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Thus, moreover, it commutes up to homotopy, i.e. i is associated AWith
the inclusion ¢. H

By 3.1, we get

3.2. If r is a retraction (& deformational retraction), then r is o shape
retraction (a shape deformational retraction). A

Now, let us establish the. main result:

3.3. THroREM. For two compact metric spaces X, Y to be of the same
shape it is necessary and sufficient that both X and X be imbeddable in
some compactum 7 as its fundamental deformation retracts.

Proof. The sufficiency is obvious. Let us prove the necessity. Take
two compacta X, ¥ and let X, ¥ be inclusion- ANR -sequences associated
with X, ¥ respectively. If ShX = ShY, then, by the theorem due to
Marde§ié and Segal ([5]), X ~ ¥. Thus, by 2.2, X, ¥ are (up to isomorphism)
deformation Tetracts of some ANR-sequence Z. Hence, by 3.2, X, Y are
(up to isomorphism) shape deformation retracts of Z. Let Z = EZ,

By the Mardeiié Theorem 11 [3], both X and Y can be imbedded in the
compactum Z a$ its fundamental deformation retracts. &

References

.

[11 K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968),

Pp. 223-254.

[21 R. H. Fox, On homotopy type and deformation retracts, Ann. of Math. 44 (1943),
pp. 40-50. ‘

8] S. Marde#ié, Retracts in shape theory, Glasnik Matematitki 6 (26) (1871),
pp. 153-163.

[4] — and J. Segal, Shapes of compacta and ANR -systems, Fund. Math. 72 (1971),

. 41-59,
[5] »1? — Equivalence of the Borsuk and the ANR-system approach to shapes, Fund.

Math. 72 (1971), pp. 61-68.

[6] M. Moszyhska, On shape and fundamental deformation retracts I, Fund. Math.
75 (1972), pp. 145-167. )

[71 — Uniformly movable compact spaces and their algebraic properties, Fund. Math.
7 (1972); pp. 125-144.

Regu por lo Rédaction le 6. 9. 1971

icm

Cech homology for movable compacta
by
" R. H. Overton (*) (Sheboygan, Wisc.)

Introduction. This paper is devoted to an investigation of properties
relating to movability of compacta. Movability is a shape invariant
introduced, for metric compacta, by K. Borsuk [3] in 1969. Subsequently,
8. Mardedi¢ and J. Segal gave alternative definitions of shape and of
movability, using inverse sequences of ANR’s. These are equivalent in
the metric case to Borsuk’s definitions, and extend the concept to non-
metric compacta ([12], [13], [14]).

The purpose of this paper is to use the ANR-sequence approach
to answer a question in [3], as to whether the Cech homology sequence
for a pair of movable metric compacta is necessarily exact. We formnlate
in a natural way a definition of movable pairs of metric compacta, and,
using ANR-sequences, we show that such pairs dohave exact homology
(Theorem 1), but that pairs of movable compacta may not (Theorem 2).
The construction of a counter-example yields, as well, a new example
of a non-movable compactum. We further describe a method of obtaining
a certain useful class of movable compacta.

The notation used here is that of [7], [12], and [13]. All topological
spaces congidered are Hausdorff compacta.-

L Movability of compacta and of pairs. Suppose X = {X,, Pglser I8
an inverse system of ANR’s, where I is closure-finite; that is, each ael
has but a finite number of predecessors. If X = limX,, then X is said

to be associated with the compactum X. If ¥ = {¥,, ¢,},r is an ANR-
system also, we define a map of ANR-systems f: X—Y to be a pair
consisting of an order-preserving function f: I’-+I and a collection of
maps f,: X;,->¥, such that for any 6>y in I, f, o Pyne = %s °for
The identity idy: XX is given by id(a)= qa, for all ¢ ¢ I, and id, = idx,-

Every compactum X has an associated ANR-gystem of cardinality
no greater than the weight of the topology on X ([13], § 5, Theorem 7).

