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Homotopy for small multifunctions (*)
by
Helga Schirmer (Ottawa)

Abstract. A multifunction @: X —8" from a space X into an n-sphere S" is called
small if each point-image @ (x) is contained in a semi-sphere. A small homotopy is a multi-
function of the form @: X X I 8", where I denotes the unit interval. It is shown that
every usc resp. Ise small multifunction is related to a gingle-valued map by an use resp.
lze small homotopy. Applications are given to multi-homotopy groups of spheres, and
to multi-vector fields on spheres.

1. Introduction. A multifunction ¢: XY from a topological space X
into a topological space Y is a correspondence which assigns to each
point z ¢ X a non-empty subset p(z) of ¥. We call ¢ usc (upper semi-
continuous) if for every open set VC Y with ¢(x) CV there exists an
open neighbourhood U of z such that ¢(U) CV, and if ¢(x) is closed for
all #z ¢ X. (Current usage often omits the condition that an use multi-
funetion should be point-closed, but it is néeded in the proof of Lemma 2.5.)
We call ¢ 1sc (lower semi-continuous) if for every x ¢ X and every open
VCY with ¢(z) nV # @ there exists an open neighbourhood U of »
such that @(2’) "V # @ for all 2’ ¢ U. The term map is reserved for
single-valued continuous functions.

Several authors have considered the problem whether any usc multi-
function ¢: X->8™ whose values ¢(z) are proper subsets of an n-sphere
8™ is homotopic to a map under a suitably restricted homotopy. Acyelic
multifunctions were e.g. investigated by J. W. Jaworowski [5], but it
is still not known whether any usc acyclic multifunction ¢: X—8" is
acyclically homotopic to a map. T. R. Brahana, M. K. Fort, Jr., and
W. G. Horstman [2] proved that every usc cellular multifunetion from
a finite-dimensional compact metric space X into 8" can be transformed
into a map by a cellular homotopy.

Here we derive similar results for “small” multifunctions. Define
a small cap of the n-sphere ||2]| = 1 in E**! ag the smaller part cut off
by a hyperplane of distance d (where 0 << d<< 1) from the centre, and

(*) This research was partially supported by the National Research Council of
Canada (Grant A 7579).
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call 2 multifunetion ¢: X8 small if each ¢(z) i§ con?ained in a small
cap, where the cap can vary with . (These multlf‘unctu?ns are 5 -small,
with &= =, in the sense of [8], [9], as their spherical diameter is <<s.)
A small homotopy is a small multifunction of the form @: X x I 8"

We show that every usc small multifunction ¢: X~ 8™ is related to
a map by 2 small homotopy (Theorem 2.6). This is done by constructing,
with the help of the “spherical convex hull” (see § 2) of ¢(x), an. usc cellular
multifunction associated with ¢, and then using results for such multi-
functions from [2]. We also prove a similar result for Ise small multi-
functions (Theorem 3.3). In this case it follows from a theorem by
B. Michael [6] that there exists a map f: X'— 8" for which f(x) is contained

in the spherieal convex hull of ¢(x). This map therefore approximates

a selection, and is homotopic to ¢.

Isomorphisms between the ordinary homotopy groups of spheres
and those arising from usc or lsec small multifunctions can be obtained
in a routine way (§ 4). Note that no condition related to acyclicity or
even connectedness is imposed on ¢(z). But an example at the end of § 4
shows that the results are no longer true if ¢(x) is an arbitrary proper
subset of 8™ -

We conclude with an application to small multi-vector fields on
gpheres and show that they are homotopic to single-valued ones (§ 5).

All results are stated under the assumption that X is a finite-di-
mensional eompact metric space, although those of § 3 are actually true
under the weaker assumption that X is T, and collection-wise normal
(see [6], p. 380). Background material on multifunctions can e.g. be found
in [1], on convexity in [4] or [11].

