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and then, as in theorem 18, we can develop a 5 term exact sequence of
long sequences and commutative ladders.

0on(X, A, 2)>I(X, 4,2)~I(X, A, 0)>85(X, 4,2)~7(X, 4, 2)>0

where if € is a graded module then 8°C is that graded module with (8°C),
= (, 4. (X, 4, x) is exact (see [3]) and it is easy to show that T(X, 4, »)
is exact. Using this set up it is possible to prove that if (X, 4, ) is
a movable pointed pair of compacta then z(X, 4, «) is exact. The concept
of movable compactum was defined by K. Borsuk in [2].

21. APPENDIX. For each n =0, m,(X, %) is the inverse limit L of
the system {mq(ine(U, U")); mal U, w)—>m,,(U w)}UcU,,U’U,Eth(X) where for
U C U’ both neighbourhoods of X inc(U, U’) is the inclusion mapping UC U’,

Proof. If f is a continuous mapping from (8, p,) to (U, z) denote
its homotopy class by [f] € (U, #), then L is the set of lists {{apl}yennam
where for each U ¢ Nhd(X), [ay] e (U, ) and if UC U’, U, U’ ¢ Nhd (X),
n,,(mc U,U ))([“U]) [ay].

It {U,}n>0 is @ nested sequence of nelghbourhoods of X such that
) Up= X there is a morphism

n=0

W; L—>§n(X, w) ’ {[C”U]}‘_> <{aUn}>
which has as 2 sided inverse the morphism

O (X, 2) =L, {an}>—>{byl}

where b;; is defined as follows. Given U e« Nhd(X) there is an N (U) eJ*
such that @, is homotopic to a,,, in U, for all »> N(U), define
by = - Q.ED.
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The realization of dimension function 4, *

by
J. C. Nichols (Radford, Virginia)

K. Nagami and J. H. Roberts [6] introduced the metric-dependent
dimension function d, and posed the following question, which we will
call the Realization Question. Let (X, ¢) be a metric space with dyX, p)
< dimX and let % be an integer with dy(X, ) < k¥ < dimX. Does there
exist a topologically equivalent metric o for X .with dyX, ¢) = k¥ For
each Cantor #-manifold (K, ¢) with # > 3, Nagami and Roberts de-
scribed a subset (Xu, ¢) with the property that dy(X,, o) = [n/2] and
dim X, > n—1. This paper answers the above question in the affirmative
for these spaces (Xu, o) where K, = I" (n-cube). The question remains
unanswered for arbitrary metric spaces.

DEFINITION. Let (X, o) be a non-empty metric space and let » be
a non-negative integer. dy(X, o) < n if (X, p) satisfies the condition:
For any collection C= {(C:, 0;): i =1, ..,n+1} of n+41 pairs of
closed sets with o(Ci, 0;) > 0 for each ¢ =1, ..., n+1, there exist closed

sets By, ¢ =1, ..., n+1, such that ( ) Bg separates X between C; and: C;

for each i=1, ..., n-+1 and (i) ﬂ B;=
i=1
If d,(X, o) < and the statement dy(X, o) < n—1 is false, we set
dy(X, 0) = n. The empty set @ has dy(@) = —1.

DeriviTION. Let X be a topological space, g: X x X —~R a real valued
function, and let 4 and B be two subsets of X. Let
g(A, B) = inf{|g(2,y)|: we 4, y ¢ B}.

This real number g(4, B) will be called the g-distance between A and B.

DeriniTioN. Let I"™ denote the Buclidean n-cube, let p, geI” and
let ACI" We define Join(p, g) to be the collection of all the points

(*) This work is taken from the author’s doctoral dissertation at Duke Un.iversity.
I would like to thank Dx. J. H. Roberts for his guidance in the preparation of this paper.
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2 ¢ I" such that there exists a real number 4 ¢ [0, 1] with & = Ap - (1 — Ne.
We define Join(p, .4) by the following:
Join(p, A) = | Join(p, ¢q).
qed

DerFINITION. Let X be a topological space, let m and % be any two
non-negative integers and let g: XX X —R be a real valued function.
X is said to have property ¥(m,k, g) if given any collection of m pairs
of closed subsets of X, C= {(H;, K;): 1 <4 < m}, such that there exists
a real number ¢ > 0 with ¢g(H;, K;) > ¢ for all 4, then there exists a col-
lection of closed sefs $ = {Bi: 1 < i< m} such that B; separates X

. between H; and K; and order B < k.

