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sequences {@plm_y, Opfm=y such that amta, bm{w, flp(z) is strictly
monotonic, where

p(@) = {4y, by, Gy By, o0}, (f/p (w))l(m) =1,
max(1(6) (), £ (0)~ tp1a(e) < Flam) < 00 (F(@) +-& (), F(0)+ apys(e)]
(&) £ () (0) — i y2(6)) < f (o) < iR (0) - 5(3), F(3) + ap ()

We put 9(@) = {{8uhner) Dnlie). Lt Dy(f, ®) o Dyl(f, o) = {0}; let
there exist no two sequences for which (i)—(iv) hold true. As there exig}
two sequences {@y,}m—1; {Omim=1) @m t @ by, ¢ 2 such that (f/{a,, b,, ()
=0, there is @ the point of M;w N;. This contradicts our propositions
on the D(f). Hence there exist sequences with conditions as in the case
of Dy(f,z) ~Dg(f, x) g {0}. Therefore these sequences satisfy (i)~(iv).

We denote the set of these two sequeneeé by ().

We put 4,., = Jy(z). It remains to construct the functions y(2),
7,

ZTedy
y(x) with (v) for every point of H,. Let & be any point of H,. For n — 1
the construction of p(), y(z) is easy. Suppose that #n > 1, y e H, ., such
that ¥ € p (). Therefore there exist a sequence {a,,}%_, ¢ 4,,,, and a natural
number 2, such that y = a,, and an->z. There exist real numbers Yy On
such that :
2) f(@)—e(@) <8, < flam) < ym < f(@)+ (),

py [0 =m| 1 fam)—bm| 1
Uy — 2 m O — 0 m

We put 9(2)(am) = ym, 9()(dn) = 6,,. Between a; and Uy We
define y(x) and y(«) continnous and monotonic. Then (v (@) (@) = (p(@)) (=)
= (flp (@) (2).

We have chosen the set 4,,,, and the functions ¢, 19 Ont1s Ynaty Vgt
from the conditions (i)~(v) for n-1.

=]

We put H=JH;. H is obviously bilaterally dense-in-itself.

i=0
H = H' v H", where H'is the set of points x such that f/p (z) is increasing
and H'=H—H'. Tt is easy to prove that either H' or H'' contains
& non-empty bilaterally dense-in-itself subset B. Then f/B is monotonic
and differentiable; this completes the proof of Theorem 1.
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On shape and fundamental deformation retracts II
by
M. Moszyiska (Warszawa)

According to Fox (see [2]), two spaces X ». ¥ are of the same homotopy
type iff they are both imbeddable in some space Z as its deformation
retracts.

The main result of this note is the following: For two compact metric
spaces X, ¥ to be of the same shape it is necessary and sufficient that
both X and Y be imbeddable in some compactum Z ag its fundamental
deformation retracts (Theorem 3.3).

We shall refer to 3.3 as the Fox Theorem for shapes.

The proof is based on some statements concerning maps of ANR-ge-
quences. For the particular case of usual maps, these statements have
been proved by the auwthor in [6].

For terminology and notation, see [6].

1. Mapping cylinder for an arbitrary map of inverse sequences. The notion
of mapping cylinder introduced in [6] § 3 for usual maps of inverse systems
can be extended — in the case of inverse sequences — to arbitrary maps.

Take two inverse sequences of topological spaces, X = (X, p»*),
Y= (Y,, ¢z*"), and a map f= (¢, f,): X—Y. By definition (see [3] or [6]),
all the diagrams

2’rp(m—l)

o(n)
qu(n) ¢

Pn+1)

fﬂl Tawr commute up to homotopy .

Y, o Yot
n

Thus, there exist homotopies k*: Xy X LY, such that

kiti(z, 0) = fnpﬁﬁ)*‘l)(m) s ke, 1) = gt (e)

for weX iy, n=1,2,..
Let C), be the mapping cylinder of fn- Define

+1.
7”; ‘ an+1—> Gfﬂ
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38 follows (%):
[pEs (), 2t]  for e=[2,1], (,1) € Xy X <0, ),
e = [kntye,26—~1)] for =z=[w,1], (¥,%) e XypyyyX (%, 1,
(g2 ") for 2=1[yl, ¥ ¢ Yo

Verify the continuity of #jyt*:

if 2= [m,t] and (#,1) € X 411X (§), then

[ptp(n+1)($) Zt] = ['pw(”"'l)( 1] = [fnpz&;-l)( ]
—_ [kz+1(w, 0 ] B [70:+1 Cﬂ, 2t _1)]!

if #=[o,t] and (#,1) e X 14X (1), then

¢=[fu(@®] and [B(z, 2-1)] = [ (@, 1)] = (5" For(@)];
so 7%+ iy continuous.
Let us write
C,= (0, ).

