208 R. Datko

3] R. Datko, Convenily properties of some integral operators, J. Diff. Egs. 7 (1970),
pp. 203-216.

4] — Measurability properties of set-valued mappings in a Banach space, SIAM J. Cont,
8 (1970), pp. 226-238.

(5] R.E. Edwards, Functional 4nalysis, Theory and Applications, New York 1965.

GEORGETOWN UNIVERSITY
‘Washington, D. C.

Regu par la Rédaction le 10. 5. 1971

icm

Spaces of ANR’s. II

by
B. J. Ball (Athens, Georgia) and Jo Ford (Auburn, Alabama)

Abstract. It was shown by K. Borsuk [2] that the set of all ANR’s lying in a com-

pactum X can be metrized in such a way that the resulting space, denoted by 2;{,
is separable and complete, and reflects the homotopy character of the ANRs in X,
in the sense that if 4 « 2;‘?, then all ANR’s sufficiently close to 4 in 2,,x are homotopically
equivalent to 4. In a previous paper [1], the authors considered a number of topological
properties of these hyperspaces and proved, in particular, that every two homotopically
equivalent connected ANR’s in the 2-sphere S* can Dbe joined by an arc in 2}9,2. In the
present note, this result is improved by showing that the space Zf’ is in fact locally

connected. (It was shown in [1] that in general 25 need not be locally connected, even
if X is an absolute retract.)

Tt was shown by K. Borsuk [2] that the set of all ANR’s lying in
a finite dimensional compactum X can be metrized in such a way that
the resulting space, 2%, is separable and complete, and reflects the
homotopy character of the ANR’s in X (in the sense that if A is any
ANR in X, then all ANR’s sufficiently close to 4 in 2% are homotopically
equivalent to 4). In a previous paper [1], the authors studied a number
of topological properties of these hyperspaces; in particular, an example
was given of a 2-dimensional absolute retract X such that 2% is not locally
connected, and it was shown that if € denotes the (open and closed) sub-
space of 25 consisting of all connected ANR’s in 8%, then every com-
ponent of € is arcwise connected. It is the aim of the present paper to
improve this latter result by showing that 25 is in fact locally connected.

1. Definitions and notations. If X is a compactum with metric ¢ and 4
and B are closed subsets of X, we will, following Borsuk, denote the
Hausdorff distance between A and B by o4, B), and will let (4, B)
denote the greatest lower bound of the set of all positive numbers & such
that each of A and B can be mapped into the other by an ¢ map (i.e.,
a continuous function which moves no point a distance ¢ or more). The
homotopy metrie, g, which determines the space 2%, is defined only
in case A and B are locally contractible; in this case, g;(4, B) = o4, B)+
+y(4, B), where p(4, B) is a non-negative function, defined in [2],
whose precise nature does not concern us here. We will, however, need
15 — Fundamenta Mathematicae, T. LXXVIII
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the relation p,(4, B) = ¢,(4, B), and will make repeated use of the fact
that, for finite dimensional X, the metric g, is characterized by “homotopic
convergence”, as described below.

A subset of X of diameter less than ¢ will be called an e-set, and for
each A C X, we will let s(4, 0, ¢) denote the statement “every §-subset
of 4 is contractible to a point in an e-subset of A”. A sequence {4} of
subsets of X is said to converge homotopically to a set A provided that (i)
‘A,}%A and (i) for every ¢ >0 there is a 6 > 0 such that s(4, 4, ¢)

holds for all 4. It is shown in [2] that if X is finite dimensional, {4} is
a sequence of ANR’s in X and 4 C X, then {4;}—4 if and onlv if {4}
en ¥

converges homotopically to 4.

2. We begin with a few elementary results of a general nature, the
object of which is to show that, for a finite dimensional compactum X,
the local connectivity of 2% is dependent only on that of its subspace
of connected ANR’s.

2.1. LemvA. Suppose X is a finite dimensional compactum and A
and B are disjoint ANR’s lying in X. Then a sequence {Ms} of elements
of 23 converges homotopically to A w B if and only if for almost all i,
M can be written as the union of two disjoint closed sets A4, B; such that
{Ai}?h-ui and {B;}T:B.

