icm®

and then, as in theorem 18, we can develop a 5 term exact sequence of long sequences and commutative ladders.

$$0 \rightarrow \pi(X,A,x) \rightarrow I(X,A,x) \rightarrow I(X,A,x) \rightarrow S^3\underline{\pi}(X,A,x) \rightarrow S^3\underline{\pi}(X,A,x) \rightarrow 0$$

where if C is a graded module then S^3C is that graded module with $(S^3C)_n = C_{n-3} \cdot \underline{\pi}(X, A, x)$ is exact (see [3]) and it is easy to show that I(X, A, x) is exact. Using this set up it is possible to prove that if (X, A, x) is a movable pointed pair of compacta then $\underline{\pi}(X, A, x)$ is exact. The concept of movable compactum was defined by K. Borsuk in [2].

21. APPENDIX. For each $n \ge 0$, $\underline{\pi}_n(X, x)$ is the inverse limit L of the system $\{\pi_n(\operatorname{inc}(U, U')); \pi_n(U, x) \to \pi_n(U', x)\}_{U \subset U', U, U' \in \operatorname{Nhd}(X)}$ where for $U \subset U'$ both neighbourhoods of X inc(U, U') is the inclusion mapping $U \subset U'$.

Proof. If f is a continuous mapping from (S^n, p_0) to (U, x) denote its homotopy class by $[f] \in \pi_n(U, x)$, then L is the set of lists $\{[a_U]\}_{U \in \text{Nhd}(X)}$ where for each $U \in \text{Nhd}(X)$, $[a_U] \in \pi_n(U, x)$ and if $U \subset U'$, U, $U' \in \text{Nhd}(X)$, $\pi_n(\text{inc}(U, U'))([a_U]) = [a_{U'}]$.

If $\{U_n\}_{n\geqslant 0}$ is a nested sequence of neighbourhoods of X such that $\bigcap U_n=X$ there is a morphism

$$\Psi; L \rightarrow \pi_n(X, x), \{[a_U]\} \rightarrow \langle \{a_{U_n}\} \rangle$$

which has as 2 sided inverse the morphism

$$\Phi$$
; $\pi_n(X, x) \to L$, $\langle \{a_n\} \rangle \to \{ [b_n] \}$

where b_U is defined as follows. Given $U \in \operatorname{Nhd}(X)$ there is an $N(U) \in J^+$ such that a_n is homotopic to a_{n+1} in U, for all $n \geqslant N(U)$, define $b_U = a_{N(U)}$. Q.E.D.

References

- K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), pp. 223-254.
- [2] On movable compacta, Fund. Math. 66 (1969), pp. 137-146.
- [3] J. B. Quigley, Shape Theory, Approaching Theory and a Hurewicz Theorem, Thesis, Indiana University, Bloomington 1970.
- [4] Equivalence of Fundamental and Approaching Groups of Movable Pointed Compacta, to appear.

DEPARTMENT OF MATHEMATICS UNIVERSITY COLLEGE Dublin

Reçu par la Rédaction le 22. 12. 1970

The realization of dimension function d_2 (*)

by

J. C. Nichols (Radford, Virginia)

K. Nagami and J. H. Roberts [6] introduced the metric-dependent dimension function d_2 and posed the following question, which we will call the Realization Question. Let (X, ϱ) be a metric space with $d_2(X, \varrho) < \dim X$ and let k be an integer with $d_2(X, \varrho) \le k \le \dim X$. Does there exist a topologically equivalent metric σ for X with $d_2(X, \sigma) = k$? For each Cantor n-manifold (K_n, ϱ) with $n \ge 3$, Nagami and Roberts described a subset (X_n, ϱ) with the property that $d_2(X_n, \varrho) = [n/2]$ and $\dim X_n \ge n-1$. This paper answers the above question in the affirmative for these spaces (X_n, ϱ) where $K_n = I^n$ (n-cube). The question remains unanswered for arbitrary metric spaces.

