T. Šalát

162

 $f_n\colon E_1 \to E_1$ such that $\{f_n\}_{n=0}^\infty$ converges pointwise to u. Put $u_0 = f_0$, $u_n = f_n - (f_0 + f_1 + \ldots + f_{n-1})$ for $1 \leqslant n < \omega$ and $u_\xi = 0$ for $\omega \leqslant \xi < \Omega$. Then

$$\sum_{\xi < \varOmega} u_{\xi} = u \;, \quad \ u_{\xi} \in U(E_1,\, E_1) \ \ \text{and} \ \ u \notin U(E_1,\, E_1) \;.$$

References

[1] P. Kostyrko and T. Šalát, О функциях графы которых являются замкнутыми множеествами, Čas. pěst. mat. 89 (1964), pp. 426–432.

[2] M. Kulbacka, Sur les ensembles stationaires et déterminants pour certain classes de dérivées symétriques, Coll. Math. 19 (1968), pp. 255-259.

ae aervees symentques, com la représentation des fonctions measurables par les séries transfinies de polynomes, Fund. Math. 5 (1924), pp. 123-129.

[4] H. Malchair, Sur les suites et séries transfinies, Bull. Soc. Royale des Sci. de Liége 1 (1932), pp. 47-49.

[5] — Sur les suites et séries transfinies de fonctions non décroissantes, Bull. Soc. Royale des Sci. de Liége 1 (1932), pp. 75-77.

[6] — Un théorème sur les suites transfinies de fonctions, Bull. Soc. Royale des Sci. de Liége 1 (1932), pp. 137-139.

[7] — Quelques nouvelles considérations aux suites et séries transfinies, Bull. Soc. Royale des Sci. de Liége 3 (1934), pp. 133-140.

 [8] S. Marcus, Sur les ensembles déterminants des dérivées approximatives, Compt. Rendus 255 (1962), pp. 1685-1687.

[9] C. J. Neugebauer, A class of functions determined by dense sets, Arch. Math.

12 (1961), pp. 206-209.
[10] W. Sierpiński, Sur les suites transfinies convergentes de fonctions de Baire, Fund. Math. 1 (1920), pp. 132-141.

Recu par la Rédaction le 11. 1. 1972

Property Z and Property Y sets in F-manifolds

by

William H. Cutler (*) (Baton Rouge, La.)

Abstract. Let M be a manifold modelled on a Fréchet space F such that $F \cong F^{\omega}$. K, a closed subset of M, will have $Property\ Y$ if given an open neighborhood U of K and an open cover of M, there exists a set N which is a closed neighborhood of K contained in U and a homeomorphism $h\colon N\to \operatorname{Bd}(N)\times [0,1)$ such that for $x\in \operatorname{Bd}(N)$, h(x)=(x,0) and $h^{-1}(\{x\}\times [0,1))$ is contained in some element of the cover. It is shown that (1) Property Y implies infinite deficiency, and (2) Property Z implies Property Y for separable M. The combination gives an alternative proof to the proof of Anderson's that Property Z implies infinite deficiency.

Key words and phrases. Infinite-dimensional manifold, F-manifold, deficiency, Property Z, negligibility, variable product.

1. Introduction. An F-manifold is a manifold modelled on a Fréchet space F such that $F \cong F^{\omega}$. A closed subset K of an F-manifold M has Property Z if for every open, non-empty, homotopically trivial set U in M, then U-K is non-empty and homotopically trivial. K has F-deficiency if there is a homeomorphism h: $M \to M \times F$ such that for $x \in K$, h(x) = (x, 0).

Anderson was the first to show that Property Z implies F-deficiency for separable F-manifolds [1]. More recent results due to Chapman [2] have established this for non-separable F-manifolds. This paper gives a new approach to the problem, one which avoids use of the Hilbert cube, the useful compactification of l_2 (separable Hilbert space), which has no good generalization for other Fréchet spaces. We will also define a new type of deficient subset, which will be used as a stepping stone in the proof that Property Z implies F-deficiency.

Let K be a closed subset of a space X. Then K has *Property* Y if given an open neighborhood U of K and an open cover of X, there exists

^(*) This paper is part of the author's dissertation written under David W. Henderson.

^{12 -} Fundamenta Mathematicae, T. LXXVIII

a set N which is a closed neighborhood of K contained in U, and such that there exists a homeomorphism $h\colon N\to \operatorname{Bd}(N)\times [0,1)$ such that for $x\in \operatorname{Bd}(N), h(x)=(x,0)$ and $h^{-1}(\{x\}\times [0,1))$ is contained in some element of the cover.

The following theorems will be proved:

Theorem 1. Let M be an F-manifold and let K be a subset of M having Property Y. Then K is F-deficient.

Theorem 2. Let M be a separable F-manifold and let K be a closed subset of M having Property Z. Then K has Property Y.

Combining the theorems, we get an alternative proof to Anderson's that Property Z implies F-deficiency for separable F-manifolds.

