

Homotopy for small multifunctions (*)

by

Helga Schirmer (Ottawa)

Abstract. A multifunction $\varphi\colon X\to S^n$ from a space X into an n-sphere S^n is called small if each point-image $\varphi(x)$ is contained in a semi-sphere. A small homotopy is a multifunction of the form $\Phi\colon X\times I\to S^n$, where I denotes the unit interval. It is shown that every use resp. lsc small multifunction is related to a single-valued map by an use resp. lsc small homotopy. Applications are given to multi-homotopy groups of spheres, and to multi-vector fields on spheres.

1. Introduction. A multifunction $\varphi\colon X\to Y$ from a topological space X into a topological space Y is a correspondence which assigns to each point $x\in X$ a non-empty subset $\varphi(x)$ of Y. We call φ use (upper semicontinuous) if for every open set $V\subset Y$ with $\varphi(x)\subset V$ there exists an open neighbourhood U of x such that $\varphi(U)\subset V$, and if $\varphi(x)$ is closed for all $x\in X$. (Current usage often omits the condition that an use multifunction should be point-closed, but it is needed in the proof of Lemma 2.5.) We call φ lse (lower semi-continuous) if for every $x\in X$ and every open $V\subset Y$ with $\varphi(x)\cap V\neq\emptyset$ there exists an open neighbourhood U of x such that $\varphi(x')\cap V\neq\emptyset$ for all $x'\in U$. The term map is reserved for single-valued continuous functions.

Several authors have considered the problem whether any use multifunction $\varphi \colon X \to S^n$ whose values $\varphi(x)$ are proper subsets of an n-sphere S^n is homotopic to a map under a suitably restricted homotopy. Acyclic multifunctions were e.g. investigated by J. W. Jaworowski [5], but it is still not known whether any use acyclic multifunction $\varphi \colon X \to S^n$ is acyclically homotopic to a map. T. R. Brahana, M. K. Fort, Jr., and W. G. Horstman [2] proved that every use cellular multifunction from a finite-dimensional compact metric space X into S^n can be transformed into a map by a cellular homotopy.

Here we derive similar results for "small" multifunctions. Define a small cap of the *n*-sphere ||x|| = 1 in E^{n+1} as the smaller part cut off by a hyperplane of distance d (where 0 < d < 1) from the centre, and

^(*) This research was partially supported by the National Research Council of Canada (Grant A 7579).

call a multifunction $\varphi \colon X \to S^n$ small if each $\varphi(x)$ is contained in a small cap, where the cap can vary with x. (These multifunctions are δ -small, with $\delta = \pi$, in the sense of [8], [9], as their spherical diameter is $\langle \pi . \rangle$ A small homotopy is a small multifunction of the form $\Phi \colon X \times I \to S^n$.

We show that every use small multifunction $\varphi \colon X \to S^n$ is related to a map by a small homotopy (Theorem 2.6). This is done by constructing, with the help of the "spherical convex hull" (see § 2) of $\varphi(x)$, an use cellular multifunction associated with φ , and then using results for such multifunctions from [2]. We also prove a similar result for lse small multifunctions (Theorem 3.3). In this case it follows from a theorem by E. Michael [6] that there exists a map $f \colon X \to S^n$ for which f(x) is contained in the spherical convex hull of $\varphi(x)$. This map therefore approximates a selection, and is homotopic to φ .

Isomorphisms between the ordinary homotopy groups of spheres and those arising from use or lse small multifunctions can be obtained in a routine way (§ 4). Note that no condition related to acyclicity or even connectedness is imposed on $\varphi(x)$. But an example at the end of § 4 shows that the results are no longer true if $\varphi(x)$ is an arbitrary proper subset of S^n .

We conclude with an application to small multi-vector fields on spheres and show that they are homotopic to single-valued ones (§ 5).