(*) These results form a portion of the author’s Ph. D. thesis, written under the-
gupervision of Professor Jack Segal at the University of Washington.
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In particular, every metric compactum has an associated ANR-sequence
X = (X, Pn), Where p; is a map from Xy into X,,_; for each n = 2, 3, 4,..

DerinITioN 1.1. An ANR-system {X,, pl.er 18 movable provided
that for every a ¢ I there exists o’ = o in I such that for any # > o’ there
is a map sz Xy—>X, satisfying

paﬁ ° Sﬂa’ oy e

DErINITION 1.2. A compactum X is movable if there exists a movable
ANR-system X associated with X.

It is shown in [14] that movability is a shape invariant, and that
if a compactum X is movable, then so is every ANR -system associated
with X.

DEFINITION 1.3. A pair (X, 4) is movable if there is an associated

ANR-pair system {(X,, 4,), Pos}eer Which is movable. That is, for all

a el there exists o' > o such that for each f > a there is a pair map
gt (X, Ay) (X, Ay) satistying the condition pys o S5y ~ Doy

Note that if (X, A) is movable, so are X and A. That the converse

is not true is shown by Theorems 1 and 2 below. The shape of pairs is

defined analogously to shape of compacta [13]; movability of pairs is
then a shape invariant. .

LEMMA 1.4, A metric compactum X (or a pair of metric compacta
(X, A)) is movable if and only if it has an associated ANR - sequence (X, pa)
(resp. ((Xn, An), pn), together with a collection of maps s, LI, GRPEESD
(resp. 8,11 (Xppiyy Apry) (X, 4)), m=1,2,3, ..., such that R
~Pprq for oll n. B

We conclude this section with a statement of the main theorems
of this paper.

TrEOREM 1. The Cech homology sequence for a movable pair of metric
compacta is exact.

TarorEM 2. The Cech homology sequence for a pair of movable metric
compacta is not necessarily emact.

The proof of Theorem 1 requires some algebraic preliminaries, which

occupy § 2. The proof itself, along with the construction of an example
to prove Theorem 2, are in § 3,

2. Exactness of inverse limits, Let E be o ring; and for each n=1,2,..
let 85 be an exact sequence of E-modules,

Bt G G G

Suppose that for each # = 2 »3;4, ... there iy a morphism m, in the
category of exact sequences, m,: 8,8y, that is m, = {pl: ¢, -G, i},
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and the usual commutivity holds. Then (S,,x,) forms an inverse se-
quence of long exact sequences.

LemMA 2.1, Let (Sn, mn) be an inverse sequence of long exvact sequences
8pi GG .. of R-modules, where m,— {pl: Gr—-G_} for

n=2,3,.. Suppose that for each v, (G%,, pl) satisfies the Sfollowing con-
dition:

(1) For every n, there exists j > n such that for all i >j p, (@) = Pu i),

Thén the sequence
...—>1imG;—>]imG';+1‘>1imG;+2—>...
— —
is also exact .

To prove this lemma, we will use the concept of the “derived
functor” lim'. This subject has been developed in some generality by

Roos [15], Grothendieck [8], and others. An outline of the existence and

. basic properties of lim? for arbitrary inverse systems in suitable abelian

categories (i.e. with enough projectives and products) can be fouﬁd in [5],
p. 82 et. seq., and in [11], p. 389.

However, we are only concerned with inverse sequences in the
category of E-modules. In this setting, we can define lim' explicitly,
and in fact the device is principally of notational advantage here. This
approach is easier than applying Roos’s equivalent, but more general
and unwieldy characterization of lim!. i

The methods below were suggested to the author by Professor
Albrecht Dold of the Universitit Heidelberg.
Construction and basic properties of lim! for sequences. Let (G4, p;) be an

el o0
inverse sequence of R-modules. Denote by o: []Gi—[] & the “shift
' ' i=1 1=1
homomorphism” o{(#)) = (p,,4(#:,)). We can construct a cochain com-

plex § from (G, pi) as follows: Let §° = [] G4, G = [] G4, and $* =0
i=1 =1

for p = 2. Let 8° = (c—id): §° =", and let 6% = 0: §?—»G?* for all p > 1.