The inverse sequence C, will be referred to as a mapping cylinder of
the map f: X—~>VY.
Notice that

11. If X,Y are both ANR-sequences, then C; is an ANR-sequence
as well. &

The maps
int Xomy—=>Cr, »  Jn: Ya—>Cy,
defined by the formulae
(@) =[2,01, jay) =yl
are topological imbeddings of X, , ¥, into O, . Take
i=(p,i,): X>Cy  j= (ly,]): ¥Y>C;.

It is easy to show that i, j are both usual maps (as in the particular case
of f being wsual, [6], 4.1).
Let us prove

1.2. The inverse sequence Y is a deformation retract of C,. (More

precisely, ¥ is isomorphie in the category of inverse sequences to a de-
formation retract of Cj.)

() A similar construction has been made by W. Holsztyhski (unpublished) for
another aim.

icm®
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Proof. Define h: C,—Y by the formulae

fu(@) for 2=[=,1],
\y for 2= [y].
Prove h to be a map of inverse sequences, ie.

h=(1, bn) ’ ha(2) =

(1) Bt~ gt for every n.
We have
fupleMe)  for e=[2,1], 0<1< 1,
h”v;“(z) =k (w, 2t -1) for 2= [x,t], $ <t 1,
oY) for 2= [y,
net1 T
@y (7) = q:;{’;“)" & iz; -~ Ez] _” ’
Define uy: Oy,,, X I +Yy by the formula
e, §) for o= [2,1], 0 <t < %,
Un(#, 8) = 1 KT (w, s+ (1— s)(Zt—l)) for 2= [#,%], } <<,

P 0) tor &= [y].

Prove u, to be continuous:

for 2= [=, 1], k:-’-l(xa s+ (L—s)(2- %“1)) = kY=, $);

for
2= [z, 1] = [fo . (@)], Bz, s+ (1—9)(2: 1-1)) = ke, 1) = ¢ fpia(@)-
Let us show that u, is a homotopy joining the maps %,r;™ and il N
In fact,

Tu 35 (@) for 2 =[2,1], 0 <1<}
Up(2, 0) = | KM w, 20 —1)  for #=[2,1],§ <I<1=h T 2) ,
@Hy) for 2= [y]
i (w)  for e=[z,1], 0 <t
upley 1) = | .If ) T = € Tas(e)
v y) for z=[y].

Thus condition (1) iy proved.
Now, it suffices to show that

(2) b =1y
and
(3) jh gy
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&

‘We show a little more:

2" njn =1y, for n=1,2,..
and ‘
3 jilnzle,  form=1,2,..
In fact,

hjaly) = haly] =y for every m,
Which proves (2'); next,

Jnfa(z) for z=[z,1] [#,1] for &= [=z,1],
jaly)  for z=1y] l B l[y] for z = [y].
Obviously, the map &: Cr, X I Cj, defined by the formula

Jnha(2) = ‘

[#,1—s8+1s] for z=[=,1?],

En(z’s)z\[y] ' for # = [y]

is a homotopy joining the maps jnh, and 1ofn. Thus (3') is satisfied. m
Notice that '
13.i~jf. )
Proof. Let us show a little more:
in ~jnfa  for every m.
In fact, iy(®) = [@, 0], jufa(@) = [f,(a)] = [&, 1], thus the map
£y Xpyyx I -0y,
defined by the formula
&n(z, 1) = [, 1]
is & homotopy joining the maps 4, and j,fn. M
By 1.2 and 1.3 we obtain (as for usual maps [6], 4.4).
1.4. fis a homotopy equivalence iff i is a homotopy equivalence.
Remark. Obviously C;is not uniquely determined by f: XY
it depends on the choice of homotopies kpt': X, X I~Y,. However,
by 1.2, the homotopy type of C; (and thus the shape of ity inverse limit)
is independent of the choice of these homotopies.

2. Fox Theorem for ANR-sequences. By Proposition 2.3 of [6], the
statement 1.4 implies the following
) 2.1. TEEOREM. Let X be an inclusion - ANR - sequence, ¥ — an arbitrary
wnverse sequence, and f: X—Y —a cofinal map. Then f is o homotopy
equivalence iff X is a deformation retract. of C; (up to isomorphism). &
Let us prove

& © '
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2.2. THEOREM. Let X be an inclusion ANR-sequence and Y — an
arbitrary ANR -sequence. Then, for X, Y to be of the same homotopy type
it is necessary and sufficient that both X and Y be deformation retracts (up
10 tsomorphism) of some ANR-sequence Z.

