1)!(r~—1) 39—7,
e
and 8o
Mo g < B {r — )e" 1< N

This completes the proof of the lemma.
Proof of Theorem 1. Pub a; =4 (0 <4< N) in the Iemma. Then
the differences a; — a; (0 <C ¢ < j < &) are precisely the integers 1,2, ..., .
The theorem now follows on observing that
(@, — @) = (@,

r_air—l)h[.ﬂ(air— ’r 2)+ ( iy a'io)’

3. A related problem. In Schur’s theorem and its extension given
above, the sum-frec property is concerned with sums of infegers that
arc not necessarily distinet. We can ask how the situation iz affected

-when sums of distinet integers only are considered.

We define @ set & of integers to be weakly r-sum-free if
y & eé?rr-al—l-ag-}— e Fa,. 4%,
where the a; are all distines.
The cage ¢ = 2 of this problew is discuszed in Sierpinski ([6], p. 409).

TrrorEM 2, Fiven positive integers kb and »,r =2, there ewists a
greatest positive integer M =M (r, k) with the property that the set {1, 2, ..., M}
can be partitioned into kb weakly r-sum-free sets. Further,

Byy Qyy . se

1 1
M(r, k) < I:»%;’ﬂ!(a"m Ye(rl + l)exp( 1)—[— 1].

Our proof follows similar lines to the proof of Theorem 1. Most of
the work i contained in tho lemma.
LosmmA 2. Let k und v be posttive integers, v = 2, and lef

l+r]
—1) 1

Then of a, << a, << ... < Gy 48 @ Sequence of non-negative integors, omd if
the set of differences a;—ay (0 <0 <j< M) ds partitioned in any way
wnto k classes, al least one of these classes contains o sel of differences of the
form

M = [,g. el (e 1Y (r - 1) oxp (?_

Ay — O Fp —

LTy ey QT gy Gy Gy

Jor some iy << 4y < ... < i, with no two of these v+ 1 differcnces equal.
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Proof. Liet a, < @, < ... < @y be & sequence of non-negative integers,
and suppose that @ = {@;—u;: 00§ < j < N} has been partitloned into &
classes, @ = Z,0%,0 ... UL, none of which contains a soli of integery
such ag is degeribed in the statement of the lemma. Tt is safficient to show
that N < 3. 7

Yongider the set of differences of the torm a; - ¢, (L= ¢ =0 N, Choose
w closs of the partition, &, say, that containg asg many as possible, o uwy,
ol thesa differcnces, Then ‘

fene 2 N

Denote the ditferences of this type in &) Ty by—ey (3 =2 1,8, ..., ),
where by < by (1 X4<j < n).
We now partition the seb @ == {b;: L7 i=In} into r—1 subscty
@ =B OB ... VB, ., according to the following rules: ,
(i) byedh, , if and only if there exist infegers ji, fuy ..., Joey, Where
gy <y <o < Jpoy < 4, #uch that

b’i - b""?‘ 9 € wr-'?:’,l}

bf;-...“! - bj’i""a € "‘le?
with no two of these » —2 (lifferences equal, and none of them equal “to
]}«"1 — by - ' .
Then successively for b ==»r—2, 903, ..., 3, 2:
re-1
(i} b;e#,andonlyif b, ¢ ) 4, and there oxishinbegers jq, fuy ooy Jua
gmmfy-l 1

where 1<, <<fy< ... << Jpuy << 4, such thatb

b=l
. &
bfh-«l bl’.’a—a «Zy

b-'iz et b"‘l &.dir’:“

with no two of these b -1 ditferences oqual, and none of them equal to
bjl - mg +

el
({ii) byed, if-and only i be () #,.
. . g
Let |8, = @) (1< r—-1), Then
' fom1
T @(i) = .

g,
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For a given integer m, (1 <{my;<r—1), denote the members of By
by b (4 =1,2,..., 2(m), where b < b) (1<t <j<am)), and con-
sider the set of integers b] —07 (4 = 2,3, cooy &(My)). At most wm, of
these integers can belong to £, so that the remainder, numbering at
east w(m) —J-—my, mugh be distributed among the remaining k—1
classes. Choose o class, 2, say, that contains as many as possible, #(n,)
sayy, of these integers. Then

(N (F—Lyn(my) = w(m,) — 1 —my.

This presapposes @ (my)—1—mg > 0, but if this iy not the eise, then
w () == 0 and relation (7) continues to hold.

