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On decomposing the plane into s, connected
or one-to-one curves

by
Jack Ceder (Santa Barbara, Calif)

Abstract. The following results are proven: (1) Assuming 2% = ¥, the plane is
the union of denumerably many connected curves whose set of axes consist of two
directions; (2) the plane is the union of denumerably many one-to-one curves; and (3)
assuming 2% < , the plane is the union of denumerably many one-to-one curves ‘whose
set of axes consist of (n-- 2)-directions.

A curve is a planar set with the property that each line in a certain
direction, called the axis of the curve, intersects the curve at most once.
In other words, for a suitable rotation of the coordinate axes the curve
is the graph of a real function. In 1919 Sierpiriski (see [4]) showed, assuming
the continuum hypothesis, that the plane is the union of denumerably
many curves whose set of axes consists of two perpendicular directions.
He later showed in [5] that the plane is the union of denumerably many
mutually congruent curves.

In 1963 Davies [1] succeeded in proving without any cardinality
assumptions that the plane is the union of denumerably many curves
whose set of axes is infinite. Moreover, under the hypothesis that 2% < s,
Davies [2] proved that the plane is the union of denumerably many curves
whose set of axes consists of n-}-2 directions. It is unknown whether
this conclusion can be improved to n-+1 directions, as suggested by
Sierpinski’s result when n = 1. It is the purpose of this paper to extend
the above results of Sierpinski and Davies to apply to some special types
of curves namely those which are connected (as planar subsets) and those
which are, one-to-one (i.e., graphs of one-to-one real functions).

Specifically we will establish the following results:

THEOREM 1. Assuming 2% = &,, the plane is the union of denumerably
many connected curves whose set of ames consists of two directions.

We conjecture that the above result remains valid infinitely many
axes when the continuum hypothesis is dropped.

THEOREM 2. The plane is the union of denumerably many one-to-one
curves whose set of ames is infinite.
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THEOREM 3. Assuming 2% < s, the plane is the union of denumerably
many one-to-one Curves whose set of axes consist of n+2 directions.

Tt is unknown whether or not the n+2 of Theorem 3 can be reduced
to n+1. It is also unknown whether the curves can be made mutually
congruent in any of the above three theorems.

None of the above cited results can be improved by replacing
«denumerable” by “finite” because Mazurkiewicz [3] has shown that the
plane is not the union of finitely many curves. Moreover, one cannob
replace “connected” in Theorem 1 by “Liebesgue measurable” or “Borel
measurable”, for in such a case the curves would all have null measure.

Terminology. For each e R* (the plane) V(z) and H{z) wil
designate the vertical and horizontal lines respectively through z. Let U
and ¥ denote the set of all vertical and all horizontal lines respectively.
The cardinality of a set 4 will be denoted by |4]. We will regard real
functions as identical with their graphs. We will treat cardinals as ordinals
which are not equipotent with any smaller ordinal. We will also regard
ordinals as equal to the set of their predecessors. We will denote 2% by ¢
when convenient. ’

We begin with the following result which strengthens a result of
Sierpinski in [6]. We will need ifs proof in the sequel.

Lemma 1. The continuuwm hypothesis is equivalent to the existence of
a planar set X which intersecis each vertical line in N, points and whose
complement inlersects each horizontal line in 8, poinis.

Proof (=). Let us assume that 9% — y,. First well-order the real
line B by {#.).c and put 4= {(&,, 2p): o < g and », < @} and B
= {(2,, %p): @ < a and < z,}. Then A and B are disjoint sets such
that' A w B {(n, &m): 7, M < wo} = B2 Moreover A ~ H(x,) has cardi-
nality %, when o, < o and is empty when a < wy; B ~V(x,) has cardi-
nality s, when op< a and is empty when a < ow,.

By a simple induction argument we may choose a denumerable
subset C of A such that |0~V ()] = &, for each %< w, and such that
no two points of ¢ have the same second coordinate. Likewise we may
choose a denumerable subset D of B such that |D ~ H(xa)| =& for
each 7 < w, and such that no two points of D have the same first co-
ordinate. Then it easily follows that X = (B— D) O {{@, %n): 7, m< wo}
intersects each vertical line in exactly %, points and its complement
(A—0) v D intersects each horizontal line in exactly &, points.

