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able union of closed subsets of local weight <<p. However even if X is
o-discrete, we need not have H,(X)= @, as Example 3.7 will show.
In the light of Theorem 2.1, and the remarks following Theorem 2.3,
one might ask whether, with the given assumptions on X, k, and p, the pre-
ceding theorem may be extended to say that K,(X) # 0 if and only if
every absolute Borel set' ¥ in which X is densely embedded has car-
dinality A%®. Example 3.7 also shows that this is false.
ExaupLr 3.7. This space was constructed in [7] for different, but
‘ related, purposes. With the usual assumptions on % and p, let T, be

a diserete space of cardinality k, and fix a, e T. In B(k) = [] T», with
' n=1

the “first difference metric”, let Dy = {& ¢ B(k): z;= a; if 1 >m}. Two
distinet points of Dy, are at distance at least 1/m, s0 Dy, is a closed discrete

subspace of B(k). It follows that D = { ] Dy is an absolute Borel (in fact,

n=1
absolute F,) set of weight and cardinal k. But every point of D is a k-limit
point of D, so Ky(X)D KyX) # 0.

Added in proof. Part of Theorem 2.8 occurs in Bel’'nov, On metric extensions,
Soviet Math. Dokl 13 (1972), pp. 220-224.
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Inducing approximations homotopic to maps
between inverse limits
by
J. W. Rogers, Jr. (Atlanta, Ga.)

Abstract, Fort, MeCord, J. 1. Rogers, and Tollefson have shown that maps between
the limit spaces of cértain types of inverse systems are s-homotopic to maps which
are induced by maps between the coordinate spaces of the inverse systems, for each
&> 0. This result is extended here to a much wider, but still restricted, class of inverse
systems, and an example is given to show the need of the remaining vestrictions.

1. Introduction. We denote an inverse system with directed set D,
coordinate spaces Xy, bonding maps f3: X,~X,, and projection maps
for XXy foralld and all ¢ < d in D, by (X, f, D). If 2 maps X, onto X;
for all 4 and all e < d in. D, then we call (X, f, D) a proper inverse sequence.
The reader is referred to [3] for definitions and basic properties of inverse
limits. If (P, g, N) is an inverse system such that N denotes the set of
all positive integers, and for each =, P, is a polyhedron with (finite)
triangulation Ky, and ¢+ is a simplicial map relative to (K,.,, Ky), then
(P,g,N) is called a wniformly simplicial inverse sequence, and is also
denoted by (P, K, g, N). Both the solenoidal sequences of [3] and the weak
solenoidal sequences of [7] are very restricted special cases of uniformly
simplicial inverse sequences.

It (X, f, D) and (Y, g, B) are inverse systems, and g: B> D is order
preserving, and for each ¢ in F there is a map g, 2 s~ Y, such that
for all i < ¢ in B, piffd = ¢%p,, then the map ¢: XY, defined by
the equations g¢,¢ = @,f,,, for all ¢ in B, is called an induced map. In
Theorem 4 we generalize the results of [3] and [7] by showing that if
(X,f, D) is an inverse system of compact Hausdorff spaces and
(P, K, g, N) is o uniformly simplicial inverse sequence, then every map
X P, is ¢-homotopic to an induced map for each ¢ > 0 (i.e. no point
is moved more than during the homotopy). An example in the last
section shows the theorem does noti hold if the assumption that (P, K, g, N)
is uniformly simplicial is dropped. Other results related to these may be
found in [6] and [7].

2. Preliminary theorems. For undefined terms and notation in this
section, refer to [3], Chapter IT. If K is a simplicial complex, a simple
subdivision of I is a complex K’ whose vertices consist of just one point
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p, from each open simplex s of K, such that the simplex determined by
a set V of vertices of X' belongs to K’ if and only if there is a sequence
Sgy -y 81 OF simplexes of K, each except the last a face of the next, such
that V= {Pg, s Pgte T K is of dimension #n, and k is a positive integer,
then K’ is said to be of order % if the barycentric coordinate of p, on each
vertex of s is = (n-+1)"* for each face s of K. The standard barycentric
subdivision of K is a simple subdivision of order 1. We will consider a sub-
division of K to be a collection of subsets of |K|, rather than as a simplicial
complex with a homeomorphism onto |K|, as in [3]. Also if v is a vertex
of K and z < |K|, then z[v] will always denote the barycentric coordinate
of x relative to .

s 1. If K’ is a simple subdivision of the n-dimensional complex K
of order %, then the mesh of K' < (1— (n-++1)7%)-(mesh of K).

Proof. We consider K to be linearly embedded in E’ for some j,
and we denote by |p] the usual norm of a point p in .

Suppose s is a simplex of K of diameter d, ¢’ is a face of s, @, ..., Tm
are vertices of s’ and @, ..., #m are the vertices of s, where m’ << m. We
determine |p,— py|, since the greatest such number is the mesh of K'.

m m m m
Let p, = Y biz; and p, = Y bjz;, where ¥ b= 3 b;=1, and by
i j=0

g < <o 7=0
hypothesis b; > (n+1)7% for 0 <4 < m and b; > (n4+1)* for 0 <j<m'.
Then if 0 <j <M, .