2. Homotopy for usc small multifunctions. The aim of this paragraph
is Theorem 2.6 below, in which we show that every usc small multi-
function ¢: X—>S8" is.related to a map by a small homotopy. The
proof uses the concept of the spherical convex. hull, which we con-
sider first.. -

Call a subset A of 8" spherically convex (or weakly convex, see [3],
p.157) if it contains, with each pair of its points, the shortest arc or a gemi-
circular arc of a great circle determined by them. Define the spherical
convex hull (written sconv.4) as the intersection of all spherically convex
sets containing 4. Let ay, ay, ..., an (Where m < n-+1) be points of S*
which span an sm-dimensional simplex ¢ = o(ay, 8y, ..., @) in an (n-1)-
dimensional Euclidean space E"** containing S™ If the set {a, Ga, ..., Gm}
is small, then the origin 0¢d(a,a, .., an), and the image s
=8(t; G, ..y Om) Of 6(ay, Gy, ..., am) under the projection p: B\ {0} 8™
from the origin given by p(«) = xf|z|| is called a spherical simplem. It is
well-known that the convex hull conv 4 of a subset A of B+ is the union
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of all simplices whose vertices are contained in 4. We need an analogon
for the spherical convex hull. '

Leyva 2.1, Let A be a small subset of 8". Then sconvA is the union
of all spherical simplices whose vertices are contained in A.

Proof. Let A* denote the union of all spherical simplices whose
vertices are in A. ' ‘

(i) A* Cseconv.d: It follows easily by induction on the number of
vertices (as in the case of convA in E™) that each spherical simplex
§(ay, Ay vy Wm), With ay, @s, ..., am € A, is contained in sconv.A4, hence
A* C sconv 4.

(i) sconv A C 4*: As s=s(a) CA* for all ae A, we have 4 C A™.
Therefore seconv.4 C A* is true if we can show that A is spherically convex.
For this purpose, take any two points z,y € A*. Then x e s(a,, @y, ..., a@,}
and y e 8(by, by, ..., b;), where A, = {a,, @, ..., &r, by, by, ..., b} is & sUD-
set of 4. If 2z is any point in the shortest arc from # to y, then we can
choose &' € o(@, Aoy ..., &) and Yy’ € ¢ (b, by, ..., b,) such that z = p(z') and
y=p(y’), and choose 2 in the line segment from 2’ to y’ such that
z=p(2'). As 2’ e conv 4,, there exists a simplex ¢ = 0(c;, €5, ..., ¢;) With
vertices in A, which containg 2’. Then

zeplo(ey, tyy oy )] = 8(01, Cay ooy €1)

s0 that ze.AZ. Therefore A* is spherically convex.
Lexma 2.2, If A is o small subset of 8™, then p(conv.Ad) = sconv4.
Proof. As conv4 is the union of all simplices with vertices in A4,
this follows immediately from Lemma 2.1.
A subset A of 8" is called cellular if there exists a sequence F; D K,

D E,D ... of topological n-cells in 8 such that 4 = (") By and A C IntE;
. k=1
for all k. ‘ .
Lenyva 2.3. If A s a small closed set, then sconvA is cellular.
Proof. As A is small, 0 ¢ convd4, and as conv.d is closed, we can

select a sequence of positive numbers e > &, > & > ... converging to zero
such that 0 ¢ N(convd4, ex), where )

N(conv 4, ex) = {2' ¢ B"Y |lz— || < e for some x e convA}.

The set N (conv 4, ) is closed and convex, and hence 0 = N (conv 4, &) »
~ B"1 i closed and convex algo. The definition of spherically convex
implies that the closed set Ep = p(Cg) is spherically convex. Similar to
the Euclidean case it follows that By is homeomorphic to a closed ball,
and as By is n-dimensional by construction, it is a topological n-cell.
We further have conv.A C IntC, and as p is an open map, Lemma 2.2
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yields seonv A C Intp(Ck) = Int By. It is also true that sconvA = (") BEy.
) =1
Therefore the set sconvA is cellular.

PROPOSITION 2.4. Let p: X ->8" be an usc small multifunction from
a finite-dimensional compact meiric space X into an n-sphere. Then there
exrists a map g: X 8" with g(z) e S"\p(x) for all xeX.

