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A supplement to the paper ¢Differentiable roads
for real functions” by J. G. Ceder (*)

by
P. Holicky (Praha)

In the paper Differentiable roads for veal functions by J. G. Ceder [1]
the following theorem is proved.

TarorEM 1. Let f be any real-valued function defined on an uncountable
subset A of reals. Then, there exisis a countable set O such that for each
x e A—C there exists a bilaterally dense-in-itself set B containing « such
that fIB 4s monotonic and differentiable.

In that paper the following theorem and lemmas were proved.

LevmA 1. Let f have a domain A where A is uncountable. Let B be the
domain of the bilateral condensation points of f. Then A—B is couniable
and, for each % e B, (m, F(®)) is a bilateral condensation point for fB.

DerFiNITION. Let f be any real-valued funciion defined on a subset of
reals. Let @ be any point of the domain of f. The left-derived set Di(f, x)
and the vight-derived set Dy(f, x) of function f ai the point @ are defined to

—flw
be the sets of all possible sequential limits of the difference quotient J@%)

as y approaches x from the left and from the right, respectively.

THEOREM 2. Suppose f has an uncountable domain A. Then, there
exists a countable subset O of A such that for each x e A—C

Dy(fi(A ), z) ~ Dg(fl(A—C), a) # O

Leyma 2. Let f be any veal-valued function defined on an uncountable
subset A of veals. Then, there exists a countable set C such that for each
z e Ad—C there exists a bilaterally dense-in-itself set BC A—0 contammg @
such that f[B is differentiable. ;

To complete the proof of Theorem 1 in the paper Differentiable roads °
Jor real fumetions the following lemma is proved:

(*) Fund Math. 65 (1969), pp. 351-358.
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Suppose B is bilaterally dense-in-itself and f|B is differentiable. Then,
there exists an A C B such that A is bilaterally dense-in-itself and flA is
differentiable and monotonic. |

But the proof of this lemma is incorrect. The following example
shows that this lemma does not hold.

ExamprE. There exists a real-valued function f defined on a bi-
laterally dense-in-itself subset of reals H such that f'(w)= 0 for each
2 ¢H and for no bilaterally dense-in-itself subset K C H- the function
f/E is monotonic. :

1. We shall construct a sequence of functions {f,}r., and a sequence

n
of sets {4,)n_, Where A are sets of sequences of reals such that fn+1/iU H;
. =1

=f, and fy is defined on | J Hy, where H; is the set of all points of all
=0
sequences from A;. ‘
1. We put 4, = {{a,},}, where a, = 0forn > 1. Therefore H, = {0}.
We defined f,(0) = 0. ‘
2. Let the sets A, ..., An (m > 0) and the function fn defined on

CJH¢ be defined such that the following assertions hold.
i=0

(i) If = e H; (0 <4< m~—1), then there exist in 4,,, exactly two
sequences {a,}>,, ib.to, such that a,tx, bnlz. We put. om(®)
= {a‘la bly Usy by; ...}

. m—1 .

{ii) I a e |J Hy then fu() = (@ —a)*+f,_,(a) for = e p,(a).

. i=1
m—1

(iii) There exists a positive real-valued function ay defined on | J Hs

i=1
and such that
a) (z—am(@), T+ am(®)) A (¥ —om(y), Y+ am(y)) = @ for each real
number «,y € H;, o % 9, where 1=0,1, ..., m—1,
b)if weH; (i=0,1,..,m—1), then u(®)C (—an(®), &+ an(@),
e) it o epmla), ageH; (0<i<m—2), then (a—a)?+Fm{a)
< 3{a—aof*+fulao) for every a (o, — am(ar), 4 am{a)),
m—1
Q) if yeoml@), e UOHi, then  (y—am(y), ¥+ am(¥)) C (# — an(®),
P
#+ am(@)) .
We shall define 4, ., (therefore H,,,,) such that the assertions (i
(ii), (iii) hold, where we write m +1 instead of m. For every « ¢ Hy, thel
exist an z, and a #() > 0 such that @  pm(z,) and fory e (v—p(x), v+ (@)