Denote the integers of this type in 2, by ¢,— b7 (i = 1, 2, ..., 1{m,)),
where o <Ce; (L4 < j<n(m)). We now partition the set € = {g:
I<isn(m)) into r—1 subsels, € =¥ UFu...u%._;, according
to rules analogous to those used above for set # and class ;. Lt [%))
= {1, Mmy) {14 r—1). Then '

rel

2: w(dy, wy) = n{myg).

i=1 _
Tor o given intoger m, (1 < my < r—1), denote the members of Gy DY
6 (i == 1,2, ..., &(Mmg, my)), and consider the set of differences of — e}
(1 == 2,3, ..., (Mg, M), AL most m, of these Integers can belong to 275,
and b most my can belong to &, Henee the remainder, numbering at
least m(m,, my) —1 —my—m,, must be digfributed among the remaining
2 clagses. Ohoose a class, 25 say, that containg as many as possible,
n(my, my) say, of these integers. Then

8) (T 2) 1 (Mg, M) 2= B (Mg, W) ~ L — (Mg 4 Mg).
Again (8) 8 valid when @(m,, m,)—L-—{(mg+my) < 0, in which case

(M, W) v O
Continuing in this way, we obtain sequences of integers

R{fy gy MWy ny ooy ) (L4 <R,

W (Hhyy Myqs vy My} (LsSiC R~-1],

guch thad

I3
. N . |
9 To e Y0 (W y v eey M) B2 0 (Mg aery M) — L ) g
A, 1 p
geml

for poe=1,2,...,%~1 ‘
We finally reach a got of m(my,., ..., m,) dilferences which mugt
belong to &%, We denote these by

wy—ty (6= 1,2 n (g s M),
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where w; << w; (L5 << nMy_y,y ..., my)). We partition the set ¥
= fw,;: TKi<n(My_y,y -0y my)} info r—1 subsets ¥ = #0H 0.

. U,y , in the usual way, and leb [%7,| = @(5, My_qy ...y M) (8 =1, 2, ...
very #—1). Clearly we mugt have

B (M, ..y M) L } mi41 (my=1,2,...,7r—1).
Henee,
-1 g1 !3-11
W(Mpgy ey M) == (] = Wy 2 {Z Wi |- .L}

My dhpeal feal

i
= (r=1) (14 3 my).

j=1

Now we sum over possible values of mg, Wy, ..., %y, Al nnspecitied
gums are from 1 to r—1.

) 1
(10) 3 lalmyy ey m) < —1) 3 3T mpedr 1)
my Mgl My dge—y el

= {r—1)%(§rk-+1).

We now s (8) over possible values of Mypeeey Moy Again, all unspecitied

suwms are from 1 to r—1.
H
- 1 .
Z...Z(kmp)%(mm ey ) 2 Z Z { iy, ,m;t)——.l.~2m£},

my My "y My il

1 .| '
<_____n(,___.,..._.....--._.‘-« P 3
Y Z }_J"*(mp:

Ty ",

(v-—-] L - %,m"
,m)f o (!r-:w)

Cfor p=1,2,..., k-1
C‘umbmmfr lhﬂ b1 inequalities in (11), we obbain

wend,
e 1)
U’c-m:l "“24 B R {Mgsoyy <o ey Wy} o N (o W b

"y
'mk__,; =l (."(.' ) :

and using {1.0)

< (3 41) 'f——l’”—i—z (w~~1 T Ly N plr=1)"

(Yo— T £y (b~ u)!

= “f'fa+T3
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Again we let g = 1/(r~—1). It is not difficult to show that

Ty < (r= 1~ 1)~ 7,

2 Pl (r —1)P(er— 1) 4 “(‘ll)kr —3r(r—1)1

so that we have

H_..rnl . ,'j. - _ Tc _m___l
oy < AU et s

Theretore,

N oy < JB1rk+1) (r— L)% 0 < M.

The proof of Lemma 2 is now complete.

Proof of Theorem 2. Theorem 2 now follows at once from Lemma 2
in the same way as Theorem 1 was a congequence of Lemma 1.

Remark., G. W. Walker [7] stated without proof that

2M(2,k) < M(2, E+1) < 3M(2 kY.

While the first inequality is trivial to prove, the second is false, ag can
easily be shown by the use of the result of Abbott and Hanson [1] discus-
ged in § L.
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Factorization of irreducible polynomials
over a finite field with the substitution 2¢ —~ 2z for =
by .
Anprew F. Loxe (Greensboro, N.OL)

1. Introduction. Tet GIF(g) denote the finite field of order ¢ = p",
where p is an arbiteary prime and o 2= 1. @(2) will denote an irveducible
polynomial of degree s over GF(g). For convenience we agsume Q ()
monie throughout the paper. '

It is well Jnown ([8], p. 34) that if Q(z) is irveducible of degree s
over GF (g), then ¢ (2¥ — ) is also irveducible over GF(g) if the coefficient §
of 2% in Qfw) sadisfics

n—1

(1.1) PN B
i=0

On the other hand i the sum in (1.1) is equal to zero, ) (x® —a2) is the
product of p irreducible factors each of degree s over GF(g). It has also
been ghown ([4], p. 307) that Q(#%° —x) is the product of p™~! irveducibles
each of degree ps over GF(g) with ne restrictions on f. The purpose of
this present paper iy to describe the irreducible factors of @ (a¢ —x) over
G {g) for an arbitrary pogitive integer r. The principal results are con-
Tained in the following two theorems from § 5: '
Lot

whers g i8 the Mobins function, and let

§u-1

g
oq(2) r:)J at

j-——:l}
where & == (7, §). : _
Toworem I. Let @ (x) be drreducible of degree s over GF(g), Let (v, 8) = d,
and lot sjd == 5" and ¢jd = ', If Q(#)| 0o (z) then @ (a¥ —a) is the product
over GI'(q) -of drreduocibles of degree st, t|v'. The number of irreducibles of
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