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Factorization of irreducible polynomials
over a finite field with the substitution 2¢ —~ 2z for =
by .
Anprew F. Loxe (Greensboro, N.OL)

1. Introduction. Tet GIF(g) denote the finite field of order ¢ = p",
where p is an arbiteary prime and o 2= 1. @(2) will denote an irveducible
polynomial of degree s over GF(g). For convenience we agsume Q ()
monie throughout the paper. '

It is well Jnown ([8], p. 34) that if Q(z) is irveducible of degree s
over GF (g), then ¢ (2¥ — ) is also irveducible over GF(g) if the coefficient §
of 2% in Qfw) sadisfics

n—1

(1.1) PN B
i=0

On the other hand i the sum in (1.1) is equal to zero, ) (x® —a2) is the
product of p irreducible factors each of degree s over GF(g). It has also
been ghown ([4], p. 307) that Q(#%° —x) is the product of p™~! irveducibles
each of degree ps over GF(g) with ne restrictions on f. The purpose of
this present paper iy to describe the irreducible factors of @ (a¢ —x) over
G {g) for an arbitrary pogitive integer r. The principal results are con-
Tained in the following two theorems from § 5: '
Lot

whers g i8 the Mobins function, and let

§u-1

g
oq(2) r:)J at

j-——:l}
where & == (7, §). : _
Toworem I. Let @ (x) be drreducible of degree s over GF(g), Let (v, 8) = d,
and lot sjd == 5" and ¢jd = ', If Q(#)| 0o (z) then @ (a¥ —a) is the product
over GI'(q) -of drreduocibles of degree st, t|v'. The number of irreducibles of
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deogree st 48
D Nt gt
(A (;;"1:1)’ ED |

for each tr'.

Tumonny 1T, Let Q(x) be drveducidle of degree & over GW{g). Lel
(r, 8) = d, and lat s/d ==& ond vjd = v'. Lol ' == L (p, 1) == 1 and ke Q.
If Q) 4 op(®), then Qa7 —w) is the product over GE{(g) of drreducibles
of degres p™+'st, #|1. For ench 1|1, the mumber of irreducibles of degrec ™t g

E N (wty q) fp* e

w|lr
(4, )1

where 1) = p&d.

2. Some preliminary concepts and theorerns. Most of these results
are found in [1], [4], and [D]. _

DarFviTionN 2.1. If o is contained in GF(g¢°) but is not contained
in G (¢"), 1 < t < 5, then s is called the degree of o relative to GIF (¢).

Weo uge notation dega = g

TumormM 2.1. The number N (s, q) of ecloments of GF(g" heving
degree s relative to G (q) 18 given by

where w28 the Mibius function.
Trmorey 2.2, Q(x) 48 an drveducible polynomial of degree 8 over
GE(q) if and only if

fe1

Qo) = [ [a—d)

=0
and- dega = 8. _

Turorem 2.5. Let a belong to GTF(¢"). Then a%-w »== a 45 solvable
i GI{g"} if and only if

3 uc“'f s ()
Fat)
THRoREY 2.4, GI(¢*) s contained in GX(¢") if and only 4f o divides m.
Deprvecron 2.2, A polynomial of tho form

&

flw) = 2 a;a®

fws )

iz called a linear polynomial [B].
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Remark. The {(ordinary) sum of two linear polynomials is a linear
polynomial,

DmrmnrrioN 2.3. Let f(z) and ¢{x) be linear polynomials. The sym-
holie product g is given by

Fra(@) = flg(@).

In gencral the symbolic product is not commutative, but it is commu-
tative if the a; belong to GF{g).
DuriNirion 2.4, The linear polynomial

5
ORI
1=

is said to eorrespond to the ordinary polynomial

&
CF(x) = 2 a;a
_ =

TunowEM 2.b. If F(x) aend G{x) are polynomials ocver GF(g) and
if f(x) and g(x) ave the corresponding linear polynomials, then the symbolic
produet f-g(x) corvesponds fo the ordinary product I ()G (x).

THROREM 2.6. Let a be a rool of the drreducible polynomial Q(z) of
degree s over GI(g). Let ¢ = ds' and Tet

g1

- Q&'(m) EZ quj.
. =0

Then € () divides oy (@) if amd only if py{a) = 0.