DEFINITION. Let (X, ϱ) be a non-empty metric space and let n be a non-negative integer. $d_2(X, \varrho) \leqslant n$ if (X, ϱ) satisfies the condition:

For any collection $C = \{(C_i, C'_i): i = 1, ..., n+1\}$ of n+1 pairs of closed sets with $\varrho(C_i, C'_i) > 0$ for each i = 1, ..., n+1, there exist closed sets B_i , i = 1, ..., n+1, such that (i) B_i separates X between C_i and C'_i for each i = 1, ..., n+1 and (ii) $\bigcap_{i=1}^{n+1} B_i = \emptyset$

for each
$$i = 1, ..., n+1$$
 and (ii) $\bigcap_{i=1}^{n+1} B_i = \emptyset$.

If $d_2(X, \varrho) \leqslant n$ and the statement $d_2(X, \varrho) \leqslant n-1$ is false, we set $d_2(X, \varrho) = n$. The empty set \emptyset has $d_2(\emptyset) = -1$.

DEFINITION. Let X be a topological space, $g: X \times X \to R$ a real valued function, and let A and B be two subsets of X. Let

$$g(A, B) = \inf\{|g(x, y)|: x \in A, y \in B\}.$$

This real number g(A, B) will be called the g-distance between A and B.

DEFINITION. Let I^n denote the Euclidean n-cube, let $p, q \in I^n$ and let $A \subset I^n$. We define Join(p, q) to be the collection of all the points

^(*) This work is taken from the author's doctoral dissertation at Duke University. I would like to thank Dr. J. H. Roberts for his guidance in the preparation of this paper.

^{14 -} Fundamenta Mathematicae, T. LXXVII

 $x \in I^n$ such that there exists a real number $\lambda \in [0, 1]$ with $x = \lambda p + (1 - \lambda)q$. We define Join(p, A) by the following:

$$\operatorname{Join}(p, A) = \bigcup_{q \in A} \operatorname{Join}(p, q).$$

DEFINITION. Let X be a topological space, let m and k be any two non-negative integers and let $g\colon X\times X\to R$ be a real valued function. X is said to have property $\mathfrak{F}(m,k,g)$ if given any collection of m pairs of closed subsets of X, $C=\{(H_i,K_i)\colon 1\leqslant i\leqslant m\}$, such that there exists a real number $\varepsilon>0$ with $g(H_i,K_i)>\varepsilon$ for all i, then there exists a collection of closed sets $\mathfrak{B}=\{B_i\colon 1\leqslant i\leqslant m\}$ such that B_i separates X between H_i and K_i and order $\mathfrak{B}\leqslant k$.

DEFINITION. Let X be a topological space. Suppose $C = \{(C_i, C_i'): i = 1, ..., n\}$ is a collection of n pairs of closed subsets of X such that if B_i is a closed set separating X between C_i and C_i' for all i = 1, ..., n then $\bigcap_{i=1}^{n} B_i \neq \emptyset$. Then C will be called an n-defining system for X.

If S is a subset of a topological space X we will write Cl(X, S), Int(X, S) and Bdry(X, S) for the topological closure, interior and boundary respectively of S in X. If the result is unambiguous we will write Cl(S) for Cl(X, S) and similary for Bdry and Int.

For a proof of the following lemma see [3].

LEMMA 1. Let (X, ϱ) be a metric space, $f: X \rightarrow [0, 1]$ a continuous function with values in the unit interval, and for all $x, y \in X$ let

$$\sigma(x, y) = \varrho(x, y) + |f(x) - f(y)|.$$

Then σ is a metric on X which is topologically equivalent to ϱ .

The following theorem has been proved by K. Morita [5].

LEMMA 2. Let X be a normal topological space, let $\mathfrak{S}=\{G_a\colon a\in A\}$ be a locally finite collection of open sets, and let $\mathcal{F}=\{F_a\colon a\in A\}$ be a collection of closed sets such that order $\mathcal{F}\leqslant n$ for some non-negative integer n and $F_a\subset G_a$ for all $a\in A$. Then there exists a collection of open sets $\mathfrak{W}=\{W_a\colon a\in A\}$ such that order $\mathfrak{W}\leqslant n$ and $F_a\subset W_a\subset \mathrm{Cl}(W_a)\subset G_a$ for all $a\in A$.