(<) Suppose that s, < 2% and let X be the set of the statement.
Well-order. B by {#}.<c- Then X n {J{V(x,): a <} has cardinality s,
and so there exists a horizontal line H having equation y = A which
misses this set. Then {(x,, A): a < ;} is disjoint from X so that [H— X| >,
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which contradicts the assumed property of X, which finighes the proof
of the lemma. )

Note that since the set X of Lemma 1 and its complement are obvi-
ously unions of denumerably many curves, Sierpifiski’s theorem [4] readily
follows: the plane is the umion of 8, curves whose set of axes consist of
two perpendicular directions, when 2% = ;.

Let us now denote by § the family of all uncountable, nowhere dense
closed sets of the plane which are neither subsets of a union of countably
many vertical lines nor subsets of a union of countably many horizontal
lines. Then we can strengthen Lemma 1 ag follows:

LEMMA 2. Assuming 28 = 8y, there exist complementary planar sets T,
and Ty such that

1) V(@) Ty =8 and [H(@)~Tl=1, for all zeR?,
and

(@) |G ~Ty=c¢ for i=1o0r2 and for all GeS.

Proof. Define §* to be the subfamily of § consisting of all & which
are not subsets of a union of countably many lines, which are either .
vertical or horizontal.

First we will find disjoint sets Z and W such that (i) each H(x) or
V () intersects Z and W in exactly one point, and (ii) each @ e 8" inter-
sects Z and intersects W in ¢ points. Let {S,},., be a well-ordering of
(§*x ¢) v e v V. By induction on the ordinal ¢ we will define functions z
and w as follows:

Case I, If 8, ¢ §* X ¢, we pick z, émd w, to be distinet poiﬁts in the set
1*coord 8,— | {V(z) v H(z): f< a and &= 2 Or &= w} .
Oase II. If S, e Ju U, pick 2z, in the set
S—{wp: f< a}— UV () Hizy): <o} it S,ni{g f<a}=0
and otherwise pick z, = R% Moreover, pick w, in -the set
Se—{2: f < a}— U {V(wp) v H(mp): p<a} it S nfwp f<a}=0

and otherwise pick w, = R% (If w, or z,= R’, we take V(w,) or H(w,)
to be @.) .

Having so defined the functions 2 and w on ¢, we put Z = {2,: 7, # R%
and W = {w,: w, # R*}. Then Z and W are disjoint and satisfy the desired
properties (i) and (ii).

Obviously Z and W are disjoint and property (i) is satistied. To
show (ii), let G eG* Tf {a: G = 1% Coord. 8,} = F, then |F|= ¢ so that
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a ¢ F implies that z, and w, belong to G. However, 2, = 2; implies a= §
OF Z,= 2= B2 Tt follows then that |G~ Z]=c¢ and |G~ W|=c.

Now consider the set B = R*—Z—W. We may apply the argument
of LemmaltoEand A nEFand BN E and obtain sets X, and X, = E— X,
such that [V(z) n X =5, and [H (@) ~ Xl =% for all . Next put T,
=X, uZand T,=X,v W.

Then T, and T, satisfy the conclusion of the statement of the lemma.
Clearly [V(x)~ Ty =1, and |H(=z) A T,| =%, for all . Suppose G¢S.
If G 8% then @ hits both Z and W and, consequently T, and T, in ¢
points each. If G ¢G—G* then it must be the case that G is contained
in the union of ¥, lines, so that |G ~H|=¢ and |G A V| = ¢ for some
horizontal line H and some vertical line V. However, X, hits H in %,
points and both Z and W hit H in one point each. Therefore, |G ~ H ~ X,|
= ¢ and |G n T,| = ¢. Likewise, |G » Ty} =¢, which completes the proof
of the lemma.

Lemya 3. If F is a planar closed set whose vertical and horizontal
projections are both uncountable, then there exists a disjoint family of ¢
closed subsets of F each of whose vertical and horizontal projections are
uncountable.