Proof. Define a multifunction y: X—E"? by (o) = eonvm)_,
where ;@:—) denotes the closure of ¢ (z). We first show that y is use. Take
any ze¢X, and let ¥ be an open subset of E"*' with y(z) CV. Choose
e>0 such that N(y(w),¢)CV. As ¢ is usc, there exists an open set
U = U{(z) containing # with ¢(U) C N(p(x), ¢/2). Now take any &' ¢ U.
If 4" ¢ y(2), then gy’ is contained in a simplex o = o(ay, @y, ..., 4,,) With

a;eq(z’) for i=1,2,..,m, 8o that

m m
Y = 225“2 with 2}%:1 and all ;> 0.
1=1 i=1
As p(2)CN ((p(m), 3/2), we can select points ay, @, ..., @ In @(z) with
m
llae— a,:.g< s Hy= E Ara;, then-
=1
- m.:
ly—y'l < D) Ailla—al<e.
=1
As y e conve(z) C z(2), we have y" e N(y(x), £ CV and hence x(U)CV.
8o x is use. ‘

As ¢(x) is small, we have conve(z) C B*\ {0}, and therefore a small
multifunetion y: X+ 8" can be defined by y(z) = p o x(2) = sconve(z).
Th(:} composite of two use multifunetions is use, and as conve(z) is closed,
80 is p(x). Lemma 2.3 shows that y(z) is cellular, and hence it follows
from [2], Theorem 1 that there exists a map f: X->8™ such that f(x)
e S™\p(z) for all zeX. L

We call an use (Ise) small multifunction @: X x I->8" an use (Isc)
small homotopg./ between the multifunctions g,(z) = &(z,0) and ¢ (z)
= @(z, 1). Ag in 2] we call it a special homotopy if in addition &(z, t) is
homeomorphie to & (x, 0) for all # « X and 0 < ¢ < 1. Denote the antipodal
point of y in §* by —y. '

LEMY?IA 2.5. Let ¢: X—>8" be an use (Ise) small multifunction and
X —>~;S’ be a map such that —f(z) ¢ p(x) for all € X. Then there exists
a special homotopy between ¢ and f.

Proof. Asin the proof of [2], Lemma 3 a homotopy can be defined by
Dz, ) = V_1a¥, 1) yep(@)},
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where for each ae 8™ the map J,: [S™\{a}]1xI->8" is given by
J (@, 1) = [—ta+ (1—Dz]l—ta+ (1—D) ]  for z e S™\{a} and 0 LT,

The verification that @ is special is easy.

TEEOREM 2.6. Let @: X-8™ be an usc small multifunction from
a finite-dimensional compact. metric space X into an n-sphere. Then there
erists a special homolopy between ¢ and a map f: X—>8™

Proof. From Proposition 2.4 and Lemma 2.5, with f= —g.

3. Homotopy for lsc small multifunctions. We now prove the analogon
of Theorem 2.6 for lse small multifunctions. But the method is different;
instead of Proposition 2.4 we use the following Proposition 3.1 which is
a consequence of a selection theorem by E. Michael.-

ProPOSITION 3.1. Let X be a finite-dimensional compact metric space
and g: X -> 8" be a 1sc small multifunction. Then there exists a map f: X 8"
such that f(2) e sconve(x) for all weX.

Proof. Define a multifunction y: X—=E"" by z(x) = conve(z). As
in the proof of Proposition 2.4 it is easy to show that y is Isc (see also [6],
Proposition 2.6). It now follows from [6], Theorem 3.1'" that there exists
a continuous selection g: X E™* of y (i.e. a map such that g(z) € ()
for all z e X). As the closed (n--1)-ball B**! bounded by 8" is convex
and as @(z) is small, we actually have yx(z)C B"*\{0} and hence g(=)
e« B"\{0}. Define a map f: X—>8" by f=p - g, where p is again the
projection from the origin. As g{(z) e conve(z), Lemma 2.2 implies f(x)
e seonve(x), and Proposition 3.1 is proved.

The following selection theorem. is an immediate consequence of
Proposition 3.1.

COROLLARY 3.2. Let ¢: X8 be a lsc small multifunction from
a finite-dimensional compact metric space X into an n-sphere for which
each @(x) is spherically convex. Then ¢ has a continuous selection.