The following lemma is proved in [5], p. 42.

LEMMA 3. Let X be a completely normal topological space, let B, E, H and K be closed subsets of X with $H \cap K = \emptyset$, such that B separates $E \cap H$ from $E \cap K$ in X. Then there exists a closed set D such that D separates H from K in X and $(D \cap E) \subset B$.

The same argument that is used to prove Theorem 1 in [7] may be used to prove the following theorem.

Theorem 1. Let X be a topological space, $g: X \times X \rightarrow R$ a real valued

function, and $f: X \rightarrow [0, 1]$ a continuous function with values in the unit interval. For $x, y \in X$ let

$$h(x, y) = g(x, y) + |f(x) - f(y)|$$
.

If X has property $\mathfrak{T}(m, k, g)$ for every non-negative integer m then X has property $\mathfrak{T}(m, k+1, h)$ for every non-negative integer m.

We will apply Theorem 1 to prove the following preliminary theorem.

THEOREM 2. Let X be a topological space and let m and r be any two non-negative integers. For each j=1,...,m let $f_j\colon X\to [0,1]$ be a continuous function with values in the unit interval. Let $C=\{(C_i,C_i')\colon i=1,...,r\}$ be a collection of r pairs of closed subsets of X with the property that there exists a real number $\varepsilon>0$ such that for every i=1,...,r

$$\sum_{j=1}^{m} |f_j(x) - f_j(y)| \geqslant \varepsilon$$

for $x \in C_i$ and $y \in C'_i$. Then there exists a collection of closed subsets of X, $\mathfrak{B} = \{B_i : i = 1, ..., r\}$, such that B_i separates X between C_i and C'_i for each i = 1, ..., r and order $\mathfrak{B} \leq m$.

Proof. The proof is by induction on the number of functions. Suppose m=1. Then for each $i=1,\ldots,r$ if $x\in C_i$ and $y\in C_i'$ we have $|f_1(x)-f_1(y)|\geqslant \varepsilon$, that is $\mathrm{Cl}(f_1(C_i))$ and $\mathrm{Cl}(f_1(C_i'))$ are disjoint closed subsets of the unit interval so there exists a collection $\mathfrak{B}^*=\{B_i^*\colon i=1,\ldots,r\}$ of closed sets such that B_i^* separates $\mathrm{Cl}(f_1(C_i))$ from $\mathrm{Cl}(f_1(C_i))$ in the unit interval and order $\mathfrak{B}^*\leqslant 1$, since the covering dimension of the unit interval is 1. Define $B_i=f_1^{-1}(B_i^*)$ for each $i=1,\ldots,r$. Then order $\{B_i\colon i=1,\ldots,r\}\leqslant 1$ and B_i is a closed subset of X separating X between C_i and C_i' for each $i=1,\ldots,r$.

Suppose Theorem 2 is true for any collection of m continuous functions. Let f_1, \ldots, f_{m+1} be any m+1 continuous functions. For all $x, y \in X$ let

$$g(x, y) = \sum_{j=1}^{m} |f_j(x) - f_j(y)|$$

and let

$$h(x, y) = g(x, y) + |f_{m+1}(x) - f_{m+1}(y)|$$

and let $f(x) = f_{m+1}(x)$ for all $x \in X$. By the induction hypothesis X has property $\mathfrak{T}(k, m, g)$ for every integer k. Now f is a continuous function so by Theorem 1, X has property $\mathfrak{T}(k, m+1, h)$ for every integer k.

THEOREM 3. Let (K, γ) be a compact metric space, and let $p \in K$. If $X \subseteq K - \{p\}$ and if there are continuous functions f_j : $(K - \{p\}) \rightarrow [0, 1]$, j = 1, 2, ..., m then

$$\sigma(x, y) = \gamma(x, y) + \sum_{j=1}^{m} |f_j(x) - f_j(y)|$$

215

is a metric on $K-\{p\}$ which is topologically equivalent to γ and

$$d_2(X, \sigma) \leqslant \max\{m, d_2(X, \gamma)\}$$
.