Proof. (1) Suppose that for each ¢, M; = 4; U B;, where 4; and B;
are closed and disjoint, and {Ai}-»A {Bi}—>B There is a positive

number §, such that for each 4, g(A,, B;) > (5(,, where o(A4;, B;) denotes
the distance, in the usual sense, between 4; and B; in X. Since {4} ——>_A

and {Bz}——-x»B for every >0, there is a positive number < 4, sueh
that s(At, 6 ,€) and §(By, 8, ¢) hold for every 4. For each 4, every 6-subset
of My = A;v B;is contained either in 4, or in B;, since § << §, < o (44, By),
s0 every d-subset of M is contractible to a point in an e-gubset of M;.
Thus s(M;, 6, ¢) holds for every 4, and since it is clear that {Mi}——aA o

w B, it follows that {M; }——>A v B.

(2) Suppose, eomelsely, that {M, }—~>A v B. Let U and V be disjoint
open subsets of X with AC T, BCV Since {Mﬁ—)-AuBC UuvV,
there is an 4, such that for i >4,, MC U U V. Hence for i >4y, M;

= A;w By, where A;= M; ~ U and B;= M, ~V; it is clear that 4; and B;
are disjoint and closed, and that {Ai}——»A and {B;} ~—>B Suppose € > 0

and let § be a positive number such that s(M;, 8, e) holds for every i
For i >1i,, M, is the union of the disjoint closed sets 4; and B, and
hence if a subset of A; (resp., B;) is contractible in a subset K of M;,
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then K C A; (resp., K C By). It follows that s(4q,d,e) and $(By,d, e)
hold for all ¢ >4,, and thus {A;}~—>A and {Bg}—éB

If £ and B are collections of sets, we will let .&033 denote the col-
lection of all sets of the form 4 v B, with 4 ¢ £, B ¢ &. Two collections 4
and $ will be said to be *-disjoint if no element of A4 intersects any
element of 3.

2.9, Lemma. Suppose X is a finile dimensional compactum and A
and B are *- disjoint subsets of 2%. Then (1) if £ and $ are open in 2%, so
is ADDB and (2) if £ and B are connected, so is £ADB.

Proof. (1) Suppose #4 and $ are open in 2% and let A B be an
element of A@B, with A 4, BePH. Since 4 and B are *-disjoint,
A~ B=@. It follows from Lemma. 2.1 that if {M l}—>.el v B, then for

almost all 7, M;= A4;v By, with {A,}—~—>A and {B,}-—>B, gince 4

and B are open in 2% and 4 e #, B ¢ B, for a.lmost all 4, Aieﬁ and B; e 3,
50 M; e ADB.

(2) Suppose 4 and B are connected. Let f denote the natural function
from Ax B onto A@ B defined by f(4,B)= A v B. If (4, B)>{4, B)
in £x$, then {4;} T;,}A and {Bi}?B and hence by Lemma 2.1,

{4;w Bi}—>A v B. Thus f is continuous and hence £@®%, as a continu-
en

ous image of the connected set X B, is connected.

2.3. LEMMA. Suppose X is a finite dimensional compactum and W is
an open subset of 2%. If AL B €W, where A and B are closed and disjoint,
then there exist two *-disjoint open subsets 4 and B of 2% such thai A e £,
Be®, and £ADH C U.

Proof. Let {e} be a decreasing sequence of positive numbers
converging to 0, with & << Jo(4, B). For each i, let #4; and $B; denote
the ¢;-neighborhoods in 2% of 4 and B, respectively; since & < &
< 1p(A, B), A; and B; are *-disjoint. If for each i, A;e A and B;e By,
then {4} —+A and {Bl}-—>B so by Lemma 2.1, {4; v Bi}—>A v BeU.

It follows that for some z, Ao By e for every A; e.fh, B,, e By, and
hence 4;@B; C U.

