

A supplement to the paper "Differentiable roads for real functions" by J. G. Ceder (*)

bv

P. Holický (Praha)

In the paper Differentiable roads for real functions by J. G. Ceder [1] the following theorem is proved.

THEOREM 1. Let f be any real-valued function defined on an uncountable subset A of reals. Then, there exists a countable set C such that for each $x \in A - C$ there exists a bilaterally dense-in-itself set B containing x such that f/B is monotonic and differentiable.

In that paper the following theorem and lemmas were proved.

LEMMA 1. Let f have a domain A where A is uncountable. Let B be the domain of the bilateral condensation points of f. Then A-B is countable and, for each $x \in B$, (x, f(x)) is a bilateral condensation point for f/B.

DEFINITION. Let f be any real-valued function defined on a subset of reals. Let x be any point of the domain of f. The left-derived set $D_L(f,x)$ and the right-derived set $D_R(f,x)$ of function f at the point x are defined to be the sets of all possible sequential limits of the difference quotient $\frac{f(y)-f(x)}{y-x}$ as y approaches x from the left and from the right, respectively.

THEOREM 2. Suppose f has an uncountable domain A. Then, there exists a countable subset C of A such that for each $x \in A - C$

$$D_L(f/(A-C), x) \cap D_R(f/(A-C), x) \neq \emptyset$$
.

LEMMA 2. Let f be any real-valued function defined on an uncountable subset A of reals. Then, there exists a countable set C such that for each $x \in A - C$ there exists a bilaterally dense-in-itself set $B \subset A - C$ containing x such that f/B is differentiable.

To complete the proof of Theorem 1 in the paper Differentiable roads for real functions the following lemma is proved:

^(*) Fund Math. 65 (1969), pp. 351-358.

^{15 -} Fundamenta Mathematicae, T. LXXVII

Suppose B is bilaterally dense-in-itself and f/B is differentiable. Then, there exists an $A \subseteq B$ such that A is bilaterally dense-in-itself and f/A is differentiable and monotonic.

But the proof of this lemma is incorrect. The following example shows that this lemma does not hold.

EXAMPLE. There exists a real-valued function f defined on a bilaterally dense-in-itself subset of reals H such that f'(x) = 0 for each $x \in H$ and for no bilaterally dense-in-itself subset $K \subseteq H$ the function f/K is monotonic.

- I. We shall construct a sequence of functions $\{f_n\}_{n=0}^{\infty}$ and a sequence of sets $\{A_n\}_{n=0}^{\infty}$ where A are sets of sequences of reals such that $f_{n+1} \bigcup_{i=1}^{n} H_i$ = f_n and f_n is defined on $\bigcup_{i=0}^{n} H_i$, where H_i is the set of all points of all sequences from A_i .
- 1. We put $A_0 = \{\{a_n\}_{n=1}^{\infty}\}$, where $a_n = 0$ for $n \ge 1$. Therefore $H_0 = \{0\}$. We defined $f_0(0) = 0$.
- 2. Let the sets A_0, \ldots, A_m $(m \ge 0)$ and the function f_m defined on $\bigcup_{i=1}^m H_i$ be defined such that the following assertions hold.
- (i) If $x \in H_i$ $(0 \le i \le m-1)$, then there exist in A_{i+1} exactly two sequences $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ such that $a_n \uparrow x$, $b_n \downarrow x$. We put $\varphi_m(x) = \{a_1, b_1, a_2, b_2, \ldots\}$.
 - (ii) If $a \in \bigcup_{i=1}^{m-1} H_i$ then $f_m(x) = (x-a)^2 + f_{m-1}(a)$ for $x \in \varphi_m(a)$.
- (iii) There exists a positive real-valued function a_m defined on $\bigcup_{i=1}^{m-1} H_i$ and such that
- a) $(x a_m(x), x + a_m(x)) \cap (y a_m(y), y + a_m(y)) = \emptyset$ for each real number $x, y \in H_i$, $x \neq y$, where i = 0, 1, ..., m-1,
 - b) if $x \in H_i$ (i = 0, 1, ..., m-1), then $\varphi_m(x) \subset (x \alpha_m(x), x + \alpha_m(x))$,
- c) if $a_1 \in \varphi_m(a_0)$, $a_0 \in H_i$ $(0 \le i \le m-2)$, then $(a-a_1)^2 + f_m(a_1) \le \frac{3}{2}(a-a_0)^2 + f_m(a_0)$ for every $a \in [a_1 a_m(a_1), a_1 + a_m(a_1)]$,
- d) if $y \in \varphi_m(x)$, $x \in \bigcup_{i=0}^{m-1} H_i$, then $(y \alpha_m(y), y + \alpha_m(y)) \subseteq (x \alpha_m(x), x + \alpha_m(x))$.