THEOREM 3.3. Let ¢: X > 8" be a Isc small multifunction from a finite-
dimensional compact metric space X into an n-sphere. Then there exists
a special homotopy between ¢ and a map f: X S™

Proof. From Proposition 3.1 we obtain a map g: X+ 8™ such that
g(x) esconve(z) for all zeX. As p(x) is small it follows that —g(x)
¢ sconve(z) and hence —g (%) ¢ ¢(»). Therefore the map f: X 8" defined
by f(z) = —g(x) is related to ¢ by a special homotopy according to
Lemma 2.5.

4. Homotopy groups of small multifunctions. It has been shown by
C. J. Rhee [7] that the homotopy group arising from cellular homotopy
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classes of use eellular multifunctions of the form (I™, BAI™)— (8", a) in
the standard way is isomorphic to the ordinary homotopy group mm(S").
The crucial steps in the construction of the isomorphism are the analogue
of Theorem 2.6 for cellular multifunctions contained in [2], and the fact
that two maps fp,fi: X->S8" related by a cellular homotopy are also
related by a single-valued homotopy [2]. This is still true for small
homotopies, as the next theorem can be proved in a way completely
analogous to Theorem 3 in [2].

THEOREM 4.1. If X is a finite-dimensional compact metric space and
for fuz X8 are maps related by an usc or 1se small homotopy, then they
are also related by a single-valued homotopy.

Multi-homotopy groups for small multifunctions can be defined as
in [10]. Denote by M,IT(S8", a) the homotopy group formed from the
set of use small multifunctions of the form (I™, BAI™)— (8" a) under
usc small homotopies, and define M;I7,(8" a) for lsc small multifunctions
correspondingly. The methods used in [7] carry over to verify the following
theorem; details are omitted.

TarOREM 4.2. The groups M, IIn(8", a) and M, IIn(S" a) are both
isomorphic 10 mm(S™).

Remark. It is possible that the definition of “small” used in this
paper can be relaxed. But the following example shows that a condition
which only asks that-each ¢(z) is.a proper subset of 8" leads to ditficulties.

" ExaMPLE. Define a homotopy @: §2x I->82 by
Oz, t)={y eS| olw,y)=ta} for 28 0<E<L.

Then @ is & continuous (ie. both use and lsc) multifunction, and each
O(z, 1) is a proper subset of 82. But it is not small, as & (z, }) is not small.
As @(z,0) is the identity and ®(«x, 1) is the antipodal map, we see that
Theorem 4.1, and hence Theorem 4.2, are not true any more if “small”
is replaced by “proper subset of S,

5. Small malti-vector fields on spheres. A (single-valued) vector tield
on & sphere 8" (n > 1) is a map f: 8§ 8" such that for every z e 8" the
vectors Oz and Of(x) are orthogonal. Similarly we define a multi-vector
field on 8" as a multifunction p: §"->8" such that for every z < S* the
vector Op is orthogonal to Oy for all y e ¢(2). The multi-vector field is
called usc (Isc) if the function ¢ is use (Ise). It is called small if @ is small.
Two use (Isc) small multi-vector fields g, ¢: S"-> 8" are called homotopic
if there exists an use (Isc) small homotopy @: 87 x I+ 8" such that @ (2, 0)

= gy(®), D(x,1) = ¢y(2), and Oz is orthogonal to O—g} for all ye®(x,t)
and 0 <t < 1.

icm®

Homotopy for small multifunctions 175

TEHEOREM 5.1. Every usc or lse small multi-vector field on 8™n = 1)
is homotopic to a single-valued vector field.

Proof. (i) Let ¢: 8" 8" be an use small multi-vector field. Denote
by Con(4, ) the cone in E**! over 4 C B"* with vertex z (i.e. the join
of A and z), and define for every z ¢ 8" the set y(x) C B™ by

p(x) = Con(seonv&@, z)y v Con(sconv«;o—(;), —a).

As @ is small, 0 ¢ 9(), and hence a multifunction y: §™— 8" can be defined
by x(2) = p(p(»)), where p: B**\{0}>S" is again the projection from
the origin. .