Trmoren 2.7. Let @ () be irveducible of degree s over GF(q). Then
O (a¥ — ) is the product of p™ ™ irveducible polynomials of degree ps over
GF(g). I ' '

3. Lemmas. The following lemmas will be required for the proofs
of the theorems in § 4 and § 5. '

Lisvvia 3.1. Let A be of degree s over GF{g) and let v be of degree r
over GE (g) with {r, 8} = 1. Then the degrec of A-Fv is v over GIF (g).

Proof. Clearly the degree of A+ is &, a divisor of rs. Thus %k = r18y
where ¢ = ry 7, and ¢ = 8,8, Now let 0 = A4 y. By Theorem 2.4,

817

"= (0=

sy 8y EN
= 6! mya

i 1 q’ﬂ?‘z
s = { —y“—’uﬁ—*})=ﬂ-.

Thus s|s¢ and hence s|s; since (7, s) = L. Similarly #|#; and we conclude
that rs|k. The conditions rs|k and k|rs imply & = rs.
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LEMMA 3.2. Let o be of degree s over GE(g) and lob ¢ == s[d, wheve
d ={r,8). If

& —1

Z o =

j=0
thein @ —a — o has o root A belonging 1o G (g°).
Iroof. Congider (a7 —1, 8% —1) = a®--1. There exist polynomialg
A(z) and B{») sueh that

{8.1) Afw) (@ 1) - B w) (0 —1) = aft L.
In terms of the corresponding lincar polynomialy (3.1) hecomoed
(3.2) (@) - (27 — @) - b} (2" —a) = at @,

where the symbolic multiplication commutes sinee the coefficients belong
to GIF(g).

By Theorem 2.3, with g replaced by ¢, o — @ == o has a solution £
belonging to GF(¢™) = GF(¢"). Subslituting & in the identity (3.2) we
obtain

C a8 (8 ) =
or

[ (E)1" — [w(£)] = a.
Sinee £ belongs to GF{g"), a(£) also belongs to GTF (¢") by closure properties

of the field operations. Thug 1 = a(§) is a roob of g8 e belonging
to GI'(g%).
Lmvivea 3.3, Let a be of degree 8 over GF(q) and leb 8" == 8/d where

d = (v, ). Suppose r = p"ld, (p,1) =1 and k= 0. If

8l
<
2{ o = 0
Fulh
fe-1

8

then a¥ —o —a has a root A belonging to GI (4"
Proof. Observe that

(ry, p*18) = (pFld, p*s'd) = phd
as (1, p&’)y == 1. Congidor
(@ 1, g 1) e gy
There exist polynomials 4 (&) and B (@) such that
(3.3) A () (8 1)+ Blo) (0 1) = P,

In ﬁerms of the corresponding linear polynomials (8.3) becomes
. . . y ;'ﬂ-]- ' I
{3.4) ' w(m)~(mﬂr—~m)+b(w)-(w"-p ! é?——m) ey

icm
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We seek o solution & in GF (q""HIB) which satisfies

%
(3.5) a®E = q.
Let P == q”k. Then {3.5) becomes
(3.6) P —
which has a solution £«GT(P%) = GF(PP) by Theorem 2.3 since
8 —1 " $'—1 .
2 o =P2 oY = 0.
Fed i=o

Bubstituting & in the identity (3.4) we obtain
(&1 ~[a(8)] = o,

where 2 = a(§) is a root of 2% —z — o belonging to GrF(g”k“s).
Luvwva 3.4. Let v =r'd. Then the sel '

{to: ¢, old, (3, djv) = 1}

contains each divisor of r exaclly once.

- Proof. Let & be a prime such that %°lfr, (k°||r denotes that e is the
highest power of % dividing 7). Then for some 4 and 8, B¢’ and %°|d with
A4 = e. For tl’ and o|d, there exist v and » such that K| and %"|d.
We must show that {r++} ={0,1, ..., ¢ with no repetitions.

The condition (f, d/v) =1 implies that min(r, d—») =0, and we
have the following two mutually exclusive cases: '

Case I: 7 =10,

Cage I1: v 520 and 6 = ».

For Case I, {v+v} = {1 v<<d} ={0,1,..., é}.

For Case II, {7+ =f+8& 1<r<A} ={64+1,842,..

Since 6+ 1 = ¢, we find on combining the two cases that

(robst = 0,1, 00y eh,

with each of the exponents ocourring exactly once in the listing.

Sinee & was an arbitrary prime divisor of r, the result follows by the
unique factorization theorem for integers.