We shall define A_{m+1} (therefore H_{m+1}) such that the assertions (i (ii), (iii) hold, where we write m+1 instead of m. For every $x \in H_m$ then exist an x_0 and a $\beta(x) > 0$ such that $x \in \varphi_m(x_0)$ and for $y \in (x - \beta(x), x + \beta(x))$

$$(y-x^2)+f_m(x) \leqslant \frac{3}{2}(y-x_0)^2+f_m(x_0) \qquad (m \geqslant 1)$$
.

The existence of $\beta(x)$ follows from the facts that functions $\frac{3}{2}(y-x_0)^2+f_m(x_0)$ and $(y-x)^2+f_m(x)$ are continuous and that $f_m(x)<\frac{3}{2}(x-x_0)^2+f_m(x_0)$. Further, for $x\in H_m$ there exists a $\gamma(x)>0$ such that $(x-\gamma(x),x+\gamma(x))\cap H_m=\{x\}$ because every point of H is an isolated point. We write $\delta(x)=\min(\beta(x),\frac{1}{2}\gamma(x))$. As $x\in H_m$ $(m\geq 1)$, there exists an x_0 such that $x\in \varphi_m(x_0)$. Then, there exists an $a_{m+1}(x)>0$ such that

$$(x-a_{m+1}(x), x+a_{m+1}(x)) \subseteq (x-\delta(x), x+\delta(x)) \cap (x_0-a_m(x_0), x_0+a_m(x_0)).$$

We define $a_0(0) = 1$. There exist different points a_n , $b_n \in (x - a_{m+1}(x), x + a_{m+1}(x))$ such that $a_n \uparrow x$, $b_n \downarrow x$. We put

$$\begin{split} \varphi_{m+1}(x) &= \{a_1,\,b_1,\,a_2,\,b_2,\,\ldots\},\\ f_{m+1}/\!\!\bigcup_{i=0}^{m-1}\!\!H_i &= \varphi_m, \quad \alpha_{m+1}/\!\!\bigcup_{i=0}^{m-1}\!\!H_i = \alpha_m,\\ \psi(x) &= \big\{\{a_n\}_{n=1}^{\infty},\,\{b_n\}_{n=1}^{\infty}\}\big\} \end{split}$$

and define $A_{m+1} = \bigcup_{x \in H_m} \psi(x)$. Therefore also H_{m+1} is defined. Now we define f_{m+1} such that (ii) holds.

The assertions (i), (ii), (iii) hold for the sequences $\{A_n\}_{n=0}^{\infty}$, $\{f_n\}_{n=0}^{\infty}$. II. We have defined sequences of sets $\{A_n\}_{n=0}^{\infty}$, $\{H_n\}_{n=0}^{\infty}$. We put $H = \bigcup_{i=0}^{\infty} H_i$ and define $f(x) = f_n(x)$ for $x \in H_n$. If n is a natural number, $n \ge 1$, then (i), (iii) hold for H_0, \ldots, H_n ; A_0, \ldots, A_n ; $f \mid \bigcup_{i=0}^{\infty} H_i = f_n$.