Dermnrriow. Let X be a topological space. Suppose €= {(C, Cy):
t=1,..,n} is a collection of » pairs of closed subsets of X such that
if B;is a closed set separating X between Oy and ) for all i =1, ..., n

n
then () Bi # @. Then C will be called an x-defining sysiem for X.

=1

It 8 is a subset of a topological space X we will write Cl(X y 8),
Int(X,8) and Bdry(X,S) for the topological closure, interior and
boundary respectively of § in X. If the result is unambiguous we will
write C1(8) for C1(X, §) and similary for Bdry and Int.

For a proof of the following lemma see [3]. '

Lemma 1. Let (X, 0) be a metric space, f: X ->[0 , 1] a continuous
funetion with values in the wnit interval, and for all x,yYeX let

5(2,9) = olz, 1)+ |f @ —f ().

Then o is a metric on X which is topologically equivalent to o.
The following theorem has heen proved by K. Morita [5].
Levma 2. Let X be a normal topological space, let @ = {G;: aed}
be a locally finite collection of open sets, and let F = {F,: aed} be a col-
lection of closed sets such that order F < n for some non-negative integer n
and F,CG, for all aeA. Then there evists a collection of open sets

W= {W,: acd} such that order W <n and F,CW,CCH(W, CQ, for
all aeA.

The following lemma is proved in [5], p. 42.

Levya 3. Let X be a completely normal topological space, let B, B, H
and K be closed: subsets of X with H ~ K = O, such that B separates B ~nH
Jrom B~ K in X. Then there emists o closed set D such that D separates H
from K in X and (D ~E)C B.

The same argument that is used to prove Theorem 1 in [7] may be
used to prove the following theorem.

TEEOREM 1. Let X be g topological space, g: XX X +R a real valued

icm®
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function, and f: X—~[0,1] a continuous function with values in the wunit

. interval. For @,y e X let

h{w,y) = g{z, y)+1f(@) —f(y)].

If X has property F(m, k, g) for every nonjﬂegative integer m then X has
property T(m, k-+1,h) for every non-negative integer m.

We will apply Theorem 1 to prove the following preliminary theorem.

TrmoREM 2. Let X be a topological space and let m and r be any two
non-negative integers. For each j=1,...,m let fi: X —-[0,1] be a continu-
ous function with values in the unit interval. Let C="{(Ci; C3): i=1, ...,7}
be a collection of r pairs of closed subsets of X with the property that there
exists a real mumber ¢ > 0 such that for every i =1,..,7

D @) —fiw)l =
7=1

for weCy and ye C;. Then there ewists a collection of closed subset/s of
X, 3={Bii=1,..,7} such that B; separates X between Cy and C; for
each 4 =1, ..,7 and order B < m.

Proof. The proof is by induction on the number of ,funetions.
Suppose m = 1. Then for each i=1,...,7 ii,aa e C; au.nfi Ye C; we have
Ifu(@) —Fuy)) = ¢, that is C1(fi(Cy) and 01(f1(0i)') are *(11S]Oln*t closed sub-
sets of the mnit interval so there exists a collection B* = {Bj: i =1 Iy r}
of closed sets such that BY separates Cl(f,(C) from Cl{f,(C}) in the
unit interval and order $* < 1, since the covering dimension of the unit
interval is 1. Define B;= fi*(B}) for each i=1,..,r. Then order
{Bii=1,..,7} <1 and B;is a closed subset of X separating X between
C; and O] for each i =1, .., 7. . .