2. Further definitions. For a metric space X, define C(X) to be the open metric cone of X, that is, the space $[0, \infty) \times X$ with $\{0\} \times X$ identified, with the following topology: At the vertex, a basis for the open sets will be the sets $\{(t, x) \in [0, \infty) \times X | t < s\}$ for each $s \in (0, \infty)$, and at other points the product topology will be used. By Lemma 2 of [5], $F \cong C(E)$ for some metric space E. Let $h \colon F \to C(E)$ be such a homeomorphism. For $y \in F$, define $||y|| = \pi_1 h(y)$ where π_1 is projection onto the first factor.

Let X be a topological space, F as above and $r\colon X\to I$ a continuous function. Then the variable product of X by F with respect to r is defined to be

$$X \underset{r}{\times} F = \{(x, y) \in X \times F | y = 0 \text{ or } ||y|| < r(x)/(1 - r(x))\}.$$

We say that this variable product is zero over $r^{-1}(0)$. For U a subset of X, the fiber over U is the set $(U \times F) \cap (X \times F)$, and may also be called the variable product restricted to U.

3. Proof of Theorem 1. Let G_1, G_2, \ldots be a sequence of open covers of M whose mesh approach 0. Let N_1 be a closed neighborhood of K and $h_1: N_1 \rightarrow \operatorname{Bd}(N_1) \times [0, 1)$ be a homeomorphism satisfying the conditions in the definition of Property Y with G_1 as the cover. In addition, by reparametrization of h_1 , we may assume that $h_1^{-1}(\operatorname{Bd}(N_1) \times [0, \frac{1}{2}]) \cap K = \emptyset$.

For i=1,2,3,... inductively define N_i and h_i as above with the additional conditions that $N_i \subset N_{i-1} - h_{i-1}^{-1} \left(\operatorname{Bd}(N_{i-1}) \times [0, \frac{1}{2}] \right)$ and $d(K, X-N_i) < 1/2^i$. Let p_i : $[1/i, 1/(i-1)] \to [\frac{1}{4}, \frac{1}{2}]$ be a homeomorphism such that $p_i(1/i) = \frac{1}{2}$. (For the case i=1, use the extended reals.)

Define L_i inductively as follows:

$$L_0 = M \times F,$$

$$L_i = L_{i-1} - \{(x, y) \in N_i \times F | 1/i \leqslant ||y|| \leqslant 1/(i-1) \text{ and } \pi_2 h_i(x) \geqslant p_i(||y||)\}.$$

Let r_i : $[0,1) \times [2/(2i+1), 1/(i-1)) \rightarrow [0,1) \times [2/(2i+1), 1/(i-1))$ be an embedding such that:

- (a) $r_i = id$ on $([0, 1) \times (2/(2i+1))) \cup (\{0\} \times [2/(2i+1), 1/(i-1)))$
- (b) r_i is onto $\{(s, t) \in [0, 1) \times [2/(2i+1), 1/(i-1)] \mid t < 1/i \text{ or } s < p_i(t)\},$
- (c) if $t \ge 2/(2i-1)$, then $\pi_2 r_i((s, t)) \ge 2/(2i-1)$.

Now define $f_i: L_{i-1} \rightarrow L_i$ by

$$f_i((x, y)) = \left(h_i^{-1}(\pi_1 h_i(x), \pi_1 r_i(\pi_2 h_i(x), ||y||)), \ \pi_2 r_i(\pi_2 h_i(x), ||y||) y/||y||\right)$$
for $x \in N_i$ and $2/(2i+1) < ||y|| < 1/(i-1)$

= id elsewhere.

 f_i is a homeomorphism which satisfies the following conditions:

- (1) $f_i = \text{id outside } N_i \times \{y \in F | 2/(2i+1) < ||y|| < 1/(i-1)\},$
- (2) if $||y|| \ge 2/(2i-1)$, then $||\pi_2 f_i((x,y))|| \ge 2/(2i-1)$,
- (3) for $(x, y) \in L_{i-1}$, $\pi_i((x, y))$ and $\pi_i f_i((x, y))$ are contained in some element of G_i .

Let $f = \lim_{i \to \infty} \{f_i \circ f_{i-1} \circ \dots \circ f_2 \circ f_1\}$. By conditions (1) and (2), no point of $M \times F$ is moved more than twice. By condition (3), f approaches the identity on $M \times \{0\}$. Hence, we see that f is a homeomorphism onto a variable product of M by F which is zero on K and such that the homeomorphism is the identity on $M \times \{0\}$. Applying the techniques of [4], we can "squash down" the rest of the variable product by the use of Schori's stability theorem (Corollary 2.3 of [7]).

4. Proof of Theorem 2. The method of proof is due to Henderson and Burghelea and makes use of the following Lemma:

LEMMA. Let U be an open subset of l_2 and let G be a cover of l_2 . Then there exists a countable locally finite simplicial complex K and a homeomorphism $h\colon |K| \times l_2 \to U$ such that for any simplex $\sigma \in K$, $h(|\sigma| \times l_2)$ is contained in some element of the cover.

