

A fixed-point theorem for homeomorphisms of R^{2n}

bv

Warren White (Rio de Janeiro)

§ 1. Introduction. In this note we give a proof for the following:

THEOREM. Let $h\colon R^{2n}\to R^{2n}$ be a stable homeomorphism which is an involution on some non-empty, invariant (2n-3)-connected subset $X\subset R^{2n}$. Then hx=x for some $x\in R^{2n}$.

COROLLARY. Let $h: \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ be an orientation-preserving diffeomorphism (or, if $2n \neq 6$, a stable homeomorphism) which takes some differentiable (2n-2)-sphere $\Sigma \subset \mathbb{R}^{2n}$ into itself. Then hx = x for some $x \in \mathbb{R}^{2n}$.

Remark. Let h and X or Σ be as above, and let $Y \subset \mathbb{R}^{2n}$, with $\pi_{2n-2}(Y) = 0$, be a set containing X or Σ . The conclusions of the theorem and corollary may be strengthened to read: any cell containing $Y \cup hY$ contains a fixed point x = hx of h.

The results of Kirby show that, in dimensions other than four, any orientation preserving homeomorphism is stable [3]. In the case that the set X of the theorem is acyclic mod 2, Smith has shown that hx = x for some $x \in X$ [4].

§ 2. Definitions. We shall use the term map for continuous functions. A map $f: A \rightarrow B$ is an *involution* on a subset $X \subset A$ if $f^2|_X = \mathrm{id}_X$, and X is *invariant* (under f) if $fX \subset X$. For a given space A, let $\mathcal{K}(A)$ be the space of homeomorphisms $h: A \rightarrow A$ with the compact-open topology; a homeomorphism $h: A \rightarrow A$ is *stable* if it lies in the connected component $\mathcal{SK}(A) \subset \mathcal{K}(A)$ of the identity $\mathrm{id}_A: A \rightarrow A$ (cf. Theorem 2, [3]). A space X is k-connected if it is path-connected and $\pi_i(X) = 0$, i = 1, ..., k.

We write R for the real line, R^{2n} for 2n-dimensional space, and make the identification

$$R^k = \{(t_1, \dots, t_k, 0, \dots, 0) : t_i \in R\} \subset R^{2n} \quad \text{for} \quad k \leq 2n.$$

For k < 2n we let

$$\begin{split} S^k &= \{x \; \epsilon \; R^{k+1} \colon \; ||x|| = 1 \} \; , \quad B^{k+1} &= \{x \; \epsilon \; R^{k+1} \colon \; ||x|| \leqslant 1 \} \; , \\ D^k_N &= \{(t_1, \, \dots, \, t_{k+1}, \, 0 \,, \, \dots, \, 0) \; \epsilon \; S^k \colon \; t_{k+1} \geqslant 0 \} \; , \\ D^k_S &= \{(t_1, \, \dots, \, t_{k+1}, \, 0 \,, \, \dots, \, 0) \; \epsilon \; S^k \colon \; t_{k+1} \leqslant 0 \} \; . \end{split}$$

The degree of a map $f: S^k \to S^k$ is written df. Of particular importance are the antipodal map $a: S^k \to S^k$ and the reflection $r: S^k \to S^k$, defined respectively by $x \to -x$ and

W. White

$$(t_1, \ldots, t_k, t_{k+1}, 0, \ldots, 0) \rightarrow (t_1, \ldots, t_k, -t_{k+1}, 0, \ldots, 0).$$

§ 3. Proof of Theorem. We assume in this section that h and X satisfy the hypotheses of the theorem.

LEMMA 1. There is a map $f: S^{2n-2} \rightarrow X$ such that fa = hf.

Proof. Suppose that, for some $k \leq 2n-2$, we have a map $f_{k-1} \colon S^{k-1} \to X$ such that $f_{k-1}a = hf_{k-1}$. (This is true vacuously for k=0.) Since X is (k-1)-connected we can extend f_{k-1} to a map $F_k \colon D_N^k \to X$. Define $f_k \colon S^k \to X$ by $f_k|_{D_N^k} = F_k$, $f_k|_{D_S^k} = hF_ka$. The restriction of f_k to D_N^k or D_S^k is a well-defined map, and on $D_N^k \cap D_S^k = S^{k-1}$ we have $hF_ka = F_kaa = F_k$, so that f_k is a well-defined map. Moreover,

$$f_k a|_{D_N^k} = (f_k|_{D_N^k})(a|_{D_N^k}) = hF_k aa|_{D_N^k} = hf_k|_{D_N^k}$$

and

$$f_k a|_{D_S^k} = (f_k|_{D_N^k})(a|_{D_S^k}) = F_k a|_{D_S^k} = h f_k|_{D_S^k},$$

so that $f_k a = h f_k$.