Proof. Case I. Suppose there exist Cantor (i.e., nowhere dense
perfect) sets P and @ and numbers r and s such that Px {r}CF and
{s}xQ CF. Then, as is well known, we can decompose P and ¢ into
families of ¢ disjoint Cantor sets {P,}ec, 30d {Qute<e respectively. Then
the family {(P,X {r}) v ({s} X @)}a<. is the desired family.

Case IT. Suppose case I doesn’t hold. Then, say for each Cantor
set P contained in the vertical projection of F, [{y: (v,y) e F and @ e P}
— ¢. Let P be a Cantor set contained:- in the vertical projection, and let
{P_J.cc be a decomposition of P into ¢ disjoint Cantor sets. Then the
family {F ~ {(@,): @€ P}},<, is the desired family.

THEOREM 1. Assuming 2% — x,, the plane is the union of denumerably
many disjoint connected curves whose set of axes consists of two directions.

Proof. It suffices to show that each of the sets 7, and T, gnaranteed
by Lemma 2 is the union of denumerably many disjoint connected curves
whose set of axes consists of one direction. We will prove it for T'; the
proof for T, is similar.

Let {G.},.. be a well-ordering of § v . Let {2}, e 2 well-ordering
of T,.

We will define by induction on the ordinal s, w, functions z and y
and simultaneously define a sequence of functions {g,}5q- -

First we define z and y on the initial segment &, of %, w, as follows:

Define z, and ¥y, to be the first two points (relative to the well-
ordering of T,) of Gy~ T},. ’
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Now having defined # and y on the set of ordinals « we choose z..to
be the first point in ’

G, ~T,—J {V(mﬂ): < a}_{?/ﬂ= < a}
and choose y, to be the first point in

G Ti=U{V () B< a}—{mp: < a}.

Both selections are possible since the above sets are non-empty since
la} <8, and @G, e8. This, then defines # and y on »,. Next define
o= {r,: a<®} and &= {y,: a <8}

Then g, ts @ connected function with domain R such that @, ~ (T,—g,) '
is not a subset of the union of denumerably many vertical line; for any coz.

It is immediate that both g, and ¢, are functions. To show that
R = Dmng, let us suppose that R—Dmng, # &. Suppose z is the first
point in 7 such that V(z) misses g,. Since 2z may be some y, and V(z)
hits {y;: B<Cc} at most once, let w be the first point in V(z) n T—
—{ys: B<<®}. Then w=z¢, for some y <o Let {Gyyloe, e the col-
lection of all members of {@},., which contain w. There exists a 1-1
function x such that for each a, @,,=#,,. Since |Rngu|=oc there

exists an o such that u(a) >y. But according to construction w,, is the
first point in ’

ooy N i1 V(@) B< E(a)}—{yp: B < E(a)}.

This is & contradiction, because 2, belongs to this set and u(a) > y. Hence
Dmng, = R. ’
Let us now show that g, is connected. Suppose g, is disconnected
by two disjoint non-empty open sets O, and O,. Let B be the boundary
of 0,. Then it is easily shown that (1) B = some G, or (2) some H(2) C B
or (3) some V(2) C B. In either case B g, # @, a confradiction. B
Finally, let us show that G, ,~ T,—g, is not a subset of a union of
denumerably many vertical lines. Similar to the proof that Dmng, = R,
we can show that Dmn¢, = R. However, t, ~g,~=@ by construction
and ?, is a function contained in 7T,. By Lemma 3 it follows that [, ~ G,
= ¢. Hence, G, ~ T,—yg, is not a subset of the union of denumerably
many vertical lines. .
) Next we continue the induction construction of # and y on the
interval of ordinals {a: %, i a<C %,-2} and obtain a function g,. This is