Then clearly 67%' o §” = 0 for all p, so § = {87, 6?} is a cochain complex.

Consider the cohomology groups of 8. Since HZ(S)= kerd’[fimé"™
we have

HYS) = ker(c—id)

= {(‘Ez) €” Gi] Pia(@ppa) — ;= 0}
= lim (G4, p;), and :

(2)

H?G) =0 for all p > 2.

16 — Fundamenta Mathematicae, T. LXXVII
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- DErmvrTioN 2.2. HY(S) = [] Gifim(c—id) is called the first deriveq
functor of (Gs, pi), and is written li_rﬁl‘(h.
The use of lim'G; to prove exactness of limit sequences is shown
by the following lemma:

TEwaA 2.3, Fori=1,2,3, ..., let S; be a short exact sequence Si: 0 -Gy
~H;—>1;~>0 of R- modules If (Si, ;) 48 an inverse sequence, then

(3) 0—lim G; —limH; ~>lim I -—>1i_I_1}1 @y ~—->:£1_1’E1 H; -+EI_E1 Ii—0

is also ezact.
Proof. Since 8, is exact for all ¢, so is

0—>”G¢—>”H¢—>]_]I¢—>O

i=1 i=1

so if we construct cochain complexes S, ¥, and J from the inverse se-
quences (Gy), (Hy), and (L) respectively, as above, we see that
(4) 0585330 is exact.
By (2), the sequence (3) is just the long cohomology sequence of (4) and
o (3) is exact (see e.g. [11], p. 46)- m

LeMMA 2.4. If (G, pi) is an inverse sequence of R-modules, then so
8 (Pf+1(Gi+1):2’¢|imm+u and ﬁ_mlai %Er_nll’t-)-l(ai-}-l)-

Proof. v
0o 0 0 0
l I
0—>0 Kerg L O o 0 0
| A
Y — ) e Tim! G 0
e
0->limpi(G:)>] T &) N2 Dl 1 Sl p () >
| l Lol
0 0 0 0

Consider the diagram above. All non-labeled maps are the usual
injections and projections.
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All squares are easily seen to commute. (o—id)|yere = —idlyep,y S0
the top row is exact. The other two rows are exact by the definition of
lim @; = ker(c—id), and EI_n_IGi = []Gi/ker(c—id). The left column is
exact because limp; is an isomorphism, while the second and third

columns are clearly exact., Thus the diagram is a 3x 4 commutative
diagram with all rows and all but the last column exact, and so the last
column is exact as well. B

The next lemma is from [15] and follows from the universality of
the functors lim and ligl. It can also be proved, rather tediously, directly

from the definitions given above.

LemMA 2.5. Let v: NN be a monotone increasing function of natural
numbers, so that (G,,) is a cofinal subsequence of (Gi). Then

llmG (i) 2 hmG“ and  Hm'@, o~ llm G;.m

The next properly of lim' is derived directly from the definition.

LevmA 2.6. If (Gi,j)i) 18 an inverse sequence of R-modules with
Diyyt G~ G epic for all 4, then lim'Gy=0. m

For ease of handling, let us adopt the following notational con-
vention: If (G,) is a cofinal subsequence of (G4, pi), we can write the
connecting homomorphisms of (G,;) a8 g;4,0 Gy —> Gy that is,

Q41 = Doipwiien = Paiip41 © o © Dygpyy  Tor all £=1,2,3, ...

The following lemma is needed to connect condition (1) with Lemmas
2.4-2.6. Although the lemma is stated as an equivalence, only the impli-
cation we are going to nse is proved here. The proof of the converse impli-
cation is not difficult.

LevMMA 2.7. For any inverse sequence (Gi, pi) of E-modules, condi-
tion (1), that for every n there exists j(n) =n with D, {G) = Dy jom(Fiem)
for all ¢ > j(n), is equivalent to the following so called Mittag—Lefler con-
dition:

There exists a cofinal subsequence (G,(i)', q;) of (G4, p;) such thai the
inverse sequence (¢y(Ghypn), Qilimg,,)) has epic connecting homomorphisms.