Suppose Theorem. 2 is true for any’ 0011801310]1. of m coptmuous fune-
tions. et fy , +.., frqq bE a0y m--1 continuous functions. For aﬂ z,y e Xleb

gla,y) =) 1fsl@)—=Fiy)l

7=1

and let
h(ﬂf), I.'/) == g(w7 y) "" lfm+1(m) "’"f'm-}-l('y)l
and let f(z) = f,,.q(%) for all @ ¢ X. By the indi.xction hy;pothesis X l}as
property 7 (k, m, g) for every integer k. Now f is a contm.uous fmfc’mon
s0 by Theorem 1, X has property T(k, m-+1, %) for every integer k.
THEEOREM 3. Let (K, ) be a compact metric space, and let p e K. If
XCK—{p} and if there arve continuous functions fi: (K —{ph)—10,1],
J=1,2,..,m then n
o(@,y) = p{@, ¥)+ D, 1file) —f1)l
j=1
14
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is & metric on K—{p} which is topologically equivalent to y and
dy(X, o) < max{m, &(X, )} .

Proof. By Lemma 1, ¢ is a metric on K —{p} which is topologically
equivalent to y. Let h = dy(X, ) and let n = max{m, k}. We show that
(X, o) < n. Let

C = {(C;, 0;) i=1,..,n4+1}
be a collection of n-+1 pairs of closed subsets of X with o(Cy, 0}) >

for all 4 and some real number ¢ > 0. Let B = {xeX: y(x,p) <8},

J=Bary(B), F=(E~-E)vJ, Y=K—{p}, Li={1,..,0+1}, I
={1,..,h+1} and let Iy= {h+2, .., n41}.
For each i e I; define

={ye¥: oy, Cs) < ¢/8},

={yeX: o(y, 0y <¢8}.
For each z e D; ~ E and ysD;nE we have o(z,y) > 3¢/4 and y(z,¥)
< g/4 so thab

zhﬁ )l > ef2.

Thus we can apply Theorem 2 and conclude that there exists a col-
lection B = {B;: i e I,} of closed subsets of Y such that B sepamteq Y
between D; ~ F and D; ~E and order $ <

By Lemma 2 there exists a collection ‘ID {Wi: ¢ el,} of closed
subsets of ¥ such that B;CInt(W,), W; separates ¥ between D;~E
and D;~ E and, order W < m. Hence we can write

Y-W;=U;uV; where UinV; =0, (Di~ E) g U,; and
(D'- ~nE)CV;.

Since J is a compact set we have that there exist real numbers f5,, S,
and f,, such that for all i eI,

vy T, n"V)=p,>0,
M) YE Dy, d V)= ,>0,
YFAD;, I AT)=,>0.

§ince F is a compact subset of ¥, each function f; is uniformly
continuous on F, hence there exists a real number 8, such that for ¢ I,

@ PF ~Di), (F~D))=f,>0.

For each i eI, we define

Gi=(FaD)u(Uind) and @=(F DY (Vind).

icm®
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From (1) and (2) above it follows that for all eI,
3) »(G, 6;) = min{By, fa, s, B} > 0 .
For e@ch i eI, we let
Hi=Clx(Gi~nX) and H;=Clx(@;nX).

By (3) above, y(Hi, H;) > 0 for all ieI;.

We apply the hypothesis that dyX,y)="h to the first k41 pairs
of closed sets {(Hi, Hj): i e I}, and conclude that there exists a collection
of closed subsets of X, R = {Ri: i ¢ I,} where for each i eI, R, separates
X between H; and H;. We will write X —R;= K; v T where H;C Ky,
H.CTi, K; and T, are disjoint open subsets of X and order R < h.

“For each ieI2 let

(Wif"\L’ R¢r\F)m_X'
=((TinB) U (Ein (F-d)) ~ X
Qi=((V¢f\17) (T~ F~J}nX,

Since P; and @Q; are disjoint open sets and C; C P; and C;C @y, and
X—Z;= P; v Q; we conclude that for each ieI, Z; is a closed subset
of X separating X between 0; and Cj.