The construction used above is basic to the proof of our theorem. For any map $T: D_N^{2n-1} \to \mathbb{R}^{2n}$ such that

$$hT = Ta \quad \text{on } S^{2n-2},$$

an extension $T_*\colon S^{2n-1}\to R^{2n}$ of T may be defined by setting $T_*=hTa$ on D_S^{2n-1} . If $T_*x=T_*ax$ for some $x\in D_N^{2n-1}$ then

$$Tx = T_*x = T_*ax = (hTa)ax = hTx$$

so that Tx is a fixed point of h. The map $T^*\colon S^{2n-1}\to S^{2n-1}$ given by $T^*x=(T_*ax-T_*x)||T_*ax-T_*x||$ is thus well-defined if h leaves no point of $TD_N^{2n-1}\subset R^{2n}$ fixed.

Suppose now that $hx \neq x$ for each $x \in \mathbb{R}^{2n}$, so that we can construct T_* and T^* as above for any T satisfying (1).

We can extend the map f of Lemma 1 to a map $F: D_N^{2n-1} \to R^{2n}$. Both $F: D_N^{2n-1} \to R^{2n}$ and $hF: D_N^{2n-1} \to R^{2n}$ then satisfy (1).

LEMMA 2. $d(hF)^* = dF^*$.

Proof. For any $g \in \mathcal{R}(\mathbb{R}^{2n})$ we can define a map $\lambda_g \colon S^{2n-1} \to S^{2n-1}$ by

$$\lambda_a x = (qF_* ax - qF_* x)/||qF_* ax - qF_* x||.$$

The map λ_g depends continuously on g, so that $d\lambda_g = d\lambda_{id} = dF^*$ for all $g \in \mathcal{SK}(\mathbb{R}^{2n})$. But $\lambda_h = (hF)^*$, since $hF_* = (hF)_*$.

LEMMA 3. $d(hF)^* = -dF^*$.

Proof. Consider the homotopy $G\colon D_N^{2n-1}\times [0\,,\,1]\to R^{2n}$ defined by $G_tx=t(Farx)+(1-t)(hFx)$. For each $t\in [0\,,\,1]$ we have $G_t|S^{2n-2}=fa=hf$, so that G_t satisfies (1). The maps $(hF)^*=G_0^*$ and $F^*ar=(Far)^*=G_1^*$ are thus connected by the homotopy G_t^* , so that $d(hF)^*=d(F^*ar)=-dF^*$.

LEMMA 4. $dF^* \neq 0$.

Proof. Since $F^*a = aF^*$, this follows from one of the Borsuk-Ulam theorems [1].

The assumption that h had no fixed points has led to an impasse in Lemmas 2, 3, and 4, and must therefore be false. In fact, we used only the assumption that h fixed no point of $G(D_N^{2n-1} \times [0,1])$, whence the strengthened conclusion of the remark.

§ 4. Proof of corollary. Let h and Σ be as in the corollary, and suppose that h leaves no point of R^{2n} fixed. Since Σ is differentiable, we may identify a neighborhood $U \subset R^{2n}$ of Σ with the product $\Sigma \times B^2$ so that $x \times (0,0) = x$ for $x \in \Sigma$. For $\varepsilon \in [0,1]$, let

$$U_{\varepsilon} = \{(x, t) \in U : x \in \Sigma, t \in B^2, ||t|| \leqslant \varepsilon\}.$$

If μ : $B^2 \to B^2$ is a homeomorphism which is the identity on S^1 , we define a homeomorphism μ^* : R^{2n} , $\Sigma \to R^{2n}$, Σ by $\mu^*y = y$ for $y \in R^{2n} - U$ and $\mu^*(x,t) = (x,\mu t)$ for $x \in \Sigma$, $t \in B^2$. We may assume that $(x \times B^2) \cap h(x \times B^2) = \emptyset$ for each $x \in \Sigma$, so that $h\mu^*$ has no fixed points.