Proof. By Lemma 1, σ is a metric on $K - \{p\}$ which is topologically equivalent to γ . Let $h = d_2(X, \gamma)$ and let $n = \max\{m, h\}$. We show that $d_2(X, \sigma) \leqslant n$. Let

$$C = \{(C_i, C'_i): i = 1, ..., n+1\}$$

be a collection of n+1 pairs of closed subsets of X with $\sigma(C_i, C_i) > \varepsilon$ for all i and some real number $\varepsilon > 0$. Let $E = \{x \in X : \gamma(x, p) \leq \varepsilon/8\}$, $J = Bdry(E), F = (K - E) \cup J, Y = K - \{p\}, I_1 = \{1, ..., n+1\}, I_2$ $= \{1, ..., h+1\}$ and let $I_3 = \{h+2, ..., n+1\}.$

For each $i \in I_1$ define

$$D_i = \{ y \in Y : \ \sigma(y, C_i) \leq \varepsilon/8 \},$$

$$D'_i = \{ y \in Y : \ \sigma(y, C'_i) \leq \varepsilon/8 \}.$$

For each $x \in D_i \cap E$ and $y \in D'_i \cap E$ we have $\sigma(x, y) \ge 3\varepsilon/4$ and $\gamma(x, y)$ $\leq \varepsilon/4$ so that

$$\sum_{j=1}^m |f_j(x)-f_j(y)| > \varepsilon/2.$$

Thus we can apply Theorem 2 and conclude that there exists a collection $\mathcal{B} = \{B_i : i \in I_i\}$ of closed subsets of Y such that B_i separates Y between $D_i \cap E$ and $D'_i \cap E$ and order $\mathfrak{B} \leqslant m$.

By Lemma 2 there exists a collection $W = \{W_i: i \in I_1\}$ of closed subsets of Y such that $B_i \subset \operatorname{Int}(W_i)$, W_i separates Y between $D_i \cap E$ and $D'_i \cap E$ and, order $W \leq m$. Hence we can write

$$Y-W_i=U_i\cup V_i$$
 where $U_i\cap V_i=\emptyset$, $(D_i\cap E)\subseteq U_i$ and $(D_i'\cap E)\subset V_i$.

Since J is a compact set we have that there exist real numbers β_1 , β_2 and β_3 , such that for all $i \in I_1$

$$\begin{array}{ll} \gamma(J \cap U_i, J \cap V_i) \geqslant \beta_1 > 0 \; , \\ \gamma(F \cap D_i, J \cap V_i) \geqslant \beta_2 > 0 \; , \\ \gamma(F \cap D_i', J \cap U_i) \geqslant \beta_3 > 0 \; . \end{array}$$

Since F is a compact subset of Y, each function f_i is uniformly continuous on F, hence there exists a real number β_4 such that for $i \in I_1$

(2)
$$\gamma((F \cap D_i), (F \cap D_i')) \geqslant \beta_4 > 0.$$

For each $i \in I_1$ we define

$$G_i = (F \cap D_i) \cup (U_i \cap J)$$
 and $G'_i = (F \cap D'_i) \cup (V_i \cap J)$.

From (1) and (2) above it follows that for all $i \in I_1$

(3)
$$\gamma(G_i, G'_i) \geqslant \min\{\beta_1, \beta_2, \beta_3, \beta_4\} > 0$$
.

For each $i \in I_1$ we let

$$H_i = \operatorname{Cl}_X(G_i \cap X)$$
 and $H'_i = \operatorname{Cl}_X(G'_i \cap X)$.

By (3) above, $\gamma(H_i, H'_i) > 0$ for all $i \in I_1$.

We apply the hypothesis that $d_2(X, \gamma) = h$ to the first h+1 pairs of closed sets $\{(H_i, H'_i): i \in I_2\}$, and conclude that there exists a collection of closed subsets of X, $\mathcal{R} = \{R_i : i \in I_2\}$ where for each $i \in I_2$ R_i separates X between H_i and H'_i . We will write $X - R_i = K_i \cup T_i$ where $H_i \subset K_i$, $H'_i \subset T_i$, K_i and T_i are disjoint open subsets of X and order $\Re \leqslant h$.