LEMWA 8.5, Let v = p*ld and let p°d = D. Then the sel

[tw: 41, o0, (4 Dje) = 1}

. 8 A}

eonlaing coch divisor of v ewactly once. )
Proof. Replace d by D and. v by I in L@mm& 3.4,

" 4. Theorems involving the substitution 2 — & with (r, 8) = 1. Theorems -
4.7 and 4.2 contain results for (r, 8) = 1; they are special cases of Theo-
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rems 5.3 and 5.4 where (7, 8) == d. It i instructive however (o consider
the proofs for (r, s) == 1 separately.

TuEoREM 4.1. Let () be irreducible of degree 8 over GIF{(g) with the
coefficient f of @™ " satisfying f = 0. If (r,8) =1, then ¢ (o7 ) 45 the
product over GEF(g) of irreducibles of degree sty t|r. For each thr the number
of irrednoibles of degrec &f is

N, @)t

Remark, Note that N g)/t is the number of monie ivreducible
polynomisls of degree ¢ over GI'{g) where N (I, ¢) i8 defined as in Theo-
rem 2.1.

Proof. By Theorem 2.2,

&1

(4.1) Q) = [ [ (e — o)

j=0.

(dega == §).

Substitating o7 — for , (+.1) beconies

a1

(4.2) ‘ Q' —m) = [I (@ et ),
F=0

Take j = 0. The polynomisl o — @ —« has a root A nob belonging to
GIF(¢") such that

(4.3) o= 3t

Radsing (4.3) to successive powers of ¢, we obtain the sequence of aquations:

o= b,
A At at ol
@4y ..
o P
L ’2} o
)
gince

J=o } cJ

when (r, 8) = L. Now (4.4) implies that the degree of 1 is at most sr. Binee g
is & polynomial in A, Theorem 2.4 implies that s|degi. Hence the dogree
of A has the form &f, ¢)r, Lor any root 1 of (4.3).

By Lemma 3.2 a xoot of (4.3) of minimum dewrov § does oceur; donotie
this root by ;. Then all the linear factors of Q(¢? —z) over GIF(g™) can
be represented in termsg of A, as follows:

icm
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If 2, is a root of (4.3), so I8 A, - ¢, v« GF(¢"). Thus

¥ —p—a = [~ (24 )]
yeGF(G)

Consider the factor o —p—a? of (4.2). Rasing (4.3) to the Ejt-h power
we obtaln ) ) )
(9" = A o

i \ . 1
Thus 2 is & root of degree ¢ over GIF(g) of the polynomial al —p— o
Hence

31

(4.5) Qaf —z) = I_I [z — (A€ + )]
pell(a") =0

Lot degy =4, t|r. Now (v, 8) = 1 implies (¢, s} = 1. bmce lq hag
degree 8, 0 < § = §—1, Lemma 3.1 asserts that the degree of AI +p i st.
For any tr the number ¥ (i, q) of y in GF(g") of degree ¢ is given by The-
orem 2.1. Since st of the factors in (4.5) ave required to form an irreducible
of degree st, we obtaln

sN(t, q) /st = N{t, @) [t

irredlucibles of degree st for each i)r.
Note that the condition f = 0 in the hypothesis of Theorem 4.1
could be replaced by Q(w)] o, () according to Theorem 2.6 and (4.4).
ExaMrLn 41. Let Q) = ad++o-1, an irreducible over GEF(2).
Lot 7 == 2. Since f = 0, Theorem 4.1 predicts N(1,2} = 2 freducibles
of degree 3 and N (2, 2)/2 = 1 irveducible of degree 6 in the factorization
of Q{x*—a) over GF(2). We find that

Qa* —z) = (2 +a+1)(@* +a*+1)(a" + o'+ o’ + o' +1).

ExAMpLE 4.2. Let Q@) = #°+22-+1, an irreducible over GF(2). |
Let » = 2. Sinee § = 0, Theorem 4.1 predicts N(1,2) = 2 irreducibles
of degree b and N (2, 2 /2 = 1 irredncible of degree 10 in the fa,ctoumhon
of Q (% —x) over Gl"(Z} We de that

Q ()
e {0 - a? - |—1)(fr,5~|—m“‘+w3—|~m-+«1)(w‘°—{—bv”—i—m“ Lot g 4wt - 1)
TuroruM 4.2, Let Q (x) be dry sducible of degree s over GF( } with the
ooeffwwm B of .A:"*l satisfying f 0. If (v, 8) =1 then Q(a¥ —u) is the
product over ('111 ) of drreducibles of degree p* st where 1]l in the facto-
rization » = ptl, (.;p, 1) =1 and k= 0. The number of irreducibles of degree
K1 : . :
PrTst 48

k )
DN (@, @)