III. Obviously H is bilaterally dense-in-itself.

IV. Now we show that f/K is not monotonic for any bilaterally dense-in-itself set $K \subseteq H$, where K is non-empty. We shall contradict the supposition that there exist such a set K. The interval $(x-\alpha_{m+1}(x), x+\alpha_{m+1}(x))$ contains no point of H_k for k < m, because such a point would be a limit point of H_m and this contradicts (iii) a). As $f_p(z) > f(x)$ for $z \in \{(x-\alpha_{m+1}(x), x+\alpha_{m+1}(x))-\{x\}\} \cap K \neq \emptyset$ and for m < p it is f(z) > f(x) for $z \in \{(x-\alpha_{m+1}(x), x+\alpha_{m+1}(x))-\{x\}\} \cap K$. Therefore f/K is not monotonic.

V. It remains to show that f'(x) = 0 for each $x \in H$. There exists an $n_0 \ge 0$ such that $x \in H_{n_0}$. According to IV it is f(y) > f(x) for $y \in (x - a_{n_0+1}(x), x + a_{n_0+1}(x)) - \{x\}$. Therefore $\frac{f(y) - f(x)}{y - x} > 0$ for y > x. Hence $D_+ f(x) \ge 0$. Similarly we prove that $D^- f(x) \le 0$. We shall show that for the other Dini derivatives it is $D^+ f(x) \le 0$, $D_- f(x) \ge 0$. We define $\varphi(x) = \varphi_n(x)$ and $a_n(x) = a_n(x)$ for $x \in H_{n-1}$ where $n \ge 1$. At first we prove the following inequality.

Let $y' \in (x - a_{n_0+1}(x), x + a_{n_0+1}(x)) \cap H$ where $n_0 \ge 1$; let y_1, \ldots, y_{n-1} be a finite sequence of points of H such that $y' \in \varphi(y_{n-1}), \ldots, y_1 \in \varphi(x)$. Then

$$(y-y_{n-1})^2+f(y_{n-1})\leqslant (y-x)^2\sum_{i=0}^{n-1}rac{1}{2^i}+f(x)$$
 for $y\;\epsilon\left(y'-a(y'),\,y'+a(y')
ight)\cdot(y_0=x)$.

We prove this inequality by induction.

1. If n=1, then the assertion easily follows from the definition of f.

2. Suppose that the inequality holds for some $n \ge 1$. Let $y' \in \varphi(y_n)$,, $y_1 \in \varphi(x)$. At first we prove this inequality:

$$(y-y_{n-1})^2 \leqslant \frac{1}{2^{n-1}} (y-x)^2$$
.

For n=1 the inequality is clearly satisfied. We suppose n>1.

If $(y_{n-1}-y_{n-2})^2 \ge (y-y_{n-2})^2$, then $(y-y_{n-1})^2 \le \frac{1}{2}(y-y_{n-2})^2$ because $(y-y_{n-1})^2 + f(y_{n-1}) \le \frac{3}{2}(y-y_{n-2})^2 + f(y_{n-2})$ and $f(y_{n-1}) = (y_{n-1}-y_{n-2})^2 + f(y_{n-2})$.

If $(y_{n-1}-y_{n-2})^2 \le (y-y_{n-2})^2$, then $(y-y_{n-1})^2 = (z-y_{n-1})^2$ and $(z-y_{n-2})^2 \le (y_{n-1}-y_{n-2})^2$ for any z. Hence

$$(y-y_{n-1})^2 = (z-y_{n-1})^2 \leqslant \frac{1}{2}(z-y_{n-2})^2 \leqslant \frac{1}{2}(y_{n-1}-y_{n-2})^2 \leqslant \frac{1}{2}(y-y_{n-2})^2 .$$

Hence

$$(y-y_{n-1})^2 \leqslant \frac{1}{2^{n-1}} (y-x)^2$$
.

According to this inequality it is

$$\begin{split} (y-y_n)^2 + f(y_n) &\leq \frac{3}{2} (y-y_{n-1})^2 + f(y_{n-1}) \\ &\leq \frac{1}{2} (y-y_{n-1})^2 + \sum_{i=0}^{n-1} \frac{1}{2^i} (y-x)^2 + f(x) \\ &\leq \frac{1}{2^n} (y-x)^2 + \sum_{i=0}^{n-1} \frac{1}{2^i} (y-x)^2 + f(x) \\ &= \sum_{i=0}^n \frac{1}{2^i} (y-x)^2 + f(x) \; . \end{split}$$

This last inequality implies that $f(z) < 2(z-x)^2 + f(x)$ for each $z \in (x-a(x), x+a(x)) \cap H$. We put $g(z) = 2(z-x)^2 + f(x)$. Then g'(x) = 0

and f(x) = g(x). Therefore

$$\frac{f(z)-f(x)}{z-x} < \frac{g(z)-g(x)}{z-x} \quad \text{ for } \quad z>x \text{ and } D^+f(x) \leqslant 0.$$

Similarly we prove $D_{-}f(x) \ge 0$; thus f' = 0 on H.