All results are stated under the assumption that X is a finite-dimensional compact metric space, although those of § 3 are actually true under the weaker assumption that X is T_1 and collection-wise normal (see [6], p. 380). Background material on multifunctions can e.g. be found in [1], on convexity in [4] or [11].

2. Homotopy for use small multifunctions. The aim of this paragraph is Theorem 2.6 below, in which we show that every use small multifunction $\varphi\colon X\to S^n$ is related to a map by a small homotopy. The proof uses the concept of the spherical convex hull, which we consider first.

Call a subset A of S^n spherically convex (or weakly convex, see [3], p. 157) if it contains, with each pair of its points, the shortest arc or a semi-circular arc of a great circle determined by them. Define the spherical convex hull (written sconv A) as the intersection of all spherically convex sets containing A. Let $a_1, a_2, ..., a_m$ (where $m \le n+1$) be points of S^n which span an m-dimensional simplex $\sigma = \sigma(a_1, a_2, ..., a_m)$ in an (n+1)-dimensional Euclidean space E^{n+1} containing S^n . If the set $\{a_1, a_2, ..., a_m\}$ is small, then the origin $0 \notin \sigma(a_1, a_2, ..., a_m)$, and the image $s = s(a_1, a_2, ..., a_m)$ of $\sigma(a_1, a_2, ..., a_m)$ under the projection $p: E^{n+1} \setminus \{0\} \rightarrow S^n$ from the origin given by p(x) = x/||x|| is called a spherical simplex. It is well-known that the convex hull conv A of a subset A of E^{n+1} is the union

of all simplices whose vertices are contained in A. We need an analogon for the spherical convex hull.

LEMMA 2.1. Let A be a small subset of Sⁿ. Then sconv A is the union of all spherical simplices whose vertices are contained in A.

Proof. Let A^* denote the union of all spherical simplices whose vertices are in A.

- (i) $A^* \subset \operatorname{sconv} A$: It follows easily by induction on the number of vertices (as in the case of $\operatorname{conv} A$ in E^{n+1}) that each spherical simplex $s(a_1, a_2, \ldots, a_m)$, with $a_1, a_2, \ldots, a_m \in A$, is contained in $\operatorname{sconv} A$, hence $A^* \subset \operatorname{sconv} A$.
- (ii) sconv $A \subset A^*$: As $s = s(a) \subset A^*$ for all $a \in A$, we have $A \subset A^*$. Therefore sconv $A \subset A^*$ is true if we can show that A^* is spherically convex. For this purpose, take any two points $x, y \in A^*$. Then $x \in s(a_1, a_2, ..., a_r)$ and $y \in s(b_1, b_2, ..., b_s)$, where $A_1 = \{a_1, a_2, ..., a_r, b_1, b_2, ..., b_s\}$ is a subset of A. If z is any point in the shortest arc from x to y, then we can choose $x' \in \sigma(a_1, a_2, ..., a_r)$ and $y' \in \sigma(b_1, b_2, ..., b_s)$ such that x = p(x') and y = p(y'), and choose z' in the line segment from x' to y' such that z = p(z'). As $z' \in \text{conv } A_1$, there exists a simplex $\sigma = \sigma(c_1, c_2, ..., c_l)$ with vertices in A_1 which contains z'. Then

$$z \in p[\sigma(c_1, c_2, ..., c_t)] = s(c_1, c_2, ..., c_t),$$

so that $z \in A_{\underline{z}}^*$. Therefore A^* is spherically convex.

LEMMA 2.2. If A is a small subset of S^n , then p(convA) = sconvA. Proof. As conv A is the union of all simplices with vertices in A, this follows immediately from Lemma 2.1.

A subset A of S^n is called *cellular* if there exists a sequence $E_1 \supset E_2$ $\supset E_3 \supset \dots$ of topological n-cells in S^n such that $A = \bigcap_{k=1}^{\infty} E_k$ and $A \subset \operatorname{Int} E_k$ for all k.