U

for each |l
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Proof. By Theorem 2.2,

31 )
(4.6) Qo) = [ Jlo—a)
Fet)

and

(degou = 8)

1
il
] et e T

i,

(4.7) @ {x

‘*h-.__(m

Make § = 0. The polynomial # ww-—u has o root A not helonging to

GI (g such that

{1.8) o Al
' gl
Now 7 s 4 sinee 1 = 4443 o w d—f and g7 0. The sequence
i
of oonations: ,
M'«A—ﬁ
Y N 28,

(4.9)

........

Aﬂ?wr i l—jjﬁ o x]

shows that the degree of 4 is ut most pyr.

By (4.8) g|degld and thus degde smowhore mipr, By (4.9) dogifsy
which nwans that mfe. Thug m - p**¢ where 12’*' ix the ‘hl.‘,’]L(‘}w[r power
of p dividing r, and I in Lho factorization » = P&l (p, 1) -+ 1. Henee
degd = ”15’5 -ﬂl _

Agin (4.4), _‘j af' == —f with § 3

i=0
¢ does oveur; call it 4, Then, as in the proot of Theorem 4.1,

0, and by Lemnmy 3.3 o 3 of wini-

mum degree pt
8- ;
([ []te—08 =1
el () § el
Lot g/ in GF(g") have degree p¥t, 0 <9 = kb oand #l. Wo show fhat
Ao+ v s degres p¥Hiet over GE(g). Tieh 0 = 2, 9. Thoe degree of § nuid
be of the form p* let’ where ¢/[8 Now 9 = G2,

(4.10) Q@2 — ) ==

?;fl”h"'l”" Ofﬂ’h'!'.‘”f" e ,1!;7""‘"1'1“" .
vz 1 -

i Oemd,
80 thab fgl
(411 A ey

Thus degy]p* et and Lhm implies that t[p’ Tttt Now (s, #) =
(s, 1) = A, and (p, 0= Les(pFYIE ) - ’J.ll.m*uLm.u {phit- “.5 f;)
wo conclide that . Thv cundmonq t’ [f ;m{'l it dinply that ¢ -

We remark that Pl Aoy, Lel a8 —1, also s (l(‘g‘t(w p’“.s'f aver
GI'{g) it » has degrec ¢*¢ over (r_Ii‘ (,g)

1 imyplics
= 1 and

icm
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Lyery element of GI'(¢") has degree over GF(g) of the form i,
0<u =<k and |l. The number of y of degree p™f is given by N (p“t, q)
in Theorem 2.1. Thus in the facborization (4.10) we have

- &
¥ ZN(TJ“L‘, g st = Z”N(putn o p
uy u=0

frreducibles of degree p***st over GR(g).

Note that the hypothesis # # 0 can be veplaced by @ (x) 1o, (@)

ExaMrre 4.3. Let (@) = g +o -1, the Drreducible of degree 2 over
GIF(2). Leb v =3, Sinco § £0, B =0 and [ = 3, Theorem 4.2 predicts
N1, 22 =1 nreduclblu of degree 4 and N(3,2)/6 = 1 irreducible of
degree 12 in the factorization of Q(#*--2z) over GF(2). Indeed the facto-
rization is '

Qe — ) = (@' + a2+ 1) (@2 + a2+ 28 4+ 6° a2 +1).
Exaverr 4.4. Let @(w) = a®+a2--1, an irveducible of degree 3

over GF(2). Let # = 2. SBince f§ 0, k =1 and ! =1, Theorem 4.2 pre-
dicts [N (1, 2)+N (2, 2}]d =1 lrrcdumble of degree 12,

Q' —2) = 2o L a® a2+ 1,
an breducible of degree 12 over GEF(2). '
5. Theorems involving the substitution 27 — & with (r,s) = d.
Lot pe(w) be defined ag in Theorem 2.6.
THEOREM 5.1. Let Q (@) be irreducible of degree s over GF (¢). Lot (v, s) = &
and let S/d =3 and v/d =1+". Suppose that (+',d) =1. If Q(=)le, (),

then Q (2% —g) is the product over GW(g) of irveducibles of degree si, tir'.
For each i the nwmber of drreducibles of degree st is