Proof of Theorem 1.

Notation. Let f be any real-valued function defined on an uncountable subset D(f) of reals.

- a) We denote by M_f the set of all $x \in D(f)$ for that the following conditions hold:
 - (i) x is the point of bilateral condensation of f,
 - (ii) there exist a $\delta > 0$ and an $\varepsilon > 0$ such that

$$\left\langle y \in D(f) | 0 < |y-x| < \delta, f(y) \leqslant f(x), \left| \frac{f(y) - f(x)}{y-x} \right| < \varepsilon \right\rangle$$

is countable,

- (iii) $D_L(f, x) \cap D_R(f, x) = \{0\}.$
- b) We denote by N_f the set of all $x \in D(f)$ such that the following conditions hold:
 - (i) x is the point of bilateral condensation of f,
 - (ii) there exist a $\delta > 0$ and an $\epsilon > 0$ such that

$$\left\langle y \in D(f) \left| 0 < \left| y - x \right| < \delta, f(y) \geqslant f(x), \left| \frac{f(y) - f(x)}{y - x} \right| < \varepsilon \right\rangle$$

is countable.

(iii)
$$D_L(f, x) \cap D_R(f, x) = \{0\}.$$

LEMMA 3. Suppose f is a real-valued function defined on an uncountable subset of reals. Then the set $M_f \cup N_f$ is countable.

Proof. We prove that the set M_f is countable. The proof for N_f is similar. It is $M_f = \bigcup_{m \in P} \bigcup_{n \in P} M_f(m, n)$, where P is the set of all natural numbers, $M_f(m, n)$ is the set of all points $x \in M_f$ for which

$$\left\{ \left(y,f(y)\right) \mid y \in D(f), \ 0 < \left|y-x\right| < \frac{1}{m}, f(y) \leqslant f(x), \left|\frac{f(y)-f(x)}{y-x}\right| < \frac{1}{n} \right\}$$

is countable. Suppose that M is uncountable. Then there exist natural numbers m, n such that $M_f(m, n)$ is uncountable. Lemma 1 implies that there exists a countable set $C \subseteq M_f(m, n)$ such that every point $x \in M_f(m, n) - C$ is a point of bilateral condensation of f/M. We can suppose that $C = \emptyset$. Theorem 2 implies that there exists a point $y \in M_f(m, n)$ such that

$$D_T(f/M_f(m,n),y) \cap D_R(f/M_f(m,n),y) \neq \emptyset$$
.

There exist sequences $\{x_k\}_{k=1}^{\infty}$, $\{y_k\}_{k=1}^{\infty}$ such that $x_k \uparrow y$, $y_k \downarrow y$, where $x_k \in M_f(m, n)$, $y_k \in M_f(m, n)$ for each $k \ge 1$. We can choose the sequences $\{x_k\}_{k=1}^{\infty}$, $\{y_k\}_{k=1}^{\infty}$ such that $f(x_k) \uparrow f(y)$, $f(y_k) \downarrow f(y)$. As $D_L(f, y) \cap D_R(f, y) = \{0\}$ it is

$$D_L(f/M_f(m,n),y) \cap D_R(f/M_f(m,n),y) = \{0\}.$$

We write $z_{2k} = x_k$ and $z_{2k+1} = y_k$. Then $z_k \to y$ and $\frac{f(z_k) - f(y)}{z - y} \to 0$. Therefore there exists a k_0 such that

$$f(y) < f(x_{k_0}) < \left| \frac{1}{n} (x_{k_0} - y) \right| + f(y) \quad \text{and} \quad |x_{k_0} - y| < \frac{1}{m}.$$