LEMMA 2.3. If A is a small closed set, then sconv A is cellular.

Proof. As A is small, $0 \notin \text{conv } A$, and as conv A is closed, we can select a sequence of positive numbers $\varepsilon_1 > \varepsilon_2 > \varepsilon_3 > \dots$ converging to zero such that $0 \notin \overline{N}(\text{conv } A, \varepsilon_k)$, where

$$\overline{N}(\operatorname{conv} A, \varepsilon_k) = \{x' \in E^{n+1} | \ \|x - x'\| \leqslant \varepsilon_k \ \text{for some} \ x \in \operatorname{conv} A\} \ .$$

The set $\overline{N}(\operatorname{conv} A, \varepsilon_k)$ is closed and convex, and hence $C_k = \overline{N}(\operatorname{conv} A, \varepsilon_k) \cap B^{n+1}$ is closed and convex also. The definition of spherically convex implies that the closed set $E_k = p(C_k)$ is spherically convex. Similar to the Euclidean case it follows that E_k is homeomorphic to a closed ball, and as E_k is n-dimensional by construction, it is a topological n-cell. We further have $\operatorname{conv} A \subset \operatorname{Int} C_k$, and as p is an open map, Lemma 2.2

yields sconv $A \subset \operatorname{Int} p\left(C_{k}\right) = \operatorname{Int} E_{k}$. It is also true that sconv $A = \bigcap_{k=1}^{\infty} E_{k}$. Therefore the set sconv A is cellular.

PROPOSITION 2.4. Let $\varphi: X \to S^n$ be an use small multifunction from a finite-dimensional compact metric space X into an n-sphere. Then there exists a map $g: X \to S^n$ with $g(x) \in S^n \setminus \varphi(x)$ for all $x \in X$.

Proof. Define a multifunction $\chi\colon X\to E^{n+1}$ by $\chi(x)=\operatorname{conv}\overline{\varphi(x)},$ where $\overline{\varphi(x)}$ denotes the closure of $\varphi(x)$. We first show that χ is usc. Take any $x\in X$, and let V be an open subset of E^{n+1} with $\chi(x)\subset V$. Choose $\varepsilon>0$ such that $N(\chi(x),\varepsilon)\subset V$. As φ is usc, there exists an open set U=U(x) containing x with $\varphi(U)\subset N(\varphi(x),\varepsilon/2)$. Now take any $x'\in U$. If $y'\in \chi(x')$, then y' is contained in a simplex $\sigma=\sigma(a_1',a_2',\ldots,a_m')$ with $a_i'\in \overline{\varphi(x')}$ for $i=1,2,\ldots,m$, so that

$$y' = \sum_{i=1}^m \lambda_i a_i' \quad ext{ with } \sum_{i=1}^m \lambda_i = 1 ext{ and all } \lambda_i \geqslant 0 \;.$$

As $\varphi(x') \subset N(\varphi(x), \varepsilon/2)$, we can select points $a_1, a_2, ..., a_m$ in $\varphi(x)$ with $||a_t - a_t'|| < \varepsilon$. If $y = \sum_{i=1}^m \lambda_i a_i$, then

$$||y-y'|| \leqslant \sum_{i=1}^m \lambda_i ||a_i-a_i'|| < \varepsilon$$
 .

As $y \in \operatorname{conv} \varphi(x) \subset \chi(x)$, we have $y' \in N(\chi(x), \varepsilon) \subset V$ and hence $\chi(U) \subset V$. So χ is usc.

As $\varphi(x)$ is small, we have $\operatorname{conv} \overline{\varphi(x)} \subset B^{n+1} \setminus \{0\}$, and therefore a small multifunction $\psi \colon X \to S^n$ can be defined by $\psi(x) = p \circ \chi(x) = \operatorname{sconv} \varphi(x)$. The composite of two usc multifunctions is usc, and as $\operatorname{conv} \varphi(x)$ is closed, so is $\psi(x)$. Lemma 2.3 shows that $\psi(x)$ is cellular, and hence it follows from [2], Theorem 1 that there exists a map $f \colon X \to S^n$ such that $f(x) \in S^n \setminus \psi(x)$ for all $x \in X$.