(y— )+ ful®) < 3y — 202+ fuul)) (m=1).
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The existence of §(x) follows from the facts that functions Ly —mpPp+
+ fm(@y) and (y — @)+ fm(z) are continuous and that fm(z) < o—mp+
+fm(w,). Further, for xeHy, there exists a y(#)>0 snch that
(mﬁy(m), x-}—y(ﬁ&)) ~ Hy, = {2} because every point of H is an isolated
point. We write 6(%) = min(f(2), 3y (2)). As @ Hu (m > 1), there exists
an @, such that « e gm(w,). Then, there exists an a,, +1(%) > 0 such that

(-’ﬂ— O (8) 5 B+ am+1(w)) c (5‘9 —o(w), w448 (w)) n (mn — om(%y), Zo+ am(%)) .

We define ao(0) = 1. There exist different points an, by € (51— aypy,(2),
B+ 0y y1(@) sUCh that ant @, by 2. We put

Frr(®) = {00, by, @5, by, e}y

m—1 ’ m—1
fm-{-l/.L/(J’Hi: Pms am-FI/UHi:‘aMJ
=

%U(«‘”) = {{an}::;li {bn};ll}}

and define 4,.,= |J p(x). Therefore also H,,,, is defined. Now we

zeHm
define f,,., such that (ii) holds.
The assertions (i), (ii), (ii) hold for the sequences {4,}>,, {Futos-

)=

II. We have defined sequences of sets {4,132, {H,)>,. We put

H = H: and define f(2) = fu(x) for z e H,. If n is a natural number,
i=0

=
n 21, then (i), (ii), (iii) hold for Hy, ..., Hnj Ag, ..., Au; f||J Hi = fa.
i=0

IIT. Obviously H is bilaterally dense-in-itself.

IV. Now we show that f/K is not monotonic for any bilaterally
dense-in-itself set K C H, where K is non-empty. We shall contradict
the supposition that there exist such a set K. The interval (z—a,,, (),
%+ g, ,(#)) containg no point of Hy for % < m, because such a point
would be a limit point of Hy, and this contradicts (iii) a). As f(2) > f(»)
for z e {(— 0 41(%), &+ apyq (7)) — {8} A E #£ @ and for m<p it is f(e)
> f(@) for 2 e {(#—a,41(%), 2+ 0y 44(2)— {#}} ~ K. Therefore f/E is not
monotonic. :

V. It remains to show that f/(#) = 0 for each x e H. There exists
an n, >0 such that =z e H,. According to IV it is f(y) > f(z) for
i) (@)

Y € (8=t i1(@), @+ yeyy(2)) — {@}. Therefore >0 for y>ua

Hence D, f(x) > 0. Similarly we prove thatD~f(s) < 0. We shall show
that for the other Dini derivatives it is D*f(z) < 0, D_f(z) > 0. We
define ¢(z) = @n() and an(a) = a,(z) for ¢ H,_, where n > 1. At first
we prove the following inequality.

15%
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Let 4’ € (3 — py41(8) s T4 sl )) ~ H where 7, > 1;1et gy, ..., 9, _; be
a finite sequence of points of H such that ¥" € (1), -y %1 € (x). Then

ISE!
s+ ) < W= D) S F (@)

=0
for  yely —a), ¥y +al)) (Wa=n2).

We prove this inequality by induetion.
1. Tf n = 1, then the assertion easily follows from the definition of f.

2. Suppose that the inequality holds for some 7 = 1. Let y' € ¢ (y), ...
oy iy €@(@). At first we prove this inequalitiy:

1
(y d’n—l) = an 1(y m)

For # =1 the inequality is clearly satisfied. We suppose n>1.