Proof, Suppose (1) is true, and for each n pick a particular j(n)
fulfilling the requirements above. Let »(0) =1, »(6+1) =j(v(9)) for all
i=0,1,2, ... Then (G,;)%, is a cofinal subsequence of (G4), and for
all 421, »(§4-2) = j»(5)), so

Givs © Qoo Orirn) = Poiyaiiraf Goirn) = Puiiyoiirn(Guirn) = Gip1(Gyiipn) - @

LEmMA 2.8. Suppose (S, ) is an inverse sequence of short exact
sequences Si: 0—@y—>H;—>I1;—0 of RB-modules, where m;= 8, p%, 1} is
16*
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a morphism of short exact sequenaes for each i=2,3,4, .. If the inverse
sequence (G, p§) satisfies (1), then 0—>11mG¢——>11mH¢~>11m1¢—>0 8 ewact,

Proof. By Lemma 2.7, if (G, p§) satlsﬁes (1), then there is a cofinal

subsequence (G, ¢;) stch that (¢es(Gyiin)s Gilima,) Das epic connect-
ing homomorphisms. Hence by Lemma 2.6, hm Qir1(Gyipny) = 0. By

Lemma .4.4, ]lln Q'H-l( u(i+1)) EBIE Gy('b and by Lemma’ 2. 5 }lil G i)
~lim'G. Thus lim'@G; =0 and so O—limGi—~limH;—-lml;—~0 is
exact by Lemma 2.3. W

Proof of Lemma 2.1. We need only to extend the last lemma to
long exact sequences. Suppose (Si, m;) is an inverse sequence of long exact
sequences

R e N AR T

where 7, = {... p}"%, 9%, i, ...} in the commutative diagram

NNy

-1 r 11
J(m | l”

—).GT—} aj—1 Gr 1 Bi-1 G""I‘l
o — > U

i-1
and suppose further that for each 7, (Gﬁ, %) satisfies condition (1). Con-
sider the agsociated diagram of short exact sequences:
0—~kerf, —G@; —>imp, —0
®) s |21 [
0-—>kerf;_; —> G_, —> imp,_,~0
Picking j sufficiently large so that for i>j, i MG = ph(GF™),

we see that the inverse sequence (kerf,, pfluyp) satisties (1). Thus by
Lemma 2.8, the following sequences are exact:

lim f;

(6) 0>lim (ker §,) litn & —lim (im ) 0 ,
. limag
(7 0->‘1_1.Ir~1(ker a;) >lim Gy > lim (im ;) -0 .

From (6), kel‘(ﬁ;llﬁi)zli_rg(kerﬁi), and, becanse each §; is exact at G},
we know that lim (kerf,) = lim (im e;). Finally, from (7) we have lim (im a;)
= im(lima), 80 We see that ker(lim ) — im (limas). Therefore the limit
sequence'...—-><1_i£aG§—>EmG§+1->...*—E; exact. I‘—_ ’
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3. Proofs of Theorems 1 and 2.
Proof of Theorem 1. Let (X, )= lim(X;, 4;), where (X, 4,)

is a pair of ANR’s for every ¢=1,2,... If the sequence ((Xi,Ai)) is
movable, then for each ¢=10,1,2,... and each n =1, 2, ... there exists
j=mn such that for all ¢ = j,

P HoA) = PagHSA,)
pnm(H X'z)) = pn,?.(Hq(Xi)) , and
pn.@.( Xy 4 ) = Pn, 7.( X -Aj)) .