We call an use (lsc) small multifunction $\Phi \colon X \times I \to S^n$ an use (lsc) small homotopy between the multifunctions $\varphi_0(x) = \Phi(x,0)$ and $\varphi_1(x) = \Phi(x,1)$. As in [2] we call it a special homotopy if in addition $\Phi(x,t)$ is homeomorphic to $\Phi(x,0)$ for all $x \in X$ and $0 \le t < 1$. Denote the antipodal point of y in S^n by -y.

LEMMA 2.5. Let $\varphi \colon X \to S^n$ be an use (1sc) small multifunction and $f \colon X \to S^n$ be a map such that $-f(x) \notin \varphi(x)$ for all $x \in X$. Then there exists a special homotopy between φ and f.

Proof. As in the proof of [2], Lemma 3 a homotopy can be defined by

$$\Phi(x, t) = \{J_{-f(x)}(y, t) | y \in \varphi(x)\},\,$$

where for each $a \in S^n$ the map J_a : $[S^n \setminus \{a\}] \times I \to S^n$ is given by $J_a(x,t) = [-ta + (1-t)x]/||-ta + (1-t)x|| \quad \text{ for } x \in S^n \setminus \{a\} \text{ and } 0 \leqslant t \leqslant 1.$ The verification that Φ is special is easy.

THEOREM 2.6. Let $\varphi \colon X \to S^n$ be an use small multifunction from a finite-dimensional compact metric space X into an n-sphere. Then there exists a special homotopy between φ and a map $f \colon X \to S^n$.

Proof. From Proposition 2.4 and Lemma 2.5, with f = -g.

3. Homotopy for lsc small multifunctions. We now prove the analogon of Theorem 2.6 for lsc small multifunctions. But the method is different; instead of Proposition 2.4 we use the following Proposition 3.1 which is a consequence of a selection theorem by E. Michael.

PROPOSITION 3.1. Let X be a finite-dimensional compact metric space and $\varphi: X \to S^n$ be a lsc small multifunction. Then there exists a map $f: X \to S^n$ such that $f(x) \in \text{sconv} \varphi(x)$ for all $x \in X$.

Proof. Define a multifunction $\chi\colon X\to E^{n+1}$ by $\chi(x)=\operatorname{conv}\varphi(x)$. As in the proof of Proposition 2.4 it is easy to show that χ is lsc (see also [6], Proposition 2.6). It now follows from [6], Theorem 3.1" that there exists a continuous selection $g\colon X\to E^{n+1}$ of χ (i.e. a map such that $g(x)\in \chi(x)$ for all $x\in X$). As the closed (n+1)-ball B^{n+1} bounded by S^n is convex and as $\varphi(x)$ is small, we actually have $\chi(x)\subset B^{n+1}\setminus\{0\}$ and hence $g(x)\in B^{n+1}\setminus\{0\}$. Define a map $f\colon X\to S^n$ by $f=p\circ g$, where p is again the projection from the origin. As $g(x)\in\operatorname{conv}\varphi(x)$, Lemma 2.2 implies $f(x)\in\operatorname{conv}\varphi(x)$, and Proposition 3.1 is proved.

The following selection theorem is an immediate consequence of Proposition 3.1.

COROLLARY 3.2. Let $\varphi \colon X \to S^n$ be a lsc small multifunction from a finite-dimensional compact metric space X into an n-sphere for which each $\varphi(x)$ is spherically convex. Then φ has a continuous selection.

THEOREM 3.3. Let $\varphi \colon X \to S^n$ be a lsc small multifunction from a finitedimensional compact metric space X into an n-sphere. Then there exists a special homotopy between φ and a map $f \colon X \to S^n$.