Note that, by induction, Lemma 2.2 holds for any finite sequence
Ay, ooy .y Ay of *-disjoint subsets of 2% and Lemma 2.3 holds for any
finite sequence 4,, 4,, ..., A of disjoint elements of 2X

2.4, LemMA. Suppose X is a finite dimensional compactum and let C
denote the subspace of 2% consisting of all connected ANR’s in X. If C is
locally connected, so is 2.

Proof. Suppose U is an open subset of 2% and 4 € U. Let 4,, 4,, ...

., Ay Dbe the components of 4. By Lemma 2.3, there exist *-disjoint

open subsets #;, &, ..., %, of 2% such that A;et;, for 1 <7< n, and
15*
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such that 4 @4 ...@#A, C W. Since C is locally connected (and open
in 2¥), for each i, there is a connected open subset U; of 25 with 4; € VU,
C A Let U= V,@ V,® ... Vy. Then 4 e U C U and by Lemma 2.2,
Q) is open and connected. It follows that 2% is locally connected.

3. We now turn to the main object of this note, to show that the
space 25 is locally connected. As in [1], we will take §* to be polyhedral
in B, and by an annulus we will mean any continuum in 82 whose boundary
consists of a finite number of disjoint simple closed curves.

3.1. Lmava. If C 4s a connected ANR properly contained in S* and
& >0, then there ewist & 6 >0 and a neighborhood U of O in 25 such that
if 4, BeW, BCA, and A is an annulus, then every two points of BAdA
which can be joined by a 6-arc in 82— B can be joined by an ¢-arc in BAA.

Proof. Since C # 82 it may be agsumed that € i§ contained in the
interior of a (pla_r_la,r) 2-simplex o of 82. Let U, be a neighborhood of ¢
in 8 guch that U,C Inte, and let 5 = o(0,, 82— o), Let U, denote the
set of all ANR’s lying in U,; it is easily seen that U, is open in 25°. Note
that (1) if 4 e Uy, then 4 CInto and o(4, 82—a) >1.

Let @, ..., zn be points of 82— (. such that every complementary
domain of C contains exactly one z;. By Theorem 4.5 of [1], there is
& neighborhood U, of € in 25 sueh that U, C W, and (2) it 4 < W,, then
every complementary domain of A contains exacily one of the points
Lyy ey Tm. :

It follows easily from the definition of homotopic convergence that
there exist a positive number &<C min(n, §¢) and a neighborhood A,
of C in 25 such that W, C U, and (3) s(4, 6, 4e) is true for every A e U,.
) Let U denote the intersection of U, and the }4-neighborhood of ¢
in 22‘, and suppose 4, Be W, BC A and 4 is an annulus. Let p and ¢ be
points of Bd4 such that there is a §-are, o, from p to ¢ in S2—B. Note
that a CInto since, by (1), o(4, S2—0) >, and dina<< 6 < 7.

) If each of Dy, D, is a complementary domain of 4 whose boundary
l'ntemects a, then D; v au D, is a connected subset of 82—B and hence lies
in some eomplementa.ry domain of B. By (2), no complementary domain
of B contains two of the points #,, ..., #, and each of Dy, D, containg
one of them; it follows that D, ~ D, # @, so D, = D,. Henc:a anBd4 is
containgd in a single boundary curve, J, of 4. ‘

Using Lemma 4.1 of [1] and standard polyhedral approximation
theorems for .the plane, it can be shown that there is a homeomorphism
h of 8* onto itself taking 4, B, «,J onto sets A’y B’y o, J’, respectively
such- that 4', B'e W, o’ is a 6-are and o ~J* is finite ajnd such th;ﬂi
the inverse under h of any set of diameter less than 2e h’a,s diameter less
than e. Thus it may be assumed that & ~J ig finite provided it is then
shown that there is a fe-arc from P to ¢ in J. 7 l
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Tt will be shown first that if « ~J = {p, ¢}, then one of the ares
of J from p to g lies in the }e-neighborhood of a. There are two cases to
be considered.