Thus the inverse sequence of homology sequences

v Hy(A) -H(X ) >H(X,, A) —H, (4))— ...
lpnﬂ. \ll/pn,i. Lpn ‘N lpn,i.
o Hy(A)+H(X,) >H(X,, A,) —>Hq_1( ) = e

satisfies (1) of section 2, and so by Lemma 2.1,
o >limHy(A,) »UmHyX ) >EmH(X,, 4,)—>

is exact. Finally, continnity of Cech theory gives the desired result. m
The rest of this section is devoted to constructing a pair of movable
metric compacta, the homology sequence of which fails to be exact. In
addition to answering Borsuk’s question, this construction yields a new
non-movable continuum, and shows how to construct movable compacta
(or continua) from non-movable ones, using inverse limits. ;

Throughout this discussion, D will designate the unit dise in the
complex plane, and §* will denote the unit circle. We first get a non-
movable compactum X ag the inverse limit of an inverse sequence (Xs)
of ANRs:

For each n=1,2,3,.., attach D to §' by a map f,: BdD~>S§
defined by f(e¥) = ¢*?, and take X, = Du,8', 4,=8CX,. X, i
thus a generalized real projective plane.

Now congider the map g¢: DD defined by g(re”’) = r¢*®.
Let h: 88 be the identity map. Then for n=2,8,4,.., hof,
= fa-1°9lpap, 50 & map

]

Ppt Xy=Du, 8 >Do, 8=2X,,

is induced by g and % (see e.g. [6], p. 129). The restriction of p, to 4, is
simply %, so we can think of p,, as a map of pairs, ,: (X, 4,) > (Xpqy 4py)
for each n = 2,3,... Let X =limX,.
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BEach X, is constructed as a CW complex, and using this construction
it is easily seen that

1) H,(X,) = Z|2"), the cyclic group of order 2% and p,: H(X,)
—~H,(X,_,) is the natural projection of Z[<2" onto Z[<2"7y, for
all n > 2. ‘

If X were movable, we would get, for each %, an index j = » and s;: X,
—~X,,, such that (p, 1) © (85,) = (Py,;,)- This violates the structures
of the groups involved, so X is not a movable compactum.

However, we can construct a movable compactum X, from X as
follows. For each n, let X, be the disjoint union X, 4+ X,+...+ X, and
let Ppyy: Xpi =Xy, be defined by

- z, it seX,+..+X,CX,.,,
DB = . N
s Pupal®), HE weX, CX

Now for each n we leti s,: X,~X,, be the inclusion map: X;+..
vt XX+ + X+ X,y Then p,. 08, = idg,, so (X,,p,) is a
movable sequence. Hence X =1limX, is a movable compactum by
A =1limA4, is just §', which is movable, so (X ,4) is a pair of movable

compacta. It fails to be a movable pair, however: Since 4, C X, CX
for each m, any map from the pair (X, 4,) to (X,,,, 4,0 “would map
the component X, of X, into X, in X,,,, so X would be movable.

Geometrically, we can think of X as heing embedded in X in such
a way that X is the set limit of copies of the X,’s, also embedded in X.
That is, every neighborhood of X in X contains all but perhaps finitely
many of the X, ’s.

Note. A movable continuum X' canbe constructed in similar fashion,
by selecting a point (z )elimX taking X, to be the one-point union
of X, .., X, Where each X is attached at w;, ¢ =1, 2, ..., », and then
defining p,,.,, 8;, 88 D1, 8a were defined. (X', 4) is then a paur of movable
continua.

Proof of Theorem 2. We will show that the long homology se-

quence is not exact for the pair (X, 4). Because Uech theory is continuous,
we need only to show that

@) HmE(R,, A,) S0 (4,) lim B2 lim B2, 4,) ...

fails to be exact. We will show (2 ) is not exact at imH, (X, ,,),

t—
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Congsider the diagram

on

4,)  ZsH(4,) SH k)

o Hy( Xy, > H(X,, A
® | | | i
e Hy (X g, Ay ) —>H (4, ) — H(X, ,)— H(X, ., A, ..

Now because X, is the disjoint union of X, ..., X, H,(¥, W) = H(X)®
@®H,(X,,) and i is, in fact, into the first summand H,(X,). Similarly,
since X, = X,+X,, and A CX,CX,, we have that H (x 4,)
o Hy(X,, A)OH(X, ). Furthermore, in (3), ju: H(Z)H L. 4)
takes the jumma,nd. H (X)) into JEII(X,1 yA,) and H(X, ;) isomorphicaly
onto Hy(X, ) C Hy(X,, 4,). Also Hy(X,_,) Ckers,.