DTN (ot g)]t-
vid
Proof. As in the proof of Theorem 4.1
’ B-:_I ; .
)t — ) —a®)  (dega =38).
fler-

Take G s 0. Observe thit 22 —w—a hag a root A not belonging to GIT(¢")

guch that

Mo Aeba,
A e Aok o
(5.1) e :
8'—1
=g Y =2
i=0
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Thig is o comsequence of the hypothesis € («)lgy (%) which is eguivaleng
by Theorem 2.6 to the condition

&1 §—1 "
S‘\ ¥f N g
ag == S a,([ —= 0
Leend e

i=o fpar
Since s = s, we sco that degllsr’. Sinee a is a polynomial in 1
we also have sldegl. Hence the degree of 4 has the form st where fp'.
Further, Lemma 3.9 guaranfees that o 4 of minimum degree ¢ doey oveur;
eall it A;. Then, ag in the proof of Theorent 4.1,
i a1
) = [] l i[ww
yeld (") Fa=s0
Let y in GF(¢") have degree wt, v|d and ##'. Wo show thati 4,4
has degree st. Lot 6 = 4, - . The degree of § is of the form s, [t Now y
= {—4, and

(5.2) Qe — (4 ) ).

yqst‘ — o l%sf.' e Gl =

' . . 4
so that degylst’. This condition implies that wst’, i.c. 'l,|'b’s’-~&;. Now i»

implies (f,8') = 1 as (#, &) = 1. Also " and dfe|d implies (¢, d/v) =1
by our assumption that (¢, @) = 1. Thus (I, 8'd/v) == 1 and ", The con-
ditions /¢ and ¥|¢ aply that § ="

We again note that MWy, 1jsls~1, also has degreo s over
GIF(g) if y has degree of, old, over GI(g).

Every y in GF (") has degree of the form » where #{d and 2. The
number of y of degree ot is given by N(wt, q) in Theorem 2.1, Hinee st
of the factors in (5.2) are required to form an Irreducible of degree st

we ohtain
sZN (08, q) feb == 2 Nivt, ¢)}
o)

frreducibles of degree s for each #)r'.

Tumormy 5.2. Let Q(w) be fiw-'red'awﬂéble of degree & over GE(y). Letl
(ry 8) = d, and lef a/r’i =8 and v[d = . Loty = W (p, 1) = L and T 7o 04
Suppose that {1, &) If ) 'I” o (@), then Q(a% — ) is the product over
GI{(q) of @W@(Zucwbm of d(’fj’.‘ ee p* st 1 |! For eavh t|l, the numbier of irvre-
ducibles of degree pist 48
(53) D)W (vt ) ot

. p 2l
where D = p*d.
Procf. Ag in the proof of Theorem 0.1,

81 .

= H (2% —p— o)

Je=0

{(dega == g),

_ Q(w-”r—m)

icm
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Take j == 0. The polynomnl #” —p—q has a root 1 not belongmg to
GI'(¢") such that :
(5.4 . MW =A4a
Now AT" 2 A since
§'—1
AT R - 2 r.chf
F==4
and by Theorem 2.6 the sammation g (e) is not zero since Q{a}t o (
The sequence of eguations

H

B = et gy(a),
AT =t 2, (a),

.............

(5.5)

shows that degld|psr’ since s = &',

_ By (5.4) s|degl and thus degd = sm where m|pr'. By (5.5) deg s
which means that m4r’. Hence m = p*'¢ where p* is the highest power
of p dividing ', and [l in the factorization v = p*l, {p, ) = 1. Conse-
quently degi == p“+st, 1|l :

By Lomma 3.3 o A of minimum degree p**'s does occur; call it 1,.
Then, as in the proot of Theorem 4.1,
5—1 ) )
[ [Tz~ +9)1.
»eGF () 70 -
Let D = p*d. Suppose y in GF(¢") has degree v where »|D and |l
We show that 1,4+ has degree p*'st over GF(g). Let 0 = 4, +y. The
degree of ¢ must De of the form p*st’ wheve #'|t. Now y = 06—, and