30?6 by replacing T; by T,—g, in the above construction. Specifically,
efine

#g, to be the first point in Gy ~ (T~ go)
and

Yg, B0 be the first point in G ~ (Th—go)—{@yg }-
1
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_ Having defined x and y for all o such that & <a<<y<§ -2 We
define x,, where y = 8,8, to be the first point- in
Gﬁ’“(Tlﬁgo)—U Vi) misa<< Y=Y % S a<v}
and y, to be the first point in
Gy~ (11— go)— UV W) v<a<< pr—{a,: /< a <y}
Then define g, = {7, % < a< % -2} As before we can prove that g, is
) 1
2 connected function with domain R such that for each o, G, ~(T— U g1)
i=0
is not a subset of a union of denumerably many vertical lines.
If we continue by induction on’ s;-w, in this manner, we obtain
a sequence {g;}5, of disjoint, connected functions with domain R with

k=0
the property that each g, intersects each @, in ¢ points (by Lemma 3).

Since we may not have {J g, = T, we proceed as follows: for » odd
k=0

decompose gy into fnw hy where f, and hy are functions having disjoint
domains and which intersect each member of §w . This decomposition
is found by induction as follows: pick a, and by to be distinet points in
G, ~ gn. Having picked a, and b, € G, M gn for each o< f we may pick a,
and b, to be distinct points in Gp—{a,;: a< B}— {b: a<< f}. Now define
fo={a;: a<c¢} and hy = gn—Fn- ’

Next put ¢ = Ty— | {gn: n odd}. Since U {gn: n even}C O T,
it follows that for each V ¢ U we have |V ~ 0] = x,. Hence, there exists
a sequence of disjoint functioms {k,};., bhaving domain R such that
C = {Jkn. For n odd put

n=0

Fp = fa u (Fn71 (Dmn }y))
and
F,_, = hn v (ka71(Dmnfy)) .
Then it is easily checked that each F, is a connected function with do-
oo

main B and moreover, | JF,= T,, which completes the proof of the

. k=0
theorem.

The proof of Theorem 2 consists of a modification of Davies’ proof
that the plane is the union of %, curves. We will only outline this modifi-
cation and refer the reader to [1] for the details.

TrEOREM 2. The plane is the union of denwmerably many one-to-one
curves whose set of directions is infinile.

Proof. Let £ consist of all lines with non-zero rational slope. A sub-
family JV of £ is called a network provided for each z, £(») = {Let:xel}

@ ©
Im On decomposing the plane into N, connected or one-to-ome curves 271

cN whfenever H{L € N: @ e L}| > 2. Then the smallest network containing
an infinite snbfamily M of £ has the same cardinality as G itself. -

Let # consist of all finite tuples of ordinals <ay, a, ..., az) such
that %, = |an|.< lay, 1] < .o <o) <ol < e Let % consist of all finite
tuples of ordinals <oy, &, ..., an> such that Ny < |an| < |oy_y] < .. < loy]

< ¢. We will now define a function N on % and, in particular, .

Well-order £ by {l.},<.- For each o such that &, < o< ¢ define ¥ (a)
to be the smallest network containing {I},.,. Now suppose we have
defined N (ay, ..., an) for all <ay,..,emd>eB for all m <k so that
[N (@yy .05 @m)| = |am]|. Suppose (ay, ..., oy, az,, ) € B. Well-order N (ay,..., az)
a8 {l}p<ey a0 choose N(a, .., ay, 05) to be the smallest network
containing {g}pcq,,,- Then |N(a, ..., a44)| = |ay,,). This completes the
definition of the function N with domain 3.

Then £ = {J{N(4): 4 A} and |N(4)| = x, for each 4 ¢ #. Let <
be the lexicographical ordering of 4. Define M(A4)= N(4)— | J{N(B):
B < A}. Then {M(4): A e#A} is a disjointed family whose union is €.

It can be proved for each x there exists an A e £ such that €(z)—
—M(A) is finite. It follows that there exists a U(z) CL(x) ~ M(4) such
that |U ()] = 8, and I* € U (z) whenever l ¢ U (z), where I* is perpendicular
to 1 and belongs to £(x).