These direct sums are preserved bV the connectmg homomorphisms
induced by the connecting maps p,: (Xn, A,)— (Xn_l, 4,) for all
n=2,3,.., 30 in the limit sequence (2) we get that

limH,(X,) = limH,(X,) Qlim A (X, _,),
ImH(X,, 4,) = limHy(X,, 4,) ODIimH(X,_)),
and the limit maps preserve these sums, That is limH o X,) C ker (hma

l1mz* takes 11mH1(An) into the summand hmHl(Xn) of 11mH (X,,)
hmy* takes lunH](Xn) into hmH](An,An) and takes hmHl(Xn_l) iso-

: morphma&y to IIQHI(X,,’_I) in ELIEH (Xn, Ay). Thus the exactness of (2)

at lim Hy(X,) is equivalent to exactness of
hmdn 11m1. Lim 7,
(4) hmﬂz(Xn, Aqy) -*——>'11mH1(An) ——>11mH1(X,,,)——>hmH1(Xn, 4a) ...
at lim H,(X,). To show (4) is not exact, we compute the groups involved:
Consider the associated diagram

o i -
Hﬂ(Xrn An) — Ili(An) - Hl(:‘"n) - HI(XM An)

lan l l lﬁn
Hy(X, 4, Ay ) —> Hy(4, ) —> H (X, ) —>H (X, ;, 4,1),

where a, and B, are the homomorphisms induced by pa: (X, 4s)
—(X,_1, 4,,_,). Because 4, is a deformation retract of a neighborhood
in X,

Hi(Xny An) o2 Hu(Xnldn) o2 Ho(DISY) = H(8Y,
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where H, is the reduced homology. Thus Hy(Xys,Dy) = Z. Also,
Pt (X, An) ~(Xp_yy A,) induces a map a,: §n Xn/A:n_>Xn_ JA, R
of degree 2, 50 a: Z—»Z iy multiplication by 2. Hence EIE-H-z(Xn, An) = 0.

For each n>2, 4, = 8, and p,: 4,4, , is of degree 1, so the
induced map A is an isomorphism. Thus ligﬂl(An) ~Z.

Recall (see (1)) that lim H,(X,) is the inverse limit of a sequence

of groups Z/<{2™) with the natural projections. This limit iy well known —
it is the group of dyadic integers, 4(2). (See e.g. [10].) Thus (4) becomes

0+Z—->4(2)-0,
which is not exact at 4(2). Therefore (2) is not exact. m

4. Open questions. The following question remains unanswered:

(41) Is the Cech homology sequence for a movable pair of non-metric
compacta exact?

In attempting to extend the method of proof of Theorem 1 to this
question, we run into problems with Lemma 2.6. This lemma guarantees
exactness in the limit of short exact sequences, if the indexing set for
the inverse system forms a sequence and if the connecting homomorphisms
are epic. The inverse system of exact sequences comes from the ANR-
system associated with the movable compact pair. The problem is that
non-metric compacta are characterized by the fact that their associated
ANR-systems can admit no cofinal subsequences.

In [9], L. Henkin gives an example of an inverse system {&,, Daplaer
built on any indexing set I, such that all the P, are onto, and yet such
that if I has no cofinal subsequence then limZ, = @. (This example

also appears as a problem in [4], p. 134.) From this we can eagily construct
an inverse system -{§;: 0->4,-+B,~(,—0, Tuleer 0L short exact se-
quences of abelian groups, such that for all a, § ¢ I with « > 8, eet Sp—8,
is an epimorphism, yet 0-lim 4,—limp,—lim 0,—0 is exact only if T

has a cofinal subsequence. Thus Lemma 2.6 cannot be extended to handle

indexing sets of ANR-systems associated with non-metrizable compacta.
The following question also remains open:

(4.2) Let X be a movable compactum. Does X necessarily have an

associated ANR-system X, each connecting mayp of which admits
a right homotopy inverse?

It should be noted that if the answer to (4.2) is affirmative, then

the proof of Theorem 1 can be shortened considerably; it then depends
upon Lemma 2.6 alone.
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