If (Y g —Yno)® = (¥ —Yp_o)? then (y Yn=1)? < 3 (Y —¥p—0)* because
W= Yna P+ ) < ?(y Ypol+F(Unos) 804 f(Ypa) = Yp1—Yno)®+
'l-f(?!n—z)

I Wpa— Yol < (Y —Yn—o)® then (-4, )= (e—y,,)* and
(2=Yn2? < Yy —Yn—s)? for any 2z Hence

(y—yn—1)2 = (Z—Z/n—ﬂz < %(z—yn—zp < %(yn—d ’“?/n—z)z < %(.1/ _‘yn—z)z .
Hence

(Y=Y < (y—a).

1
211,— 1

According to this inequality it is

Y=Yl +FYn) < ¥ —Yn1)? +F (Yu)

NIDJ

n~1

(Y ~Yn) +221 y—af+f(@)

t\DI)—-"

1 11
<7»<y~—w)2+25—,.<y——w)2+f<w)

1
= D S—or+ o)

i=0

This last inequality implies that f(z) < 2(z—a)?--f(x) for each
2 e(w—a(@), v+ a(@) ~ H. We put ¢(z) = 2(#—x)*4-f(x). Then g'(z)=0

icm®
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and f(z) = g (). Therefore
fl2)—f(@) - g(2)—g(=)

2— 2—

for 2> and DHf(x) <0

Similarly we prove D_f(2) = 0; thus f'= 0 on H.

Proof of Theorem 1.

Notation. Let f be any real-valued function defined on an un-
countable subset D(f) of reals.

a) We denote by M, the set of all #<D(f) for that the following
conditions hold:

(i) » is the point of bilateral condensation of f,

(ii) there exist & 6 > 0 and an &> 0 such that

(v D0 <ly=al <5, ) < ), KDL

< 8>
is countable,

(it) Dz(f, #) n Dg(f, ) = {0}

b) We denote by N, the set of all z ¢ D(f) such that the following
conditions hold:

(i) @ is the point of bilateral condensation of f,

(ii) there exist a 6 > 0 and an ¢ > 0 such that

) —flx)
Yy—

(v < D10 < ly—a] < 8, f(4) = fla),

is countable,

(i) Dr(f, ) ~ Dg(f, ) {0}.

LeMMA 3. Suppose f is a real-valued function defined on an wncount-
able subset of reals. Then the set My Ny is countable.

Proof. We prove that the set My is countable. The proof for Ny is
similar. It is My= |J | M,(m,n), where P is the set of all natural

meP neP

<5

numbers, Mz(m,n) is the set of all points « ¢ My for which
1 W) —fl@| 1
fv, 1y e D171, 0 < 11 < 2,710 < 100, [ 1212 < 1

is countable. Suppose that M is nncountable. Then there exist natural
numbers m, n such that Mym, n) is uncountable. Lemma 1 implies that
there exists a countable set OC My(m,n) such that every point
% e My(m, n)— C is a point of bilateral condensation of /M. We can suppose
that ¢ =@. Theorem 2 implies that there exists a point y e My(m,n)
such that

DL(f/Mf(m, 1), ) © Dglf| Mem,n), y) # O
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There exish sequences {Z,)%., ¥ulee; Such that wxty, yriy, where
@y € Mem, n), yr € My(m, n) for each k= 1. We can choose the sequences

{321y {Urtoy such that flax) 4 f(y) f yr) ¥ fly ) As Di(f,¥) o~ Dy(fy )
= {0} it is

Dyf/Mgm, n), y) ~ Dylf| Ms(m, n), y) = {0}.
f(2x) — (zk) -f(y)
-y

We write 2y, = &, and 2y,,; = ¥ Then 2z—y and —0. There-

fore there exigts a %, such that

) < flaw,) <

1 1
E(wk‘,—y)‘—#f(y) and - {og, —y| < —.
As @y, ¢ My(m,n) the seb

1 - 1
I {(m,f(m))]me M, ), 0 < o, =2 < (%@) <I

flo) <f (M,,)}
is empty.