It was shown in the proof of Proposition 2.4 that the multifunction
sconve(z) is use, and a very similar argument shows that p: S*— E"\{0}
is use also. Therefore y: 8" 8™ is use.

Each y(x) is cellular: As () is small, we can select a sequence of
positive numbers & > & > & >... such that 0 ¢ ¥(Con(4, z), &), where
A= seonv_(;&;_) and k= 1,2,3 ... Cut B*™ into two parts by the hyper-
plane through 0 and orthogonal to Oz, and let B, be the (closed) part
containing . Then N (Con (4, z), &) ~ B, is & closed and convex set, and

Cry = p[ﬁ(COH(A, ), Pk) ~B,]

is a spherically convex set which contains no antipodal points. Similarly
we define €, _. Then ¢} = (. v C,_ is a cell, contains y() in its interior,
and y(z)= [ Ck.

k=1 .

From [2], Theorem 1 we conclude the existence of a map g: 8- 8"
with g(x) e S™\yx(z) for all xze8" Let 8" *x) be the (n—1)-sphere
obtained by intersecting S™ with the hyperplane through 0 and orthogonal
to Oz, and define f: §”— 8" by taking as f(x) the point of intersection
of 8" }(z) with the semicircle from z to —z which contains g(x). Clearly
Jf is continuous and is a vector field. As f(z) ¢ (%), a special homotopy

from ¢ to the vector field —f can be constructed as in the proof of
Lemma, 2.5.

(ii) Now assume that the small multi-vector field g: S"— 8" is Isc.
As @(x) C 8" (z), we see from Lemma 2.1 that sconve(z)C 8" Y(x).
Hence the map ¢: 8"—+8" with g¢(z)esconve(z) provided by Propo-
sition 3.1 is a vector field. The construction of the special homotopy @
between ¢ and g in the proof of Lemma 2.5 is such that @ is a homotopy
between the vector fields ¢ and g. ‘

COROLLARY 5.2. There exists no use or lsc small multi-vector field
on 8" if n is even.
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On a paper by Igbalunnisa
by
M. F. Janowitz (Amherst, Mass.)

Abstract. It is known that if I is a complete lattice which is relatively comple-
mented or (more generally) both section and dual section semicomplemented, then its
congruence lattice is a Stone lattice. Recently, Igbalunnisa has proved this to be true
when L is a complete, weakly modular, section complemented lattice. By weakening
the axioms of weak modularity and section semicomplementation, a class of lattices
is produced that includes all of the above examples, and for which the above result
remains valid. A second class of lattices is then introduced on which a fairly explicit
formula can be given for the pseudocomplement of a congruence relation. This second
class includes all section semicomplemented lattices whose dual is section semicomple-
mented, and the formula for pseudocomplements is a new one for these lattices also.

-1. Introduction. In [3], Theorem 2, p. 316, Iqbalunnisa proves that
if L is a complete, weakly modular, section complemented lattice, then
the lattice of congruence relations of I forms a Stone lattice, thus
generalizing a result of the author ([5], Theorem 4.8, p. 202). On the
other hand, the author has shown ([6], Theorem 4.17, p. 72) that if L is
a complete lattice which is both section semicomplemented and dual
section semicomplemented, then its congruence lattice is a Stone lattice.
Our purpose here is to provide a common generalization of these results.
For convenience, our notation and terminology will follow that of [4].
Also, it will prove useful to let Axiom (X*) denote the dual of Axiom (X)
throughout the paper. ‘

2. The general case. Though all of the above lattices are weakly
modular, it turns out that we can get by with a slightly weaker axiom.
Accordingly, we introduce Axiom (A) in a lattice with 0:

(A) a/0->c/d with ¢ > d implies c/d—a,ja, for suitable elements ay, a,
such that a > a, > a,.

Lewvwva 1. Let L be a lattice with 0. Aziom (A) is equivalent to the
assertion that for every congruence relation @ on L, a = 0(0*) iff the interval
[0, a] contains only trivial congruence classes modulo 6.

Proof. Let Axiom (A) hold. If a =0(0*) and a>b>¢ with
b = ¢(0), then b = ¢(@AO") implies b = c. Suppose on the other hand
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