A fixed-point theorem for
homeomorphisms of R

by
Warren White (Rio de Janeiro)

§ 1. Introduction. In this note we give a proof for the following:

TuworEM. Let h: R*™->R™ be a stable homeomorphism which is an
involution on some non-empty, invariant (2n—3)-connected subset X C R",
Then hax = x for some x ¢ R™.

COROLLARY. Let h: B*—R™ be an ovientation-preserving diffeomorphism
(or, if 2n 5% 6, a stable homeomorphism) which takes some differentiable
(2n—2)-sphere X C RB™ dnto itself. Then he =z for some x e R*™.

Remark. Let h and X or X be as above, and let ¥ C R*, with
7,,_o( ¥) = 0, be a set containing X or X. The conclusions of the theorem
and corollary may be strengthened to read: any cell containing ¥ v hY
containg a fixed point z = hx of h.

The results of Kirby show that, in dimensions other than four, any
orientation preserving homeomorphism is stable [3]. In the -case that
the set X of the theorem is acyclic mod2, Smith has shown that hz =2
for some z e X [4]. ’

§ 2. Definitions. We shall use the term map for continnous functions.
A mayp f: A—B is an involution on a subset X C 4 if f?|x = idy, and X is
invariant (under f) if fX C X. For a given space 4, let J¢(4) be the space
of homeomorphisms %: A —4 with the compact-open topology; a homeo-
morphism %: A—A is stable if it lies in the connected component SIE(4)
CJ(A) of the identity ids: A4 (cf. Theorem 2, [3]). A space X is
k-connected if it is path-connected and wy(X) =0, i=1, ..,k

We write R for the real line, R* for 2n-dimensional space, and make
the identification

R = {(t) eerstt,0, ..., 0): e R}CR™ for k<2n.

For k < 2n we let

8= { e R*": fall =1}, B*'= {2 B*™": o <1},
D = {(tys vees by 0y s 0) € 8 14y =0,
DE = {(tyy voey bgzs 05 ey 0) € 8% 5y <O}
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The degree of a map f: Sk 8% i written df. Of particular importance
are the antipodal map a: §*—8" and the reflection r: §*—>8%, defined

respectively by - —2 and
(fryeees by Tgas Op evey 0)—>(tyy vory by —rs 0,..,0).
§ 3. Proof of Theorem. YVe assume in this section that h and X satisfy
the hypotheses of the theorem.
Lz 1. There is o map f: 872 —=X such that fa = hf.
Proof. Suppose that, for some k<2n—2, we have a map
o 8¥7* X such that f 6 = Rfy,. (This is true vacuously for & = 0.)

Since X i {k—1)-connected we can extend fi_, to a map Fy: Dk X,
Define fi: 8°—X by filpk, = Fy, fulpk= LFxa. The restriction of fi to

D% or Dk is a well-defined map, and on D% ~ DE= 8% we have hFya
— Fpaa = Fy, so that fi is a well-defined map. Moreover,
fralpk = (fk]?]é) (alpk) = hFy a0 pk = hfxlpk
and .
fk“‘ps = (fkip};,)(“\pg) = Fk“lpfgl = Il

so that fka, = hfk. .
The construction used above is basic to the proof of our theorem.
Tor any map T: Dy '—R™ such that

1) T =Ta one8™7%,

an extension T,: SR of T may be defined by setting Tx = hTa ;

on DL Tt Tyx = Tyax for some ¢ « DI~ then
Tz = T = Tyaz = (hTa)as = hTz,

so that Tz is a fixed point of h. The map T*: & '8! given by
T*p = (Ts az— Ty 2)[| Ty a0 — Ty ] is thus well-defined if h leaves no point
of TD¥*C R™ fixed. '

Suppose now that ha # « for each z € R™, so that we can construct Ty
and T* as above for any T satisfying (1).

We can extend the map f of Lemma 1 to a map F: DFF~*—~R*". Both
F: D2 '>R™ and 1F: DWW '—E™ then satisfy (1).