The point y is a point of D(f) and 0 < |y —amy,| <%,f(y) < flaw,),
- |flow) () )

Ty —Y
diction. Hence the set M, is countable.

The main part of proof of Theorem 1. We can suppose that
for all points # of D(f) the following assertions hold:

a) @ is a point of bilateral condensation,

* b) @ is neither a point of the set My nor a point of the set Ny,

o) Dy(f, 2) n Dy(f, 2) + O

We first prove Theorem 1 in an easy case.

A) Suppose that f is constant in an wncountable -subset of D(f).
Then the assertion of Theorem 1 is obvious.

B) Buppose that f is not constant in any uncountable subset of D( )
We shall choose a sequence of sets {4, )., such that A4, is a set of
sequences of points of D(f) for all # > 0.

1{ Let 2, be a point of D(f). We pub ay = Ty, Ao = {a,}n_, and

o}

Suppose that the sets A,,..., A, ave defined for = = 0. Hk is
a,lways the set of all pmnts of the sequences from Ay (k = 0), where A
is defined. For 4, ..., 4, the following assertions hold:

( ) For all m € H k(0 < k< n—1) there exist exactly two sequences
{#mdme1s (@B}, of points of D(f) in Ay such that o% d e, o2 | 2. The

4

; therefore (y, f(y)) e M. But M = @ and this is a contra-

icm®
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{wL 2, ..}

n—1

(i) we UHz then ( f/U H;)' () exists. If Dy(f, x) ~ Dg(f, #) —;2 {0}

then (f/U H,) (x) # 0.

1=0
(iii) I¥ 0 <k <n—1, then there exists a positive real function gn
defined on Hy and such that for @ £y, z,y ¢ Hg

(2 —@al2) , 2+ @ul®)) ~ (¥ —guly), ¥ +2aly)) = O -

¥ {a)%, is a sequence of A,,,, then a;—w, where zecH; and
as € (0 —pn(®), w—{—«pn(w)) for all natural i. Further, in the case where
k< n—2 it is .

(s —@n(@) , @i+ palas)) C (z—gn(z), @ +n(®)) .

. n—1
(iv) There exists a real positive function a, defined on ,E){)Hg and
such that
(f(@) — on(@) , F(2) + on(®)) C (F(y) — an(®), F¥) + on(w))

for @ ep(y) and that f(y) ¢ (f(2) — (@), £(2)+ an(®)). _

(v) If 0 <k <n—1 and @ < Hy then there exist real fungtlons (@)
and y(®), p(@) < (@), w@)(s)=yp(@)(») defined and continuous on
{z—on(), 2+ @u(x)) and such that p(s)C M(z), where

M (2) = {Yly € (z—@a(@), 2+ a(@)) ~ D(F), 2(2) (9) <F) <p(@) ()} -

If weH, , and yep(®), then M(y)C M(z) and (p(» ) () = (p()) (@).
We choose the set A, such that for the sets Ao,..., 4z, the
assertions (i)—(v) for n+1 hold. As every pomt of Hy is an 1solated point,

there exists a real function ¢, defined of U H; and such that (iii) holds
i=0

for n+1.
The function ¢,., can be chosen such thab

P (@) (¥) < (%) (y) for z e p(my), ¢ Hy and ¥ e (B —@p4(2), m+(pn+11(m)>.

Then there exists obviously an e(z) >0 such that
f@)+2(x) < (@) (1) Tand  pim) (y) <[(@)—e(®)

01 o ¢ (5 —@pin(@), @+ @y, (@) It is easy to prove thab there exists
a real function a,., such that condition (iv) for +1 holds.