The remainder of the proof is divided into 2 cases; n = h and n=m
If n = h then 3 = {Zs: 4 e I,} is the desired collection of separating sets.
Since order W < m < n and order {F ~ Ry ¢el} < n and (J nR)CW;
we have that order 3 < n. :

Tt n = m we have found separating sets for the first h--1 pairs of
closed sets {(Ci, 03): i eI}, We will now find separating sets for ihe
remaining (n+41)— (h-+1) = n—h pairs of closed sets {(C4, 0p): ¢ e I}

For each i ¢ I, we have a closed set W, which separates X between
Ci~nEand C;n E, such. that order W < m = n. For each i ¢ I, we apply
Lemma 3 and conclude that there exists a closed set Z; that separates X
between (; and C; such that (Z; ~B)C Wi. Let 3= {Z: iel}. It
remains to show that order 3 < m. Let v e X. v ¢ B then order (3, z) < m
since order W< m. If z el then x is an element of at most # of the
first B-+1 closed sets {Z: i e I,}. There are m—"h sets remaining so that
order (3, @) < b~ (m—h) = m. This completes the proof of the theorem.

TuEoREM 1. For any integer m =1 let {4 ¢ =1} be any countable
collection of dlosed subsets of the Buclidean n-cube (I™, v) such that if & #Jj
then Ay~ A;= @ and such that at least two of these closed sets are non-
empty. et X — I"— || As. Suppose do( X, y) = k and AimX = m. If r is

i>1
any integer such that It < v < m then there ewists o metric. s, on X such thai

o, is topologically equivalent to y amd such that do(X,c,)=1.
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Proof. We will express the n-cube I* ag {(@;, ., €n): —1 < a; <1,
i=1,..,n}. We assume k < m, otherwise there is nothing to prove,
Thus k < n—1 so that J4; must be dense in I". Hence we can find

i>1

a point p e Int(I™) with p ¢ 4; for some ¢. Now Int(I™)—A; is an open
non-empty subset of Int(I™) since at least two of the elements of the
set {d;: §=1} are assumed to be non-empty. Similarly there exists
a point ¢ and an integer j 7 ¢ such that ¢ e(Int(I”) ﬁ.A.j) and ¢¢A4;.

Since 4 is closed we can construet an (n—1)-cube B, disjoint from 4,
with center ¢ and lying in the (n—1)-plane perpendicular to Join(p, q)
at the point g.

Let {(Rs, Si): ¢=1, ..., n—1} De the collection of pairs of opposite
faces of B, and let D be the pyramid with base B, with apex the point p.

Since the line segment Join(p, ¢) is in the interior of I", the (n—1)-
cell B may be taken small enough so that D C Int(I") and we will assume
this has been done. ' '

Let {(Hy, T4): i=1,..,n—1} be the n—1 pairs of opposite faces
of D where .

~ Hi=Join(p, R) and T;= Join(p, S:).
Let Bi=H;nX and C;= Ty~ X for each 4 =1, ...,n—1. :

By an argument similar to that given in [6], p. 418 it can be shown
that the collection {(B;, 0i): ¢ =1, ..., n—1} is an (n—1)-defining system
for X. Now let ¥ = I"—{p}. Then for each ¢{ =1, ..., n—1 B; and C; are
closed sets in ¥ and By~ C;=@. By Urysohn’s Lemma there exist
n—1 continuous functions, f,, ..., f,_y; fit ¥—[0,}] such that fi(B;)=1

and fi(Cy) =0 for each i=1,..,n—1. For each r=1,...,n—1 we
define

o, ) = o(@, 1)+ D) 1fi(®)—Fiy)]
i=1

for #, y ¢ X. By Theorem 3 we know that dy(X, o,) < max {r, k}. But for
any integer r, 1 r << n—1, '

Co={(Bi,0i): i=1,..,7}

is a collection of » pairs of closed.subsets of X with o(By, (i) = 1 for all
i=1,..,7 Thus dy(X, 5,) > r and the proof of the theorem is complete.
For each n > 3, K. Nagami and J. H. Roberts [6] have described
a subset (X, o) of the n-cube (I o) with the property that du(Xn, o)
= [n/2] and dimX, =n—1. In the following theorem (X, p) will refer
o these spaces described by Nagami and Roberts.
TerorEM 5. For any n > 3 and any integer r such that [nf2] < r < n—1,

there exists a meiric o, on (Xn, o) such that o, 1s topologically equivalent
to ¢ and such that dyX,, o,) = r.

@ © '
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Proof. From the definition of these spaces in [6] it can be seen that
for each n = 3 X, is the complement of a disjoint union of closed subsets
of I", thus satisfying the hypothesis of Theorem 4.
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