For each $i \in I_2$ let

$$\begin{split} Z_i &= \big((W_i \cap E) \cup (R_i \cap F) \big) \cap X \,, \\ P_i &= \big((U_i \cap E) \cup \big(K_i \cap (F - J) \big) \big) \cap X \,, \\ Q_i &= \big((V_i \cap E) \cup \big(T_i \cap (F - J) \big) \big) \cap X \,. \end{split}$$

Since P_i and Q_i are disjoint open sets and $C_i \subseteq P_i$ and $C'_i \subseteq Q_i$, and $X-Z_i = P_i \cup Q_i$ we conclude that for each $i \in I_2$ Z_i is a closed subset of X separating X between C_i and C'_i .

The remainder of the proof is divided into 2 cases; n = h and n = m. If n = h then $\mathfrak{Z} = \{Z_i: i \in I_2\}$ is the desired collection of separating sets. Since order $\mathfrak{W} \leqslant m \leqslant n$ and order $\{F \cap R_i: i \in I_2\} \leqslant n$ and $(J \cap R_i) \subset W_i$ we have that order $3 \leq n$.

If n = m we have found separating sets for the first h+1 pairs of closed sets $\{(C_i, C_i'): i \in I_2\}$. We will now find separating sets for the remaining (n+1)-(h+1)=n-h pairs of closed sets $\{(C_i,C_i'): i \in I_3\}$.

For each $i \in I_3$ we have a closed set W_i which separates X between $C_i \cap E$ and $C_i' \cap E$, such that order $\mathfrak{W} \leqslant m = n$. For each $i \in I_3$ we apply Lemma 3 and conclude that there exists a closed set Z_i that separates Xbetween C_i and C_i' such that $(Z_i \cap E) \subset W_i$. Let $\mathfrak{Z} = \{Z_i : i \in I_i\}$. It remains to show that order $\mathfrak{Z} \leqslant m$. Let $x \in X$. If $x \in E$ then order $(\mathfrak{Z}, x) \leqslant m$ since order $W \leqslant m$. If $x \in F$ then x is an element of at most h of the first h+1 closed sets $\{Z_i: i \in I_2\}$. There are m-h sets remaining so that order $(3,x) \leq h + (m-h) = m$. This completes the proof of the theorem.

THEOREM 4. For any integer $n \ge 1$ let $\{A_i: i \ge 1\}$ be any countable collection of closed subsets of the Euclidean n-cube (I^n, γ) such that if $i \neq j$ then $A_i \cap A_j = \emptyset$ and such that at least two of these closed sets are nonempty. Let $X = I^n - \bigcup A_i$. Suppose $d_2(X, \gamma) = k$ and $\dim X = m$. If r is any integer such that $k\leqslant r\leqslant m$ then there exists a metric σ_r on X such that σ_r is topologically equivalent to γ and such that $d_2(X, \sigma_r) = r$.

Proof. We will express the *n*-cube I^n as $\{(x_1, ..., x_n): -1 \leq x_i \leq 1, i = 1, ..., n\}$. We assume k < m, otherwise there is nothing to prove. Thus $k \leq n-1$ so that $\bigcup A_i$ must be dense in I^n . Hence we can find

a point $p \in \operatorname{Int}(I^n)$ with $p \in A_i$ for some i. Now $\operatorname{Int}(I^n) - A_i$ is an open non-empty subset of $\operatorname{Int}(I^n)$ since at least two of the elements of the set $\{A_j \colon j \geqslant 1\}$ are assumed to be non-empty. Similarly there exists a point q and an integer $j \neq i$ such that $q \in (\operatorname{Int}(I^n) \cap A_j)$ and $q \notin A_i$.

Since A_i is closed we can construct an (n-1)-cube B, disjoint from A_i , with center q and lying in the (n-1)-plane perpendicular to Join(p,q) at the point q.