]ps_‘mj‘l - 12 bi(mi— mg)‘ < 2 bg [TZ—— 97]'] .

Now, when i = j, l#i—aj] = 0, and otherwise |wi—a;| <d, so
m

pe—asd < (D) bid)—bid = d—byd = (1—b))d.

i=0

But, if § = 1—(n+1)7%, then (1—by) < 4, s0 |p,— ;| < dd. Hence

m’ m’ m’
e—pyl=| D) bi(p—a)| < D bilp,—ay < ) vidd=bd.
=0 =0 =0
Consequently, the mesh of K’ < §-(mesh of K), and the Lemma is
proven.
LeEMMA 2. Suppose K, and K, are simplicial complexes, f: K,—~ K, is
a simplicial map, and Ky is a simple subdivision of K, of order k, for some
positive integer k. Then there is a simple subdivision K; of K, of order k-1
such that f is simplicial relative to (K, K,).
Proof. Suppose K, is of dimension #, s, is an open simplex of K,,
and s, is the open simplex f(s,) of K;. Let v, ..., v, denote the vertices

of s and, for each 4 (0 <7 < m) let 28, ..., o7 denote all the vertices of s,
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which f maps onto Wd‘ Then jf b= p,[vi] for each i, define P,, such that
i tric coordinat elati 0 of . : )

s bargente coondnate B relattve to of (05 <, 0% iy
bif(ne-+1). Tt is easily seen that (1) 37 3'8] = 1, 50 that Py lies in s,, and (2)

1=07=0

m
3 b= bi, so that f(p,,) = pg,, and (3) b] = byj(ni+1) > (n4+1)" K1)
:o(n+1)~(k+1).

It follows quickly that the points Pqy» Lor all open simplexes s, of K.
determine a simple subdivision X, of X, of order k1 and f m;Jps tlfe’
vertices of each simplex of K, onto the vertices of some simplex of K,
It follows from the linearity of f relative to (I, Ky) that f is linear r;:
lative to (K, K). So f is simplicial relative to (K}, K}).

TarEoREM 1. Suppose (P, K, g, N) is a uniformly simplicial inverse
sequence, & > 0, and j is & positive integer. Then there is a sequence K’ — (K}
of subdivisions of the triangulations of K = {K;} such that (P, K’ g, N) 'Zs
o uniformly simplicial inverse sequence, and for each k<, the 'ry;esh of
K, <e

Proof. Let K} denote the first barycentric subdivision of K,. By
successive applications of Lemma 2, there is, for each % >1, a simple
subdivision K3 of K of order k such that g§*' is simplicial relative to
(K3, Kioy). By induction there exists, for each i >1 a sequence (KL
such that Ki is the ith barycentric subdivision of K, and for each II;
K3, is a simple subdivision of K™ of order k. If n is the dimension of K,,’
then from successive application of Lemma 1 the mesh of K,%
< (1—(n+1)"%" (mesh of K). So for large enough 4, the mesh of Ki < ¢
for each & < j, and we take Ky, = K for all .

DeriNrrion. Suppose K is a triangulation of a polyhedron P, X is
a space and f and h are maps from X into P. Then fis said to K - GPProLi-
mate hif and only if, for each @ in X, f(x) lies in the closure of the open
simplex of I that containg h(z), i.e. if h(z) [v] = 0 then f(z)[v]= 0 for
each vertex v of K, If & > 0 and 6 > 0, then f is said to (s, K, 8) - approzi-
mate h if, for each @ in X and each vertex v of K, (a) i f(@)[v] = 0, then
ﬁ(m)['vj< g and (b) it h(w)[v]< 8, then f(z)[v]= 0. From condition (b)
1t follows that if f (e, ', 8)-approximates h for any ¢ >0, § > 0, then f
K-approximates /. ’

_ TumormM 2. Suppose X is a topological space, P, and P, are polyhedra
with Wriangulations K, and K, respectively, f: Py~ P, is simplicial relative
W (Eyy Ky), and 102 X > Py, It X > Py, g% X -> P, ave maps, where h° = fg°
and B! K- approvimates 1°. Then there is o map §': X - P, which K, - approxi-
mates §°, such that h' = fg".

].?ro of. Denote the vertices of K, by %, .., s, and for each 4
(0.<4<m), denote the vertices of K, that f maps onto v by o8, ..., v%.
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<m, and 0 <j < ng, let bY(@) = W(x)[v],

If  is a point of X, 0 < ‘
= (u)[vi‘]t These are all continuous real-valued

bYx) = h'(x)[v], and al(x) =
functions. Define

[a} 1bYbY] ( if
0 if

. b(z) >0,
oi(z) =
: by z) = 0.

Sinece k* K,-aproximates h® we have for each # in X and 0 g

bi(a) = then bi(x)= 0.