Proof. From Proposition 3.1 we obtain a map $g: X \to S^n$ such that $g(x) \in \operatorname{sconv} \varphi(x)$ for all $x \in X$. As $\varphi(x)$ is small it follows that $-g(x) \notin \operatorname{sconv} \varphi(x)$ and hence $-g(x) \notin \varphi(x)$. Therefore the map $f: X \to S^n$ defined by f(x) = -g(x) is related to φ by a special homotopy according to Lemma 2.5.

4. Homotopy groups of small multifunctions. It has been shown by C. J. Rhee [7] that the homotopy group arising from cellular homotopy

classes of use cellular multifunctions of the form $(I^m, \operatorname{Bd} I^m) \to (S^n, a)$ in the standard way is isomorphic to the ordinary homotopy group $\pi_m(S^n)$. The crucial steps in the construction of the isomorphism are the analogue of Theorem 2.6 for cellular multifunctions contained in [2], and the fact that two maps $f_0, f_1: X \to S^n$ related by a cellular homotopy are also related by a single-valued homotopy [2]. This is still true for small homotopies, as the next theorem can be proved in a way completely analogous to Theorem 3 in [2].

THEOREM 4.1. If X is a finite-dimensional compact metric space and $f_0, f_1: X \to S^n$ are maps related by an use or lie small homotopy, then they are also related by a single-valued homotopy.

Multi-homotopy groups for small multifunctions can be defined as in [10]. Denote by $M_u\Pi_m(S^n,a)$ the homotopy group formed from the set of use small multifunctions of the form $(I^m,\operatorname{Bd} I^m)\to (S^n,a)$ under use small homotopies, and define $M_l\Pi_m(S^n,a)$ for lsc small multifunctions correspondingly. The methods used in [7] carry over to verify the following theorem; details are omitted.

THEOREM 4.2. The groups $M_u\Pi_m(S^n, a)$ and $M_l\Pi_m(S^n, a)$ are both isomorphic to $\pi_m(S^n)$.

Remark. It is possible that the definition of "small" used in this paper can be relaxed. But the following example shows that a condition which only asks that each $\varphi(x)$ is a proper subset of S^n leads to difficulties.

EXAMPLE. Define a homotopy $\Phi: S^2 \times I \rightarrow S^2$ by

$$\Phi(x,t) = \{y \in S^2 | \rho(x,y) = t\pi\}$$
 for $x \in S^2$, $0 \le t \le 1$.

Then Φ is a continuous (i.e. both use and lsc) multifunction, and each $\Phi(x,t)$ is a proper subset of S^2 . But it is not small, as $\Phi(x,\frac{1}{2})$ is not small. As $\Phi(x,0)$ is the identity and $\Phi(x,1)$ is the antipodal map, we see that Theorem 4.1, and hence Theorem 4.2, are not true any more if "small" is replaced by "proper subset of S^{n} ".

5. Small multi-vector fields on spheres. A (single-valued) vector field on a sphere S^n ($n \ge 1$) is a map $f \colon S^n \to S^n$ such that for every $x \in S^n$ the vectors \overrightarrow{Ox} and $\overrightarrow{Of}(x)$ are orthogonal. Similarly we define a multi-vector field on S^n as a multifunction $\varphi \colon S^n \to S^n$ such that for every $x \in S^n$ the vector \overrightarrow{Ox} is orthogonal to \overrightarrow{Oy} for all $y \in \varphi(x)$. The multi-vector field is called use (lse) if the function φ is use (lse). It is called small if φ is small. Two use (lse) small multi-vector fields $\varphi_0, \varphi_1 \colon S^n \to S^n$ are called homotopic if there exists an use (lse) small homotopy $\Phi \colon S^n \times I \to S^n$ such that $\Phi(x, 0) = \varphi_0(x), \Phi(x, 1) = \varphi_1(x),$ and \overrightarrow{Ox} is orthogonal to \overrightarrow{Oy} for all $y \in \Phi(x, t)$ and $0 \le t \le 1$.