Let $\{(R_i, S_i): i = 1, ..., n-1\}$ be the collection of pairs of opposite faces of B, and let D be the pyramid with base B, with apex the point p.

Since the line segment Join(p,q) is in the interior of I^n , the (n-1)-cell B may be taken small enough so that $D \subseteq Int(I^n)$ and we will assume this has been done.

Let $\{(H_i, T_i): i = 1, ..., n-1\}$ be the n-1 pairs of opposite faces of D where

$$H_i = \operatorname{Join}(p, R_i)$$
 and $T_i = \operatorname{Join}(p, S_i)$.

Let $B_i = H_i \cap X$ and $C_i = T_i \cap X$ for each i = 1, ..., n-1.

By an argument similar to that given in [6], p. 418 it can be shown that the collection $\{(B_i, C_i): i=1, ..., n-1\}$ is an (n-1)-defining system for X. Now let $Y=I^n-\{p\}$. Then for each i=1, ..., n-1 B_i and C_i are closed sets in Y and $B_i \cap C_i = \emptyset$. By Urysohn's Lemma there exist n-1 continuous functions, $f_1, ..., f_{n-1}$; $f_i \colon Y \to [0, 1]$ such that $f_i(B_i) = 1$ and $f_i(C_i) = 0$ for each i=1, ..., n-1. For each r=1, ..., n-1 we define

$$\sigma_{r}(x, y) = \varrho(x, y) + \sum_{j=1}^{r} |f_{j}(x) - f_{j}(y)|$$

for $x, y \in X$. By Theorem 3 we know that $d_2(X, \sigma_r) \leq \max\{r, k\}$. But for any integer $r, 1 \leq r \leq n-1$,

$$C_r = \{(B_i, C_i): i = 1, ..., r\}$$

is a collection of r pairs of closed subsets of X with $\sigma_r(B_i, C_i) \geqslant 1$ for all i = 1, ..., r. Thus $d_2(X, \sigma_r) \geqslant r$ and the proof of the theorem is complete.

For each $n \ge 3$, K. Nagami and J. H. Roberts [6] have described a subset (X_n, ϱ) of the n-cube (I^n, ϱ) with the property that $d_2(X_n, \varrho) = \lfloor n/2 \rfloor$ and $\dim X_n = n-1$. In the following theorem (X_n, p) will refer to these spaces described by Nagami and Roberts.

THEOREM 5. For any $n \ge 3$ and any integer r such that $\lfloor n/2 \rfloor \le r \le n-1$, there exists a metric σ_r on (X_n, ϱ) such that σ_r is topologically equivalent to ϱ and such that $d_{\varrho}(X_n, \sigma_r) = r$.

Proof. From the definition of these spaces in [6] it can be seen that for each $n \ge 3$ X_n is the complement of a disjoint union of closed subsets of I^n , thus satisfying the hypothesis of Theorem 4.

References

- [1] R. E. Hodel, Note on metric-dependent dimension functions, Fund. Math. 61 (1967), pp. 83-89.
- W. Hurewicz and H. Wallman, Dimension Theory, Princeton 1955.
- [3] Witold Hurewicz, Über Einbettung separable Räume in gleich dimensionale Konpakte Räume, Monatshefte für Math. und Physik 37 (1930), pp. 199–208.
- [4] M. Katetov, On the relations between the metric and topological dimensions, Czecho-slovak Math. J. 8 (1958), pp. 163-166.
- [5] K. Morita, On the dimension of normal spaces II, J. Math. Soc. Japan 2 (1950), pp. 16-33.
- [6] Keio Nagami and J. H. Roberts, A study of metric-dependent dimension functions, Trans. Amer. Math. Soc. 129 (1967), pp. 414-435.
- [7] J. C. Nichols, Equivalent metrics giving different values to metric-dependent dimension functions, Proc. Amer. Math. Soc. 23 (1969), pp. 648-652.
- [8] J. H. Roberts and F. G. Slaughter, Jr., Metric dimension and equivalent metrics, Fund. Math. 62 (1968), pp. 1-5.

DUKE UNIVERSITY and RADFORD COLLEGE

Recu par la Rédaction le 4. 3. 1971