The proof is contained in [3].

Let U be an open neighborhood of K and let G be an open cover of M. Let G' be a refinement of G such that there do not exist sets $g, g' \in G'$ (possibly the same) such that $g \cap K \neq \emptyset$, $g \cap g' \neq \emptyset$ and $g' \cap (M-U) \neq \emptyset$.

Since all separable F-manifolds are open subsets of l_2 (see [6]), we may apply the Lemma to get a countably locally finite simplicial complex L and a homeomorphism $f: |L| \times l_2 \to U$ such that for each $\sigma \in L$, $f(|\sigma| \times l_2)$ is contained in some element of G'. Let $K' = f^{-1}(K)$.

Let L' be the full subcomplex of L generated by simplexes $\{\sigma \in L | (|\sigma| \times l_2) \cap K' \neq \emptyset\}$. Let A be the set of simplexes σ such that

 $|\sigma| \cap |L'| \neq \emptyset$ but σ is not in L'. Let $v_1, ..., v_n$ be the vertices of σ which are in L', and u_1, \ldots, u_m be those which are not. Let

$$N_{\sigma} = \left\{x \in |\sigma| \, \middle| \, ext{ if } x = \sum_{1}^{n} a_{i} v_{i} + \sum_{1}^{m} b_{i} u_{i} ext{ then } \sum_{1}^{n} a_{i} \geqslant \frac{1}{2}
ight\}$$

and let $N' = |L'| \cup \bigcup N_{\sigma}$. Let $\partial N'$ be the topological boundary of N'in |L|. It can easily be seen that L can be subdivided to L^* so that N'and $\partial N'$ are realizations of subcomplexes of L^* .

Define $c: \partial N' \times [0, 1) \to N'$ as follows: If $x \in N_{\sigma} \subset N'$ and $x = \sum_{i=1}^{n} a_i v_i +$ $+\sum b_i u_i$ with the v_i and u_i as above, then

$$c(x, s) = \sum_{1}^{n} (1+s) a_i v_i + \sum_{1}^{m} (1-s) b_i u_i.$$

c is an embedding onto a collar of $\partial N'$ in N'. Let $N^* = N' \times l_2$ and then $Bd(N^*) = \partial N' \times l_{\mathfrak{p}}$.

By a simple argument using the definition of Property Z and general position, it can be shown that a set with Property Z can be moved off a finite-dimensional cell by a small motion. For details see Lemma 6.1 of [1].

Using the above and induction, there is a homeomorphism q: $|L^*| \times l_2 \rightarrow |L^*| \times l_2$ such that

- (1) q = id outside N^* .
- (2) $g(K') \cap (|L^*| \times \{0\}) = \emptyset$,
- (3) for $\sigma \in L$, $fg^{-1}(|\sigma| \times l_2)$ is contained in some element of G'.

Let $r: |L'| \to (0,1]$ be a continuous function such that for $x \in N'$, $|\{x\} \times \{y \in F | \|y\| \leqslant r(x)\}| \cap g(K') = \emptyset$. Define

$$N = fg^{-1}(N^* - \{(x, y) \in N' \times l_2 | ||y|| < r(x)\}).$$

We will define h: $Bd(N) \times [0,1) \to N$ in the following way: Let $z \in \operatorname{Bd}(N)$. Suppose $(x, y) \in N' \times l_2$ and $z = fg^{-1}((x, y))$. If x is not in $\operatorname{im}(c)$ (the collar of $\partial N'$), then define

$$h(z,s) = fg^{-1}(x, y/(1-s))$$
.

If x is in im(c), then let $t = \pi_2 c^{-1}(x)$, $v = \pi_1 c^{-1}(x)$ and x' = c(v, t + s(1-t)). Now we define

$$h(z, s) = fg^{-1}(x', y \cdot (r(x')/r(x)(1-s)))$$

Then h satisfies the requirements in the definition of Property Y.

References

- [1] R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), pp. 365-383.
- [2] T. A. Chapman, Deficiency infinite-dimensional manifolds, General Topology and its Applications 1 (1971), pp. 263-272.

- [3] W. H. Cutler, A triangulation theorem for F-manifolds, General Topology and its Applications 2 (1972), pp. 45-48.
- Deficiency in F-manifolds, Proceedings AMS 34 (1972), pp. 260-266.
- [5] D. W. Henderson, Corrections and extensions of two papers about infinite-dimensional manifolds, to appear in Topology.
- Infinite-dimensional manifolds are open subsets of Hilbert space, Bull. AMS 75 (1969), pp. 759-762.
- [7] R. Schori, Topological stability for infinite-dimensional manifolds, Compositio Math. 23 (1971), pp. 87-100.

DEPARTMENT OF MATHEMATICS LOUISIANA STATE UNIVERSITY Baton Rouge, La.

Recu par la Rédaction le 26. 1. 1972