(1) Suppose a—{p,q}C S*— 4. Since s(4,0,%) is true and
o(p, q) < 0, there is a §e-arc from p to ¢ in 4, and § may be chosen
so that f—{p, ¢} CIntA. If D is the disk in o bounded by the simple
closed curve aw f, standard 6-curve arguments imply that one of the
arcs of J from p to g lies in D; since diaa<< 6<C §e and diaf < fe, it
follows that a w B, and hence D, is contained in the. }¢-neighborhood of a.

(2) Suppose a—{p,q} CIntA. Then A= A, v A,, where A, is an
annulus, 4, is a disk, 4, ~ 4,=a and BCA,. Since U is a subset of
the 36-neighborhood of € in 25, ox(4, B) < §; since g,(4, B) < ex(4, B),
it follows that there is a 6-map f: A—>B. For each z € 4,, olz, (%)< 8
and hence, since s(4, d, }z) is true, there is a 1e-arc from & to f(x) in 4
and since z ¢ 4, and f(z) e B C A;, this are must intersect a. Thus 4, is
contained in the }e-neighborhood of o, and therefore so is one of the
arcs of J from p to q.

For the general case, let Py, Py, .., Pn be the points of a ndJ, ordered
from p to ¢ on a. For i =1,2,..,n—1, the subarc ;P of o satisfies
either (1) or (2) above and hence J contains an arc y from p; t0 Py, iD
the }e-neighborhood of a. Thus J contains an arc y from p to ¢ which
lies in the }e-neighborhood of a, and since diae< e, it follows that
diay < e, a$ required.

3.9. TemorEM. The space 25 s locally comnecied.

Proof. Let ¢ be a connected ANR properly contained in 82 and
let U be a neighborhood of C in 2%%, It will be shown that there is
a neighborhood U of € in 25* such that each element of U can be joined
to C by an arc lying in b, and it will follow, by Lemma 2.4, that 25 is
locally connected. Since G # 8% it may be assumed that ¢ is contained
in the interior of a 2-gimplex o of 8%

Let Dy, ..., Dn be the components of §*— ¢ and for each 4, let Py be
a nondegenerate continuum lying in Ds. Let d be a positive number less
than the minimum of the diameters of the sets €, Py, Ps, ..., Py, There
is a neighborhood Uy, of € in 25 such that each element of U, is connected,
lies in Inte and has diameter greater than d, and it follows from Theo-
rem 4.5 of [1] that W, may be chosen so that each complementary domain
of each element of <, contains exactly one of the sets P, ..., Pn.

Tt follows from Lemma 4.1 of [1] that there exist a positive number
e< 1d and a neighborhood U of ¢ in 25 such that Uy C Uy and such
that if X e U, and ¢ is a 4e-homeomorphism of X into 82, then ¢(X)eU.

By Lemma 3.1, there exist a positive number 6 < ¢ and a neighbor-
hood U, of C such that U, C Uy, and if 4, Be Uy, BC A and 4 is an
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annulus, then every two points of Bd4 which can be joined by a ¢-are
in 8—B can be joined by an e-arc in BdA. Let ¢ = ;¢ and apply
Lemma 3.1 again to obtain a positive number ¢’ < &’ and a neighbor-
hood AU, of € in 2§ such that Uy C U, and if 4, B e Uy, BC A and 4 is
an annulus, then every two points of BdA which can be joined by
a §’-arc in S2—B can be joined by an &’-arc in Bd 4. Let U’ denote the
intersection of Uy, with the 16-neighborhood of € in 27",

Summarizing, we now have a neighborhood U’ of ¢ in 25, non-
degenerate continua Py, ..., Pn, and positive numbers d, ¢, 6, &', 6" with
the following properties:

1) d<e=0<d<e<<id.

(2) V' CC and each element of U’ lies in Into.

(3) Every element of U’ has diameter greater than d.

(4) ¥ X e, then each complementary domain of X contains
exactly one of Py, ..., Pn, and, in particular, each complementary domain
of X has diameter greater than d.

(5) If X eV’ and ¢ is a 4e-homeomorphism of X into 8%, then
g(X) e W. In particular U’ C U.