(5.6) Qe —z) =

Jout-dgpe SR lgpt B-lggr
et e gt dat pio1si
e SR L S

8o that

qpk“|"13t’ N
Thus dogy|p™ s, i
(5.7) ot p st

Lot o s p®%" whore {p, o) =1, 0
axprossion for ¢ in (5.7) we obtain

& koand o'|d. Substituting this

(58) HP’WLM[’G’S’ _El?‘
v

Now tl and (7, p) =1 imply (¢, p™*~%) = 1. Since t|l and d/o’ divides d, -
the condition. (1, d) == 1 implies (¢, d/v’) = 1. In addition ¢jr" and (+', 8} = 1
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and we conelude Trom (5.8)

d )
inply (3, ¢') == 1. Thus (:iﬂm] v 1”,7‘) =l

that ¢, Hence the degree of 4,47 18 Pt

fimilatly A9+ 1 g5 s—1, hag degree Pl tor ¢ of degree
ok, )0 and |k

Bvery element of GF(¢") has degree over GIR(¢) of tlie form of whero
oD and 1. The nuwber y of degreo vt is given by N (#f, ) in Theorem 2.1,
Thux it the factorization (5.5) we have

T T _ 2
g NN (ol ) ot o Y Nuty @) fpt
] - b
n|J2 w4
irredneibles of degree pst over G (g).
Remark. It i interesting fo note that it {d, p) = 1
written in the form

(5.3) ean De

k
N NN et g g
w=sl ol
Thix is possible since {v: oD = pFd} - { p”fr:
np repetitions in the second set it (p, 4) -
Bxamvrs 5.1 Let Q) = w4241, 1'.}10. irreducibe  over  GH(2),
Lot p o= 4. Tleve {r, #) = 25 in rEaJ(':L gl "o Ghat ¢« L and

}w atté

where « 3% . Thus tho hyyo‘blwsis Q@) og () of Theorem 5.2 is watisfied,
and we have & = 1, T = 1 and d == 2. Theorem 5.2 predicly [N({1, 2}
4 N2, 2) 4 N (4, 2)]/4 == 4 irzeducibles of degree 8 in the fuetorization,
of (¥ —x) over GI(2). We find that

O {x 16 ) == (I' At it m“‘“l)(fv[
X (wll _ a4 e g 1) (.’12" e ot SR TN L.

d and ¢

w7 kY with

R R A N T B O ~| 1) X

Remark, The lypotheses (17, d) = 1 in Theorom 5.1 and (4, ) =
in Cheorem 5.2 preveot thoese theorems from deseribing the most genoe 1.1
ase of wnrestricted values of v An examination of the proofs shows
however that even if {4, d) + 1, frredueibles of the minionun degree st
oecur. That the formulay counbing iveedueibles in the preceding theovens
are nob corveet for (3, d) s+ 1 is shown by the {following problem :

CLet Qi) s wd-m-4 1, an lrreducil )lv over (-1]*‘(”). Thos ¢ = p -3
and, ¢ =28, Letr =90 Then d ~ 3, k=0, and { =+ 3 wo thatl (L, th) == 8.
Q (&) 05(w). For ¢ =1, the formula of Theorem A2 yields |[N{I, 2)--
N3, D2 =4 urwluub ex of degree 6. or 1 - 8, the formuly y.[‘u.ld,ﬁ
[N(5, 2y 4 N(9 2116 #= 85 Jrreducibles of degree 18, The irreducibles

,
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of degree G and 18 m this count contribufe a total degree of 1554 in the
f,ui.grmatlon of Q(J, -fr) But 2°-3 = 1036 is the correct degreo of
Q' —w).

Now Q@ —w) == Q& ——m) mod P when P is an irreducible of
degree 6 over GF(2). All the sextic factors of Q(w29~w) are contained
in the factorization of ¢ (m“j —a). By Theorem 2.7, @ (;1:23 — )} is the product
of 4 irveducibles of degree 6. The remaining factors of Q(:vzg~m), which
arc of degree L8 by the proof of Theorem 5.2, must number 84. The counting
formula gave 85, and it i8 easy to observe Lha 10@501’1 for the inconsistency.
N {3, 2) appears in Doth the count fort = 1 and ¢ = 3. It ochviously belongs
in the count for ¢ == 1, and therefore should not bhe included in the connt
for ¢ =3. With the removal of the term N(3,2), we find that
N (9, 2)/6 = 84, the correct number of irreducible factors of degree 13.