LEMMA 2. d(hF)* = dF*.
Proof. For any g « (R*) we can define a map 4, Q=1 81 by
2 = (gF's az—gF 0)]|gFs 0z — g ]

The map 4, depends continuously on g, so that di, = di, = dF" for all
g e SB(R™). But 2, = (hF)*, since hFy = (hF)..
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LEMMA 3. d(hF)* = —dF*.

Proof. Consider the homotopy @: D¥1x[0,1]-R™ defined by
G = t(Farz)+ (1 —1t)(hFz). For each t¢[0,1] we have G{8* 2= fa
= R, so that @, satisties (1). The maps (hF)" = G5 and F*ar = (Far)* = G*
are 121131115 connected by the homotopy Gf, so that d(hF)*= 4 (F*arl)
= —dF*.

LevMA 4. dF” 0.

Proof. Since F*a = aF", this follows from one of the Borsuk-Ulam
theorems [1].

The assumption that » had no fixed points has led to an impasse
in Lemmas 2, 3, and 4, and must therefore be false. In fact, we used only
the assumption that » fixed no point of G(D}*x[0,1]), whence the
strengthened conclusion of the remark.

§ 4. Proof of corollary. Let 7 and X be as in the corollary, and suppose
that & leaves no point of R*™ fixed. Since X is differentiable, we may
identify a neighborhood U C R*™ of X with the product Xx B? so that
2% (0,0)=2x for e X. For ¢¢[0,1], let

U={x,0elU: velX, teB {f<e}.

If p: B*—B? is a homeomorphism which is the identity on S, we define
2 homeomorphism p*: R, X—R™ X by p*y =y for y« R*—T and
uX(@, 1) = (o, wt) for w e 2, t e B We may assume that (z X B2) n h(z X B?)
= @ for each # ¢ X, so that hu* has no fixed points.

Let a: 2—ZX be a fixed-point-free involution. By the hypotheses of
the corollary the composition A 'a: X— X ig stable, and hence isotopic
to the identity on X' (see [2], [3]). Let A: Z'X[0,1]-ZX be an isotopy
such that A{w,0)=h"'az and A(z,t)=x for te[},1], and choose
u: B*—>B* as above 8o that hu*U, Cint U, for each £¢[0,}]. We define
a homeomorphism h': B, Z—-R™ X by h'y==hy for y<R™—TU and
W, t) = h,u*(l(w, 1), t) for z e X, t ¢« B% It is clear that ' is isotopic to &
and hence stable, and that »'|y = a. For e [0, £] we have h'U, = hu*U,
Cint U,, so that ' has no fixed points in U, and A’ has no fixed points
outside U,, because hu* hasn’t any. The homeomorphism %’ is therefore
a connter-example to our theorem.
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Ultrafilters over measurable cardinals
by
Jussi Ketonen (Buffalo, N. Y.)

0. Definitions. The notation and terminology in this paper is that
of the most recent set-theoretic literature. For less well-known items
we urge the reader to consult A. Mathias (1969). We shall now define
our fundamental notions. Unless otherwise mentioned, all the wultra-
filters discussed are assumed to be nonprincipal, »-complete over a fixed
measurable cardinal x.

0.1. DEFINITION. Given two ultrafilters D, U, we say D< U if
there is a function f: »—x go that

2eDe>fYz)eU.
In this case we also denote
D =f*U).

It DL U and U <D we say: D is isomorphic to U: In symbols,
D=T.

For more on this order, see K. Kunen [2] and J. Ketonen [1]. The
above definition is due to H. J. Keisler.

0.2. DEFINITION. Given an ultrafilter D, functions f,g: x>x we
say: f, g are isomorphic (mod.D), in symbols f~yg, if there is a one-to-one
funetion ¢ so that

f=9og(modD).

In this case fi(D) == g«(D). Another way of describing the above
sitnation is to describe f and ¢ in terms of the partitions {f™({o})| a € x},
{07 ({a})| a € x} they induce. Then f~g if and only if there is a set X ¢ D
and a permutation of the labels of the g-partitioning so that the ath part
of the f-partitioning intersected with X = ath part of the permuted
g-partitioning intersected with X for every a< x.

The following notions are extensions of the concepts of W. Rudin
[1956]:

(0.3, DerINITION. If D an ultrafilter. f: x—x, then D is an f-P-poini
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