Proof. The sufficiency is obvious. In order to prove the necessity,
assume X, ¥ to be of the same homotopy type. Then there is a homotopy
equivalence f: X—Y. Let Z = C;. By 1.1, Z is an ANR-sequence. By 1.2,
Y is isomorphic to a deformation retract of Z. By the statement 3.8 of [6],
f can be assumed cofinal. By 2.1, since f is a homotopy equivalence
and X is an inclusion ANR-sequence, X is isomorphic to a deformation
retract of Z. &

3. Fox Theorem for shapes. In § 8 of [6] we were concerned with
gome special kind of fundamental sequences. YWe considered a funda-
mental sequenee_f generated by a map f (see [1]) and a related map of
inverse systems, f. In that case, IECf was proved to be an inclusion

ANR -system associated with Cr (see [6], 6.1) and therefore the statement
7.4 of [6] could be applied to prove the Fox Theorem for this special
case ([6], 8.1). '

Now, we are going to extend the Fox Theorem for shapes to the
general case. Unfortunately, the mapping cylinder of an arbitrary map f
of inclusion ANR-sequences fails to be an inclusion ANR-sequence
itgelf. To get over this difficulty we use the notion of shape retraction
due to 8. Mardesié, [3] (2.

A map r: X—X is said to be a shape retraction whenever there is
a map i: X—X such that ri~1y (see [3]). Consequently, we define
o shape deformational retraction as a shape retraction r which satisfies the
additional condition ir ~1%. )

Notice that )

31. Ifi: X X is an inclusion (in the sense of [6]), then i is associated
with the inclusion of the inverse limits.

Proof. Let X =limX, X = Em)? By Proposition 2, Appendix, [6],
if i is an inclugion, then its inverse limit i: X —X is an inclusion. Since
i=lim{, the diagram :

Pn

Ay < X
in l l%’ is commutative for every n.
Xh-n “— X
n

(*) These two approaches to fundamental retracts have been introduced in-
dependently by 8. Marde§ié in [3] and by the present author in [6].
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Thus, moreover, it commutes up to homotopy, i.e. i is associated AWith
the inclusion ¢. H

By 3.1, we get

3.2. If r is a retraction (& deformational retraction), then r is o shape
retraction (a shape deformational retraction). A

Now, let us establish the. main result:

3.3. THroREM. For two compact metric spaces X, Y to be of the same
shape it is necessary and sufficient that both X and X be imbeddable in
some compactum 7 as its fundamental deformation retracts.

Proof. The sufficiency is obvious. Let us prove the necessity. Take
two compacta X, ¥ and let X, ¥ be inclusion- ANR -sequences associated
with X, ¥ respectively. If ShX = ShY, then, by the theorem due to
Marde§ié and Segal ([5]), X ~ ¥. Thus, by 2.2, X, ¥ are (up to isomorphism)
deformation Tetracts of some ANR-sequence Z. Hence, by 3.2, X, Y are
(up to isomorphism) shape deformation retracts of Z. Let Z = EZ,

By the Mardeiié Theorem 11 [3], both X and Y can be imbedded in the
compactum Z a$ its fundamental deformation retracts. &
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Cech homology for movable compacta
by
" R. H. Overton (*) (Sheboygan, Wisc.)

Introduction. This paper is devoted to an investigation of properties
relating to movability of compacta. Movability is a shape invariant
introduced, for metric compacta, by K. Borsuk [3] in 1969. Subsequently,
8. Mardedi¢ and J. Segal gave alternative definitions of shape and of
movability, using inverse sequences of ANR’s. These are equivalent in
the metric case to Borsuk’s definitions, and extend the concept to non-
metric compacta ([12], [13], [14]).

The purpose of this paper is to use the ANR-sequence approach
to answer a question in [3], as to whether the Cech homology sequence
for a pair of movable metric compacta is necessarily exact. We formnlate
in a natural way a definition of movable pairs of metric compacta, and,
using ANR-sequences, we show that such pairs dohave exact homology
(Theorem 1), but that pairs of movable compacta may not (Theorem 2).
The construction of a counter-example yields, as well, a new example
of a non-movable compactum. We further describe a method of obtaining
a certain useful class of movable compacta.

The notation used here is that of [7], [12], and [13]. All topological
spaces congidered are Hausdorff compacta.-

L Movability of compacta and of pairs. Suppose X = {X,, Pglser I8
an inverse system of ANR’s, where I is closure-finite; that is, each ael
has but a finite number of predecessors. If X = limX,, then X is said

to be associated with the compactum X. If ¥ = {¥,, ¢,},r is an ANR-
system also, we define a map of ANR-systems f: X—Y to be a pair
consisting of an order-preserving function f: I’-+I and a collection of
maps f,: X;,->¥, such that for any 6>y in I, f, o Pyne = %s °for
The identity idy: XX is given by id(a)= qa, for all ¢ ¢ I, and id, = idx,-

Every compactum X has an associated ANR-gystem of cardinality
no greater than the weight of the topology on X ([13], § 5, Theorem 7).

(*) These results form a portion of the author’s Ph. D. thesis, written under the-
gupervision of Professor Jack Segal at the University of Washington.
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