Timores 5.3, Let @ () be drreducible of degree s over GF(Q) Let (7, 8)
s d, and lel 8/d = s and vjd=". If Q(2)loy(x), then Q(z¥ —x) is the
product over GF (4} of irreducibles of degree st, m For each tlr' the nuwmbey
of drreducibles of degree st 4s

(5.9) 2

vl
(L, div)=1

N{vt, )]t

Proof, Thiy theorem is the same ag Theorem 5.1 with the restriction
{#', @) =1 removed. An inspection of the proof of Theorein 5.1 reveals
that (r', d) = 1 was used to obtain the condition (f, d/v) = 1 so that the
degree oI ?f" -+ could be- specified. But by Lumma, 3.4 all divigors ot

of » are ineluded exactly once in the set

d
{’ut: tl¥’, vld, (i, E) == 1}.

P

1 o d
(£, dfv)=al
acconnts for all the lincar factors of Q(mﬂr—f x). By the argument in the
proof of Theorem 5.1, we find that the number of irreducibles of degree
sty Hr', v given by (5.9).
"].‘il"l"()‘l{;lul\l B Zjec 0('1") be @'nad’wibla uf deqfree 8 over GF(q) Let (7, 8)

Thus
N (ot, ) = s¢

.[ f (,)(I.r, ‘fQH (), m(m Q (a? «-w) 1] Uw jpﬂfaduot over G]?_( of fwreduczblee of
degree p*tst, til. For each il the number of drreducibles of degree pFHist 45
(5.10) > Nt q) o,

w2
(£,.Djv) =1

where D == p*d.
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Proof. This theorem is the same as Theorem 5.2 with the restriction
(1, @) = 1 removed. In the proof of Theorem 5.2 we used the condition
(I, d) = 1 to imply that (¢, d/v') = 1 in (5.8):
d
i ',‘:'i'l_'"ﬂ’b" B
7 o'
Since d/o'|D /v, the condition (I, D/v) = 1 now implies (¢, d/o’) == L. Thus

we know ag bafore that the degroe of 2--y is p*M s, Bub by Lemma 3.5
all divisors o8 of # are included exactly onee in the set

{vt |, w2, ( ) 1}

Thus l)v an argament similar to the proof of Theorem 5.2, we obtain (5.10)
as the tormula for the number of ivreducibles of degree p®igt, L.

Rewmarlk. We note that if (p, d) = 1, (5.10) becomes

13
P 2 N (p"t, g) fp" 1.
e ) 1&

{t5) -

Ag in the proof of Theorem. 5.4, the condition (7, d/s) = 1 may be applicd to

ﬁ\p’"‘“*'l“”’s’t’f{ (w)d, 4[0)
7

to conclude that ' =1 In the count of irreducibles of degree p®tis,
Lemma 3.4 can then be applied to the divisors of Id without regned to
the powers of p since (d, p) = (I, p) == 1 implies that (Id, p) = 1.

CoroLLARY B.1. Let Q{x) be irveducible of degree s over GI{(g) with
the coefficient B of a®' satisfying f = 0. Let #ls. Then Q¥ —mx) 4s the
product over GIN(q) of irreducibles of degree ps. The number of irveducibles of
degree ps 48

DN @, q)fp.

LEEs

Proof. Using the notation of Theorem B.4, we see thaf . d = ry, g = g
and ¢ == 1. Now if a i a root of ¢ (),

He ]
e f§ S’ o
. ' jmu
The hypothesis # 5= 0 implies
# -1

DI

=0

(5.11)

icm

Tactorization af drreducible polynomials 79

for otherwige

g—1 r—1-8-1 i
i AV
5= 3 = D3 -0
j=0 i=0 F=0

By Theorem 2.6, {5.11} is equivalent to @ Cw)'f 0. (@) and the hypotheses
of Theorem 5.4 arve sabisfied.

Remarle. If f = 0 replaces § 5 0 in Corollary 5.1, the hybotheses
for cither Theorem 5.3 or Theerem 5.4 may be satistied. In particular it
g == 0 and § =4 (le. # = 1), then Theorem 5.3 applies. Example 5.2
shows however that the simultanecus conditions g = 0 and @ (#) 1 o (2)
are possible.

Exavrrm 5.2, Let Q@) = £ +a+1,
Note that f = ¢ Let r == 2. _
Q2 —a) = (@® -t 2t ot b L) (8 2t 2ttt 1),

a product of two irreducibles of degree 8 over GF(2). Since this result
in congigtent with Theoremn 5.4, bubt inconsistent with Theorem 5.3, ‘we
conglude that @ (2} o () here.