Let $\alpha\colon \mathcal{L}\!\to\!\mathcal{L}$ be a fixed-point-free involution. By the hypotheses of the corollary the composition $h^{-1}\alpha\colon \mathcal{L}\!\to\!\mathcal{L}$ is stable, and hence isotopic to the identity on \mathcal{L} (see [2], [3]). Let $\lambda\colon \mathcal{L}\!\times\! [0,1]\!\to\! \mathcal{L}$ be an isotopy such that $\lambda(x,0)=h^{-1}\alpha x$ and $\lambda(x,t)=x$ for $t\in [\frac{1}{2},1]$, and choose $\mu\colon B^2\!\to\! B^2$ as above so that $h\mu^*U_\varepsilon\subset \operatorname{int} U_\varepsilon$ for each $\varepsilon\in [0,\frac{1}{2}]$. We define a homeomorphism $h'\colon \mathcal{R}^{2n},\, \mathcal{L}\!\to\! \mathcal{R}^{2n},\, \mathcal{L}$ by h'y=hy for $y\in \mathcal{R}^{2n}-U$ and $h'(x,t)=h\mu^*(\lambda(x,t),t)$ for $x\in \mathcal{L},\, t\in B^2$. It is clear that h' is isotopic to h and hence stable, and that $h'|_{\mathcal{L}}=\alpha$. For $\varepsilon\in [0,\frac{1}{2}]$ we have $h'U_\varepsilon=h\mu^*U_\varepsilon\subset \operatorname{int} U_\varepsilon$, so that h' has no fixed points in $U_{1/2}$, and h' has no fixed points outside $U_{1/2}$ because $h\mu^*$ hasn't any. The homeomorphism h' is therefore a counter-example to our theorem.

References

[2] M. Brown and H. Gluck, Stable structures on Manifolds, I, II, III, Ann. Math. 79 (1964), pp. 1-58.

K. Borsuk, Drei Sätze über die n-dimensionale euclidische Sphäre. Fund. Math. 20 (1933), pp. 177-190.

A. White

256

[3] R. C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. Math. 89 (1969), pp. 575-582.

[4] P. A. Smith, Fixed-point theorems for periodic transformations, Amer. J. Math. 63 (1941), pp. 1-8.

Reçu par la Rédaction le 4. 10. 1971

Ultrafilters over measurable cardinals

by

Jussi Ketonen (Buffalo, N. Y.)

- 0. Definitions. The notation and terminology in this paper is that of the most recent set-theoretic literature. For less well-known items we urge the reader to consult A. Mathias (1969). We shall now define our fundamental notions. Unless otherwise mentioned, all the ultrafilters discussed are assumed to be nonprincipal, z-complete over a fixed measurable cardinal z.
- 0.1. Definition. Given two ultrafilters $D,\,U,\,$ we say $D\leqslant U$ if there is a function $f\colon \varkappa\to\varkappa$ so that

$$x \in D \longleftrightarrow f^{-1}(x) \in U$$
.

In this case we also denote

$$D=f^*(U).$$

If $D \leqslant U$ and $U \leqslant D$ we say: D is isomorphic to U: In symbols, $D \cong U$.

For more on this order, see K. Kunen [2] and J. Ketonen [1]. The above definition is due to H. J. Keisler.

0.2. DEFINITION. Given an ultrafilter D, functions $f, g: \varkappa \to \varkappa$ we say: f, g are isomorphic (mod D), in symbols $f \sim g$, if there is a one-to-one function φ so that

$$f = \varphi \circ g \pmod{D} .$$

In this case $f_*(D) \cong g_*(D)$. Another way of describing the above situation is to describe f and g in terms of the partitions $\{f^{-1}(\{a\}) | \ a \in \varkappa\}, \{g^{-1}(\{a\}) | \ a \in \varkappa\}$ they induce. Then $f \sim g$ if and only if there is a set $X \in D$ and a permutation of the labels of the g-partitioning so that the ath part of the f-partitioning intersected with X = ath part of the permuted g-partitioning intersected with X for every $a < \varkappa$.

The following notions are extensions of the concepts of W. Rudin [1956]:

0.3. DEFINITION. If D an ultrafilter. $f: \varkappa \to \varkappa$, then D is an f-P-point