THEOREM 5.1. Every use or lse small multi-vector field on $S^n(n \ge 1)$ is homotopic to a single-valued vector field.

Proof. (i) Let $\varphi \colon S^n \to S^n$ be an usc small multi-vector field. Denote by $\operatorname{Con}(A, x)$ the cone in E^{n+1} over $A \subset E^{n+1}$ with vertex x (i.e. the join of A and x), and define for every $x \in S^n$ the set $\psi(x) \subset E^{n+1}$ by

$$\psi(x) = \operatorname{Con}(\operatorname{sconv}_{\varphi(x)}, x) \cup \operatorname{Con}(\operatorname{sconv}_{\varphi(x)}, -x)$$
.

As φ is small, $0 \notin \psi(x)$, and hence a multifunction $\chi \colon S^n \to S^n$ can be defined by $\chi(x) = p(\psi(x))$, where $p \colon E^{n+1} \setminus \{0\} \to S^n$ is again the projection from the origin.

It was shown in the proof of Proposition 2.4 that the multifunction $\operatorname{sconv}_{\varphi}(x)$ is use, and a very similar argument shows that $\psi \colon S^n \to E^{n+1} \setminus \{0\}$ is use also. Therefore $\gamma \colon S^n \to S^n$ is use.

Each $\chi(x)$ is cellular: As $\varphi(x)$ is small, we can select a sequence of positive numbers $\varepsilon_1 > \varepsilon_2 > \varepsilon_3 > \dots$ such that $0 \notin \overline{N}(\operatorname{Con}(A,x), \varepsilon_k)$, where $A = \operatorname{sconv} \overline{\varphi(x)}$ and $k = 1, 2, 3 \dots$ Cut B^{n+1} into two parts by the hyperplane through 0 and orthogonal to Ox, and let B_+ be the (closed) part containing x. Then $\overline{N}(\operatorname{Con}(A,x), \varepsilon_k) \cap B_+$ is a closed and convex set, and

$$C_{k+} = p\left[\overline{N}(\operatorname{Con}(A, x), \varepsilon_k) \cap B_+\right]$$

is a spherically convex set which contains no antipodal points. Similarly we define C_{k-} . Then $C_k=C_{k+}\cup C_{k-}$ is a cell, contains $\chi(x)$ in its interior, and $\chi(x)=\bigcap\limits_{k-1}^{\infty}C_k$.

From [2], Theorem 1 we conclude the existence of a map $g: S^n \to S^n$ with $g(x) \in S^n \setminus \chi(x)$ for all $x \in S^n$. Let $S^{n-1}(x)$ be the (n-1)-sphere obtained by intersecting S^n with the hyperplane through 0 and orthogonal to \overrightarrow{Ox} , and define $f: S^n \to S^n$ by taking as f(x) the point of intersection of $S^{n-1}(x)$ with the semicircle from x to -x which contains g(x). Clearly f is continuous and is a vector field. As $f(x) \notin \varphi(x)$, a special homotopy from φ to the vector field -f can be constructed as in the proof of Lemma 2.5.

(ii) Now assume that the small multi-vector field $\varphi\colon S^n\to S^n$ is lsc. As $\varphi(x)\subset S^{n-1}(x)$, we see from Lemma 2.1 that $\mathrm{sconv}\varphi(x)\subset S^{n-1}(x)$. Hence the map $g\colon S^n\to S^n$ with $g(x)\in \mathrm{sconv}\varphi(x)$ provided by Proposition 3.1 is a vector field. The construction of the special homotopy Φ between φ and g in the proof of Lemma 2.5 is such that Φ is a homotopy between the vector fields φ and g.

COROLLARY 5.2. There exists no use or lsc small multi-vector field on S^m if n is even.