BExamepin 5.3. Let Qo) = a'+ a1, an irreducible over GF(2).
Here f 0. Liet » = 2. Corollary 5.1 predicts [N (1,2)4-N(2,2)]/2 =2
irreducibles of dogree 8 in the factorization of G (a*—) over GIT(2).
We find thatb

O — ) = (a2 L) (a2t e e ).

COROLLARY 5.2. Let @ (&) be irreducible of degree s over GF(g). Let
slr so that v = s’ with v =p*l, (I, p) =1 and &= 0. Then Q(«¥ — )
is the product of irreducibles of degree p**'st, 1|l The number of irreducibles
of degree p*Vlst is

an irreducible over GF(2).

\ ) o
D N gt
ol ) '
{t, D=1
where T == p¥s.
Proof. Using the notation of Theorem 5.4, we have d = s and ¢ = 1.

Thus it o i1 a root of Q{w)
§'—1

Yo =

FE]
Minee ¢ s 0, Theorem 2.6 indieates that the hypothesis Q(e) ¥ oy () of
Theorem 5.4 1y satisfied,
Remark. I # == s in Corollary 5.2, Theorem 2.7 is obtained.
Note that Example 5.3 is an illustration of Corollary 5.2. As another

illustration. we have

TxaMprn B.4. Let @a) = 2" -5 ], an, irreducible of degree § =g
over GF(2). Lot 7 = 135. Then d == 9, 8" = 1, and I = 15.
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Ror ¢ = 1, there nxe [¥(1, 2)+ N(3 2) + N (9, 2)]/2 irm*e.(.{uu‘i.]»le faetors
of @ 2% _p) of degree 18. For ¢ = 3, thero are .N {27, 2)/6 irreducibles
of degree 4. PFor ¢ =5, there are [N (5, 2) 4N (1D, 2) 4 N (45, 2)]/10
irreducibles of degree 90, and for § == 13, there are N (133, 2)/30 rreducibles
of degree 270, Sinee
9) = .91

we see that all the frredueihle factors ave accounted for.
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ACTA ARITHMETICA
XXV (1973)

Uber die avithmetische Natur der Werte
der Losungen einer Funktionalgleichung ven H. Poincaré

Vo

By Warsssk (Freiburg i, Br.)

1. Einleitung. In seiner Arbeil Sur ane classe nouvelle de transcendants
uniformes betrachtet Poineard [6] Fanktionen fi, ..., f,, die einem Multi-
plikationstheorem geniigen: Bs gibt cine komplexe Zahl w mit pml > 1
und rationale Funktionen R, (x,, ..., @), 1 <4< 0, so daB

(1} Ji(ma) = By(e; [1(2), ..o, Fu(®)]

gilt. 8ind die Funktionen B, Polynome, so sind die Lisungen cines solchen
Systems ganze Funktionen und im allgemeinen ganz transzendent, Spezial-
fille solehor Systeme sind Glelehungen der Form

(2) JnPz) = Riz, f(2), fme), ..., flm?? ))
Imsbesondere goehdren die Losnngen der linearen Tunkiionalgleichung
(3) J(mP) = Py()f(m¥ )+ oo+ Py1 (2)f (2) +Pp(2)

zu den Fupkbéionen dieser Art. Dabel sind Py, ..., P, Polynome.

By feblt nicht an Untersuchungen arithinetizeher Bigenschaften
von Fonktionen, die ciner linearen homogenen Gleichung der Tormn (3)
gem‘ifron. Am unifassendsten dirfte die Arbett von Osgood [4] sein, der
im Talle von Polynomen aus dem GauBsehen Zablkirper die simultane
diophantische  Approsinition gewisser TFunktionswerte von -Lisungen
einer Gleichumg (3) untersucht, Iier soleen mit derselben Methode, mit der
Golfond |37 die Transzendens vou 7 bewies, die Werte gewisser Lidsnngen
der Hunktionalgleichung '

(4) flong) = Pl)f(=) 40 (=)

untersueht wekden., Dabel seicn P und @ Polynome mit Koeffizienten
aug oinem’ imaginér quadratisehen Zahllkirper K. Die Methode hesteht
davin, f in ecine geeighete Interpolationsreihe zu entwickeln und die In-
terpolationskocflizienten zu analysieren. Ts wird sich zeigen, dali man
Ted linearem P Trrationalititsanssagen fie die Werte der Lisungen solcher
Gleichungen. machen kann. Bei nichtlinearem P lassen sich ]Ldoeh nur
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