As $x_{k_0} \in M_f(m, n)$ the set

$$\begin{split} M = & \left\{ \! \left| \left(x, f(x) \right) \! \right| \! | x \in M_{\!f}\!(m,n) \,, \, 0 < |x_{k_0} \! - \! x| < \! \frac{1}{m}, \left(\! \frac{f(x_{k_0}) - f(x)}{x_{k_0} - x} \! \right) < \frac{1}{n}, \right. \\ & \left. f(x) < f(x_{k_0}) \right\} \end{split}$$

is empty.

The point y is a point of D(f) and $0 < |y - x_{k_0}| < \frac{1}{m}, f(y) < f(x_{k_0}),$

 $\left|\frac{f(x_{k_0})-f(y)}{x_{k_0}-y}\right|<\frac{1}{n}\,; \text{ therefore } \big(y\,,f(y)\big) \in M. \text{ But } M=\varnothing \text{ and this is a contradiction. Hence the set } M_t \text{ is countable.}$

The main part of proof of Theorem 1. We can suppose that for all points x of D(f) the following assertions hold:

- a) x is a point of bilateral condensation,
- b) x is neither a point of the set M_f nor a point of the set N_f ,
- c) $D_L(f, x) \cap D_R(f, x) \neq \emptyset$.

We first prove Theorem 1 in an easy case.

- A) Suppose that f is constant in an uncountable subset of D(f). Then the assertion of Theorem 1 is obvious.
- B) Suppose that f is not constant in any uncountable subset of D(f). We shall choose a sequence of sets $\{A_n\}_{n=0}^{\infty}$ such that A_n is a set of sequences of points of D(f) for all $n \ge 0$.
- 1. Let x_0 be a point of D(f). We put $a_m = x_0$, $A_0 = \{a_m\}_{m=1}^{\infty}$ and $H_0 = \{x_0\}$.
- 2. Suppose that the sets $A_0, ..., A_n$ are defined for $n \ge 0$. H_k is always the set of all points of the sequences from A_k $(k \ge 0)$, where A_k is defined. For $A_0, ..., A_n$ the following assertions hold:
- (i) For all $x \in H_k$ $(0 \le k \le n-1)$ there exist exactly two sequences $\{x_m^L\}_{m=1}^{\infty}$, $\{x_m^R\}_{m=1}^{\infty}$ of points of D(f) in A_{k+1} such that $x_m^L \uparrow x$, $x_m^R \downarrow x$. The

restriction $f/\{x_1^L, x_1^R, x_2^L, x_2^R, ...\}$ is strictly monotonic. We put $p(x) = \{x_1^L, x_2^R, ...\}$.

(ii) If $x \in \bigcup_{i=0}^{n-1} H_i$ then $(f/\bigcup_{i=0}^n H_i)'(x)$ exists. If $D_L(f, x) \cap D_R(f, x) \supseteq_{\neq} \{0\}$

then $(f/\bigcup_{i=0}^{n} H_i)'(x) \neq 0$.

for n+1.

(iii) If $0 \le k \le n-1$, then there exists a positive real function φ_n defined on H_k and such that for $x \ne y$, $x, y \in H_k$

$$(x-\varphi_n(x), x+\varphi_n(x)) \cap (y-\varphi_n(y), y+\varphi_n(y)) = \emptyset.$$

If $\{a_i\}_{i=1}^{\infty}$ is a sequence of A_{k+1} , then $a_i \rightarrow x$, where $x \in H_k$ and $a_i \in (x - \varphi_n(x), x + \varphi_n(x))$ for all natural i. Further, in the case where $k \leq n-2$ it is

$$(a_i - \varphi_n(a_i), a_i + \varphi_n(a_i)) \subseteq (x - \varphi_n(x), x + \varphi_n(x)).$$

(iv) There exists a real positive function a_n defined on $\bigcup_{i=0}^{n-1} H_i$ and such that

$$(f(x) - a_n(x), f(x) + a_n(x)) \subseteq (f(y) - a_n(y), f(y) + a_n(y))$$

for $x \in p(y)$ and that $f(y) \notin (f(x) - a_n(x), f(x) + a_n(x))$.