H. Schirmer

References

- [1] C. Berge, Topological Spaces, Edinburgh and London 1963.
- [2] T. R. Brahana, M. K. Fort, Jr., and Walt G. Horstman, Homotopy for cellular set-valued functions, Proc. Amer. Math. Soc. 16 (1965), pp. 455-459.
- [3] L. Danzer, B. Grünbaum and V. Klee, Helly's theorem and its relatives, Proc. symposia in pure mathematics, vol. 7, Amer. Math. Soc., Providence, R. I. 1963.
- [4] H. G. Eggleston Convexity, Cambridge Tracts in Mathematics and Mathematical Physics 47 (1966).
- [5] J. W. Jaworowski, Some consequences of the Vietoris mapping theorem, Fund. Math. 45 (1958), pp. 261-272.
- [6] E. Michael, Continuous selections I, Ann. of Math. 63 (1956), pp. 361-382.
- [7] C. J. Rhee, Homotopy groups for cellular set-valued functions, Proc. Amer. Math. Soc. 19 (1968), pp. 874-876.
- [8] H. Schirmer, δ-continuous selections of small multifunctions, Canad. J. Math. 24 (1972), pp. 631-635.
- [9] Near fixed points of small use multifunctions, to appear.
- [10] W. L. Strother, Multi-homotopy, Duke Math. J. 22 (1955), pp. 281-285.
- [11] F. A. Valentine, Convex Sets, New York, San Francisco, Toronto, London 1964

CARLETON UNIVERSITY Ottawa

Reçu par la Rédaction le 26. 1. 1972

On a paper by Igbalunnisa

by

M. F. Janowitz (Amherst, Mass.)

Abstract. It is known that if L is a complete lattice which is relatively complemented or (more generally) both section and dual section semicomplemented, then its congruence lattice is a Stone lattice. Recently, Iqbalunnisa has proved this to be true when L is a complete, weakly modular, section complemented lattice. By weakening the axioms of weak modularity and section semicomplementation, a class of lattices is produced that includes all of the above examples, and for which the above result remains valid. A second class of lattices is then introduced on which a fairly explicit formula can be given for the pseudocomplement of a congruence relation. This second class includes all section semicomplemented lattices whose dual is section semicomplemented, and the formula for pseudocomplements is a new one for these lattices also.

- 1. Introduction. In [3], Theorem 2, p. 316, Iqbalunnisa proves that if L is a complete, weakly modular, section complemented lattice, then the lattice of congruence relations of L forms a Stone lattice, thus generalizing a result of the author ([5], Theorem 4.8, p. 202). On the other hand, the author has shown ([6], Theorem 4.17, p. 72) that if L is a complete lattice which is both section semicomplemented and dual section semicomplemented, then its congruence lattice is a Stone lattice. Our purpose here is to provide a common generalization of these results. For convenience, our notation and terminology will follow that of [4]. Also, it will prove useful to let Axiom (X*) denote the dual of Axiom (X) throughout the paper.
- 2. The general case. Though all of the above lattices are weakly modular, it turns out that we can get by with a slightly weaker axiom. Accordingly, we introduce Axiom (A) in a lattice with 0:
- (A) $a/0 \rightarrow c/d$ with c > d implies $c/d \rightarrow a_1/a_2$ for suitable elements a_1 , a_2 such that $a \geqslant a_1 > a_2$.
- LEMMA 1. Let L be a lattice with 0. Axiom (A) is equivalent to the assertion that for every congruence relation Θ on L, $a \equiv 0 (\Theta^*)$ iff the interval [0, a] contains only trivial congruence classes modulo Θ .
- Proof. Let Axiom (A) hold. If $a \equiv 0(\theta^*)$ and $a \ge b \ge c$ with $b \equiv c(\theta)$, then $b \equiv c(\theta \land \theta^*)$ implies b = c. Suppose on the other hand