Next let P(4) consist of all points # for which £(x)— M (A4) is finite.
Then each P(4) is countable and X = | {P(4): 4 e #}. Fixing A enumer-
ate P(4) as {p,(4)},., where t < ;. By induction define

f(]Jo(A)] e M(4)n cU(_’PO(A))
9(po(4)) = f(po(4))*
and, in general, having define f(p,(A)) and g(p,(4)) for all k< m we define
Flom(A4)) e M(A) ~ Ulpo(4))—{f(ps(4)): ¢ < m}—{g(ps(4)): s < m}

and

and

g(pm(4)) = f(pm(4))* -

This defines f and g on the plane. It is easily shown that both f and g
are one-to-one funetions and f(x) L g(x) for all . Now define for each
non-zero rational number 7, F, = {: f(#) has slope 7}. Then F, is a one-to-
one function with axis a line of slope r. Moreover, R? is the union of the
functions F,, completing the proof.

Before proving Theorem 3 we need the following result which is
a strengthening of a result of Davies [2] in that it requires that each E,
to be finite in a direction perpendicular to 6; also. Its proof consists of
& modification of Davies’ proof, which we will outline.
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TaEOREM A. The hypothesis 280 < w, is equivalent to the assertion that
for any n-+2 distinet directions {0,737 mo two of which are perpendicular,
there exists a decomposition of the plane into {E Y11} such that each line in

direction 0; or 0;4- v intersects By in finitely many points.

Proof. The proof that the assertion implies 2% < &, is the same
. as found in Davies [2]. Assume now that 2% < &, and we will prove the
assertion. Call a line special if it has direction 6; or 6;+ 4= for ¢ =1, ...
ey R+2. A set of special lines N is a metwork if N contains all special
lines through a point p whenever it contains 2 special lines through p.

Then the following lemma may be proven, almost verbatim as in
Davies’ proof.

LeuMA B. Given a network N of cardinality sy there exists an ordering <
of N such that for any L € N there exists only a finite number of collections
of 2m~+3 special lines, {I,¥\"}® in N which are comcurrent with L and
satisfy '

12m+8 < l2m+2 % e < ll < L.

Now let ¥ be the network of all special lines. Without loss of gener-
ality we may assume that |N| = k,, 30 that there exists an ordering <
of N satisfying the conditions of Lemma B. For p € R* let p(6) denote
the line through p in direction 6. For p ¢ R* consider the 2n--4 lines
P05 s P{Brise)y P(Oit+3m, .y D(Oyyo+3). Supposing either p(6;) or
p{0:+ $x) is the biggest of this collection relative to the ordering <, we
assign p to the set Ej. '

It is easily shown that {E,;}7? satisfies the conditions of the assertion
of the Theorem.

THEOREM 3. Assuming 2% < Ny, the plane is the union of denumerabl
Ly 3 P Y
many one-to-one curves whose set of aves consist of n+2 directions.

Proof. The proof will consist of showing each of the sets E; guaranteed
in-Theorem A is the union of denumerably many one-to-one functions.
Let E designate one of these sets and suppose its associated directions
are the coordinate axes. Suppose B and U are well-ordered by ec.

‘We pick the function f; as follows: first choose z, « &. Having picked z,
for each a<C B, let ¥ be the first line in U—{V (z,): a < f} which inter-
sects B and choose z, to be the first point in B— | {H (,): a<< §}. If
there is no such V, put z, = R® and consider V(R?) = H(R? = @. Now
put fi = {z,; o, # B

Then f, is 2 one-to-one function contained in ¥ and E—F, is finite
in each vertical and horizontal line. Now we repeat the above construction
with respect to E—f; to obtain a one-to-one function f, contained in
E—f, such that B—f,—f, is finite in each vertical and horizontal line.
Continuing in this manner we obtain the sequence {f,},.
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To show {Jfu = E, let us suppose that B— | Jf, # O. Let 2 be the
n=1

=1
first point of E— {J fa. The set of predecessors of # on H (@) v V() is
n=1
tinite, say @,y vy Tg . Then there exigts a §; such that x, € fﬁ‘. Let m be
the first integer greater than max f;. It follows that » e fn, a contra-

isign

diction. This finighes the proof of the theorem.
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