Let © be any point of H, and suppose that 2 e Dy(f, #) ~ Dg(f, 2)
where 1 == 0. There exists a y ¢ H, , such thaifﬂ x e p(y). We choose the
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sequences {@plm_y, Opfm=y such that amta, bm{w, flp(z) is strictly
monotonic, where

p(@) = {4y, by, Gy By, o0}, (f/p (w))l(m) =1,
max(1(6) (), £ (0)~ tp1a(e) < Flam) < 00 (F(@) +-& (), F(0)+ apys(e)]
(&) £ () (0) — i y2(6)) < f (o) < iR (0) - 5(3), F(3) + ap ()

We put 9(@) = {{8uhner) Dnlie). Lt Dy(f, ®) o Dyl(f, o) = {0}; let
there exist no two sequences for which (i)—(iv) hold true. As there exig}
two sequences {@y,}m—1; {Omim=1) @m t @ by, ¢ 2 such that (f/{a,, b,, ()
=0, there is @ the point of M;w N;. This contradicts our propositions
on the D(f). Hence there exist sequences with conditions as in the case
of Dy(f,z) ~Dg(f, x) g {0}. Therefore these sequences satisfy (i)~(iv).

We denote the set of these two sequeneeé by ().

We put 4,., = Jy(z). It remains to construct the functions y(2),
7,

ZTedy
y(x) with (v) for every point of H,. Let & be any point of H,. For n — 1
the construction of p(), y(z) is easy. Suppose that #n > 1, y e H, ., such
that ¥ € p (). Therefore there exist a sequence {a,,}%_, ¢ 4,,,, and a natural
number 2, such that y = a,, and an->z. There exist real numbers Yy On
such that :
2) f(@)—e(@) <8, < flam) < ym < f(@)+ (),

py [0 =m| 1 fam)—bm| 1
Uy — 2 m O — 0 m

We put 9(2)(am) = ym, 9()(dn) = 6,,. Between a; and Uy We
define y(x) and y(«) continnous and monotonic. Then (v (@) (@) = (p(@)) (=)
= (flp (@) (2).

We have chosen the set 4,,,, and the functions ¢, 19 Ont1s Ynaty Vgt
from the conditions (i)~(v) for n-1.

=]

We put H=JH;. H is obviously bilaterally dense-in-itself.

i=0
H = H' v H", where H'is the set of points x such that f/p (z) is increasing
and H'=H—H'. Tt is easy to prove that either H' or H'' contains
& non-empty bilaterally dense-in-itself subset B. Then f/B is monotonic
and differentiable; this completes the proof of Theorem 1.
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On shape and fundamental deformation retracts II
by
M. Moszyiska (Warszawa)

According to Fox (see [2]), two spaces X ». ¥ are of the same homotopy
type iff they are both imbeddable in some space Z as its deformation
retracts.

The main result of this note is the following: For two compact metric
spaces X, ¥ to be of the same shape it is necessary and sufficient that
both X and Y be imbeddable in some compactum Z ag its fundamental
deformation retracts (Theorem 3.3).

We shall refer to 3.3 as the Fox Theorem for shapes.

The proof is based on some statements concerning maps of ANR-ge-
quences. For the particular case of usual maps, these statements have
been proved by the auwthor in [6].

For terminology and notation, see [6].

1. Mapping cylinder for an arbitrary map of inverse sequences. The notion
of mapping cylinder introduced in [6] § 3 for usual maps of inverse systems
can be extended — in the case of inverse sequences — to arbitrary maps.

Take two inverse sequences of topological spaces, X = (X, p»*),
Y= (Y,, ¢z*"), and a map f= (¢, f,): X—Y. By definition (see [3] or [6]),
all the diagrams

2’rp(m—l)

o(n)
qu(n) ¢

Pn+1)

fﬂl Tawr commute up to homotopy .

Y, o Yot
n

Thus, there exist homotopies k*: Xy X LY, such that

kiti(z, 0) = fnpﬁﬁ)*‘l)(m) s ke, 1) = gt (e)

for weX iy, n=1,2,..
Let C), be the mapping cylinder of fn- Define

+1.
7”; ‘ an+1—> Gfﬂ
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