(6) If 4,BeV’, BCA and 4 is an annulus, then every two points
of BdA which can be joined by a é-arc (resp., by a d’-are) in S2—B can
be joined by an s-arc (resp., by an &'-are) in Bd 4.

(7) i A, BeU’, then g,(4, B) < é.

It follows from the proof of Theorem 4.4 of [1] that there is an
arc 4 in 25" such that one endpoint of # is ¢, and each element of A— {C}
is an annulus containing € in-its interior. There is an element A of #4
such that 4 ¢ U’ and the subarc of 4 from A to C lies in AU.

There is a neighborhood VU of C in 2§ such that U C U’ and such
that every element of U lies in IntA. It will be shown that every element
of VU can be joined to C by an arc lying in U; since, by the above argument,
each element of U can be joined to some annulug in U by an are in U
and since A is joined to C by an arc in U, it will be sufficient to show
that every annulus in U can be joined to 4 by an arc in U.

Let B be an annulus in U; then B C Int4, so each complementary
domain of A is contained in some complementary domain of B. By con-
dition (4) above, each complementary domain of 4, and each comple-
mentary domain of B, contains exactly one of the sets P, ..., Py. Hence
each complementary domain of B contains exactly one complementary
domain of 4. '

Let D be a complementary domain of 4 and let D’ be the com-
plementary domain of B which contains D. Let J and J' denote the
boundary curves of D and D', respectively, and let U denote the con-
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nected open subset of §2 bounded by J w J'. Then U C Intsand U C D'— D;
in particular, U ~Bd4 = 0.

Let F be a finite subset of J which intersects every arc in J of
diameter = &'. For each x e F, let ¢(z) denote the point of B nearest z,
T{#) the straight line interval from » to g(x), and p(z) the last point
of J on T(x) in the order from « to g(x). Since T (w)— {g(x)} C D', g(z) eJ’
and, since D' "Bd4d =J, p(z)ed.

Let G = {p(x)! zeF}. Choose a fixed orientation for o, and let
Py, oy Pn De an ordering of the points of & such that for i=1,..,n,
p; and p;., (where p,. , = p,) are distinet, and the positively oriented
arc of J from p; to p,., contains no point of G in its interior. For each i,
let ¢; = g(x) and Ty = T(x), where x is a point of F for which p; = p(xz),
and let T; be the subinterval of T'; from p; to ¢:.

By condition (7) above, g,{(4, B) < ¢’ and hence there is a 0’-map
f: A—B. For each x in F, q(x) is the nearest point of B to z, so olz, q(x))
< el, f(@))< &". In particular, each T, and hence each T;, has length
less than 6.

The intervals T;, ..., T, may not be disjoint, but no two of them
can have a point in common other than an endpoint on J'. It can.be
shown by an elementary, but somewhat detailed, argument that T, ..., T,
may be replaced by disjoint ares aj, ..., an such that for each i, a; is
a &'-arc from p; to a point pjed’ and a—{p:,p;} C U.

Fori=1,2,..,1, let §; denote the positive arc of J from p; to p,.,
and p; the positive arc of J' from p; to p;,,. Then U is the union of disjoint
open disks Uy, ..., Un, where U; is bounded by a: v fsv a; Bi.

Suppose that for some 7, diaf; > 6. Since ¢’ = 0, diaf; > 8¢’ and
it follows that some component § of ﬁi~(Ng.(P¢)uNe,(P,.+1)) has di-
ameter >¢'. Since F intersects every subarc of J of diameter =¢, 8 con-
tains a point a of F. For some j, p; = p(x) and hence g(x, p;) < 8’y and
this implies, by condition (6), that there is an g'-arc y from 2 to p; in J.
Since z ¢ S C B¢ and the distance from x to either endpoint of f is not
less than ¢, it follows that yC fi— {pi, psy,}. But this is impossible
sinee B; cannot contain p; in its interior. Hence for each 7, diaf; << §0.
Since also each of ai, a;,, has diameter less than &' < %4, it follows that
dia(ag 1Y) ﬁ-g w a,-+1) < 0.