(v) If $0 \leqslant k \leqslant n-1$ and $x \in H_k$ then there exist real functions $\underline{\psi}(x)$ and $\overline{\psi}(x)$, $\underline{\psi}(x) \leqslant \overline{\psi}(x)$, $\underline{\psi}(x)(x) = \overline{\psi}(x)(x)$ defined and continuous on $(x-\varphi_n(x), x+\varphi_n(x))$ and such that $p(x) \subseteq M(x)$, where

$$M(x) = \{y | y \in (x - \varphi_n(x), x + \varphi_n(x)) \cap D(f), \underline{\psi}(x)(y) < f(y) < \overline{\psi}(x)(y)\}.$$

If $x \in H_{k-1}$ and $y \in p(x)$, then $M(y) \subseteq M(x)$ and $(\underline{\psi}(x))'(x) = (\overline{\psi}(x))'(x)$. We choose the set A_{k+1} such that for the sets A_0, \ldots, A_{k+1} the assertions (i)-(v) for n+1 hold. As every point of H_k is an isolated point, there exists a real function φ_{n+1} defined of $\bigcup_{i=0}^n H_i$ and such that (iii) holds

The function φ_{n+1} can be chosen such that

 $\underline{\psi}(x_0)(y) < \overline{\psi}(x_0)(y)$ for $x \in p(x_0)$, $x \in H_n$ and $y \in \langle x - \varphi_{n+1}(x), x + \varphi_{n+1}(x) \rangle$. Then there exists obviously an $\varepsilon(x) > 0$ such that

$$f(x) + \varepsilon(x) < \overline{\psi}(x_0)(y)$$
 and $\underline{\psi}(x_0)(y) < f(x) - \varepsilon(x)$

for $y \in (x-\varphi_{n+1}(x), x+\varphi_{n+1}(x))$. It is easy to prove that there exists a real function a_{n+1} such that condition (iv) for n+1 holds.

Let x be any point of H_n and suppose that $\lambda \in D_L(f, x) \cap D_R(f, x)$, where $\lambda \neq 0$. There exists a $y \in H_{n-1}$ such that $x \in p(y)$. We choose the

sequences $\{a_m\}_{m=1}^{\infty}$, $\{b_m\}_{m=1}^{\infty}$ such that $a_m \uparrow x$, $b_m \downarrow x$, f/p(x) is strictly monotonic, where

$$p(x) = \{a_1, b_1, a_2, b_2, ...\}, (f/p(x))'(x) = \lambda,$$

$$\max(f(x) - \varepsilon(x), f(x) - a_{m+1}(x)) < f(a_m) < \min(f(x) + \varepsilon(x), f(x) + a_{m+1}(x)),$$

$$\max(f(x) - \varepsilon(x), f(x) - a_{m+1}(x)) < f(b_m) < \min(f(x) + \varepsilon(x), f(x) + a_{m+1}(x)).$$

We put $\psi(x) = \{\{a_m\}_{m=1}^{\infty}, \{b_m\}_{m=1}^{\infty}\}$. Let $D_L(f, x) \cap D_R(f, x) = \{0\}$; let there exist no two sequences for which (i)–(iv) hold true. As there exist two sequences $\{a_m\}_{m=1}^{\infty}, \{b_m\}_{m=1}^{\infty}, a_m \uparrow x, b_m \downarrow x \text{ such that } (f/\{a_1, b_1, \ldots\})'(x) = 0$, there is x the point of $M_f \cup N_f$. This contradicts our propositions on the D(f). Hence there exist sequences with conditions as in the case of $D_L(f, x) \cap D_R(f, x) \subseteq \{0\}$. Therefore these sequences satisfy (i)–(iv). f we denote the set of these two sequences by f (x).