It is easily seen that there is an annulus B’ ¢ U such that B’ CIntB.
Then for each 4, since a;v fiv o, is a o-are joining p; and py,,; in
82— B, it follows from condition (6) that there is an e-arc y; from p;
to pi,y in J'. For each i, let 1 be the disk in o bounded by yiv aiv
w Biw gy, Since the boundary of ¥; has diameter less than 4e and
V:C o, it follows that dialV;< fe. If for some 4, yi # B, then y; is the
negatively oriented arc of J' from p; to Ply1, and it follows that ¥y either
contains D (in case J is not the outermost boundary curve of A in o) or
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else contains B. But each of these is impossible since d > 4¢ and by con-
dition (3), diaB > d and by (4), diaD > d. Hence for each 4, y; = g} and
thus ¥y = U; and dia Up<< 4e. For each 4, let U; be a neighborhood of
U;in & such that diaU;< 4e and U, ~(Bd4d oBdB)=J wJ".

Since there is a homeomorphism of 82 onto itself which takes J and J*
onto & pair of eoncentric circles and each a; onto a radial interval joining
these circles, it iy easily seen that for every neighborhood V of U in g,
there is an isotopy f: 82X I->8? such that f, = id, fi(J) = J’, and for each
tel, (i) f; is the identity on 82—V and (ii) for each 4, f(U;) C U;. Since
dia U} < 4¢, this last condition implies that for each i, f, is a 4e-homeo-
morphism. Since V' is an arbitrary neighborhood of U, V may be chosen
so that ¥ n(BdA wBdB)=dJ wJ' and V ~ (P, v Pyu ... u Py) = 0.

Repeating the entire construction for each pair of corresponding
boundary curves of A and B gives an isotopy ¢: 82x I— 82 such that
9o=1d, g;(Bd4) = Bd B, and for each fcI, g, is a 4s-homeomorphism
which is the identity on P; v ... v Py. Since ¢,(Bd4)= BdB and (A4)
does not intersect P; u ... u Py, it follows that g,(4) = B. Since each g is
& 4e-homeomorphism, it follows from condition (5) that.g,(A) e for
each ?¢I. By Lemma 4.2 of [1], there is an arc from 4 to B lying in
{g{4)| te I}, and hence there is an arc from 4 to B in U, as required.
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Embedding certain compactifications of a half-ray
by
Sam B. Nadler, Jr.(*) and J. Quinn (New Orleans, Louisiand)

Abstract. Two problems concerning embedding compactifications of a half-ray are
stated and partially answered. In our investigations of these problems, certain types
of continua are completely determined.

1. Introduction. Throughout this paper, continuum will mean a com-
pact connected metric space containing more than one point. The question
of what spaces can be remainders in compactifications of certain kinds
of spaces has been of interest (see, for example, [1], [7], [8], [13], [15],
and [16]). In [1], Aarts and Van Emde Boas showed that any eontinunm
can be the remainder in some compactification of a given locally compact.
non-compact separable metric space. This implies, of course, that any
confinuum can be the remainder in some compactification of a half-ray
(a half-ray is a topological space homeomorphic to [0, + oo)). Compactifi-
cations of a half-ray have been studied by D. Bellamy [2], M. E. Rudin [14],
Simon [15] (where the main aspect of a regult in [16] was proved for the
special case of a half-ray), and others. In [11, Lemma 5.6] we proved
a result, a very special case of which is

LevMma A. If X is an arcwise connected circle-like continuum (see [10]),
then any compactification of a half-ray with X as the remainder is embed-
dable in the plane.

This result and others mentioned above, as well as our theorem in
section 2 of this paper, raise for us the following questions.

ProBrEM 1. What continua K have the property that there is
a compactification of a half-ray, with K as the remainder, such that the
compactification is embeddable in R* (Euclidean n-space)? Clearly, such
continua are embeddable in R* and have dimension less than = [5], p. 44.

ProBLEM 2. What continua K have the property that

(en)  any compactification of a half-ray, with K as the remainder, is
embeddable in E"%

(*) The first author was partially supported by a Loyola Faculty Research Grant.


Artur