We put $A_{n+1} = \bigcup_{x \in H_n} \psi(x)$. It remains to construct the functions $\underline{\psi}(x)$, $\overline{\psi}(x)$ with (v) for every point of H_n . Let x be any point of H_n . For n=1 the construction of $\underline{\psi}(x)$, $\overline{\psi}(x)$ is easy. Suppose that n>1, $y \in H_{n+1}$ such that $y \in p(x)$. Therefore there exist a sequence $\{a_m\}_{m=1}^{\infty} \in A_{n+1}$ and a natural number n_0 such that $y = a_{n_0}$ and $a_m \to x$. There exist real numbers γ_n , δ_n such that

$$\begin{array}{l} \text{a)} \ f(x) - \varepsilon(x) < \delta_m < f(a_m) < \gamma_m < f(x) + \varepsilon(x), \\ \text{b)} \ \left| \frac{f(a_m) - \gamma_m}{a_m - x} \right| < \frac{1}{m}, \left| \frac{f(a_m) - \delta_m}{a_m - x} \right| < \frac{1}{m}. \end{array}$$

We put $\overline{\psi}(x)(a_m) = \gamma_m$, $\underline{\psi}(x)(a_m) = \delta_m$. Between a_k and a_{k+1} we define $\underline{\psi}(x)$ and $\overline{\psi}(x)$ continuous and monotonic. Then $(\underline{\psi}(x))'(x) = (\overline{\psi}(x))'(x) = (f/p(x))'(x)$.

We have chosen the set A_{n+1} and the functions φ_{n+1} , a_{n+1} , $\underline{\psi}_{n+1}$, $\overline{\psi}_{n+1}$ from the conditions (i)-(v) for n+1.

We put $H = \bigcup_{t=0}^{\infty} H_t$. H is obviously bilaterally dense-in-itself. $H = H' \cup H''$, where H' is the set of points x such that f/p(x) is increasing and H'' = H - H'. It is easy to prove that either H' or H'' contains a non-empty bilaterally dense-in-itself subset B. Then f/B is monotonic and differentiable; this completes the proof of Theorem 1.

References

 J. G. Ceder, Differentiable roads for real functions, Fund. Math. 65 (1969), pp. 351-358.

Reçu par la Rédaction le 17. 8. 1971

On shape and fundamental deformation retracts II

by

M. Moszyńska (Warszawa)

According to Fox (see [2]), two spaces X, Y are of the same homotopy type iff they are both imbeddable in some space Z as its deformation retracts.

The main result of this note is the following: For two compact metric spaces X, Y to be of the same shape it is necessary and sufficient that both X and Y be imbeddable in some compactum Z as its fundamental deformation retracts (Theorem 3.3).

We shall refer to 3.3 as the Fox Theorem for shapes.

The proof is based on some statements concerning maps of ANR-sequences. For the particular case of usual maps, these statements have been proved by the author in [6].

For terminology and notation, see [6].

1. Mapping cylinder for an arbitrary map of inverse sequences. The notion of mapping cylinder introduced in [6] § 3 for usual maps of inverse systems can be extended — in the case of inverse sequences — to arbitrary maps.

Take two inverse sequences of topological spaces, $X = (X_n, p_n^{n+1})$, $Y = (Y_n, q_n^{n+1})$, and a map $f = (\varphi, f_n) \colon X \to Y$. By definition (see [3] or [6]), all the diagrams

$$\begin{array}{c} X_{\varphi(n)} \overset{p^{\varphi(n+1)}}{\longleftarrow} X_{\varphi(n+1)} \\ f_n \downarrow & & \downarrow^{f_{n+1}} \\ Y_n & \stackrel{q^{n+1}}{\longleftarrow} Y_{n+1} \end{array} \quad \text{commute up to homotopy} \,.$$

Thus, there exist homotopies k_n^{n+1} : $X_{q(n+1)} \times I \to Y_n$ such that

$$k_n^{n+1}(x,0) = f_n p_{\varphi(n)}^{\varphi(n+1)}(x) , \qquad k_n^{n+1}(x,1) = q_n^{n+1} f_{n+1}(x)$$
 for $x \in X_{\varphi(n+1)}, n = 1, 2, ...$

Let C_{f_n} be the mapping cylinder of f_n . Define

$$r_n^{n+1}: C_{f_{n+1}} \rightarrow C_{f_n}$$