< i< m,

(1) i

Since h° = f¢°, b%

. ni i
) Dl d=1,

7=0

for, if b%Yx) # 0 for some  in X, then

ng .
= 3 a}. Hence
i=o

D i) = 2 al) (B3/69)] () = [BY(BYN] (3) = b (),

j=0 j=0
and, by (1), if ¥3z) = 0, then Z’ cl(z) = 0 = bi(x).

The function ¢}, for each 0 < i < mand 0 < j < ny, is clearly continu-
ous on the open set [63)7%(0, 1]). If z is in X and b(x) = 0, then by (1)
bi(z) = 0. So if &> 0, then « lies in an open set U in X such that b}(U)
C[0,). Bubt by (2), ¢l <bi. Hence ci(U)C[0,¢), and ¢} is continuous
at @, and the continuity of ¢} is established. :

Finally, by (2) the numbers ¢i(z) sum to Zb(.ﬁ =1, s0 there is

i=0

a map ¢g: X P, defined by g¢(a)[v]] = ¢/ for each 0 <i<<m and 0 <j
< n;, which K,-approximates ¢°, since ¢j(z) = 0 whenever ai(x) = 0; and
I = fg' by (2).

DEFINITION. A subset H of a space X is a cozero set in X if there is
a map f: X—[0,1] such that H = f~%(0,1]). In a completely regular
space, there is a basis of open cozero sets for the open sets of the space
(see [4]).

The following theorem is related to Theorem 11.9 of [3], p. 287.

THEOREM 3. Suppose P is a polyhedron with a triangulation K having
vertices vy, ..., Vs, (X, f, D) is a proper inverse system of compact Hausdorff
spaces, d ¢ D, h: X - Pis amap, and 0 < e < (n+1)"". Then if 0 < 8 < ¢/2,
there is an element ¢ = d of D and a map ¢,: X,—~ P such that ¢,f, (¢, K, )-
approxrimates h.

Proof. Let g denote afinite open cover of P of sufficiently fine mesh so-
that if # and y lie in an element of 8, and 0 < 7 < n, then |#[v,]—y[v]}
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< ¢f2. Let a=h7"(#), and ¢ denote an element of D > d such that X
has & finite open cover w of cozero sets such that f7%(e) refines a. IE
0 <4< m, let Oy denote the union of all elements w of o such that, for
some point y of Af, (w), y[vi] = e. Then if u is in hf;(0s), there is a point y
in P such that y[vi] > ¢ and |y[v]—ulv]] < &/2; hence

) i welfy 0, then wv]> ef2 .

The sets {O:} (0 <4 << n) cover X, since each element of w lies in one of
them, for otherwise thue is an element w of w such that for each point Yy
of hf7*(w) and each 4 (0 = ¢ < n), y[v] < e But then

n
1= DY ylnl< (+l)e< (n+1)/(n+1) =
=0
which is impossible.
Note that by (1), kf,*(0y) lies in the open star btK(m) Henee if

.y 0, intersect, then hfy (ﬂ Oﬁ)C ﬂ stg(vs),

and s vy, ..., vy, are the vertices of a face of K. Hence 1f K’ 1s the sub-
complex of K to which a simplex s of K with vertices Vjyy -y VU, belongs
if and only if the sets O, ..., 0, intersect, then we may take K’ as the
nerve of the cover {0;} (0 < z < n) of X,. Now, if 0 i< n, then 0; is
a finite union of cozero sets, and hence itself a cozero set; so there ig
a map ug: X,~[0, 1] such that wi(#) > 0 if and only if o lies in 0;. These
maps may be used in the standard manner ([1], p. 175 or [3], p. 286)
to obtain a barycentric map ¢,: X,~ |K’| C P such that if 0 < ¢ < n, then

@ @ (x)[v] >0 if and only if

We now verity that ¢,f, (¢, K, §)-approximates h. Suppose z ¢ X,
and 0 < i< n. (a) IE h(2)[v4] = s, then f.(2) lies in Oy, from the definition
of 0y. Hence ¢, f,(z)[#1] > 0 by (2). So if ¢, f,(2)[v:] = 0, then %(2)[v:] < e.
(b) It @ f,(2) [v4] > 0, then f,(2) lies in O; by (2) and h{z)[v4] > ¢/2 by (1)
So if h(2)[n] < 8 < /2, then g,f,(2)[vi] = 0.

3. The main theorem. The purpose of this section is the proof of the
following.

0< < . <Jp<mand 0,,

szi.

Turorem 4. Suppose (X, f, D) is a proper inverse system of compact
Hausdorff spaces, (P, X, g, N) is a wniformly simplicial inverse sequence
on polyhedra amd F: X - Py, is @ map. Then if ¢ >0, F is e-homotopic
o an induced map ¢p: X P,. Moreover, if w e X, and giF is o vertex
of Ky, for each i, then q(i) = I'(x).

The next lemma provides the recursive step in the proof.

Levma 3. Suppose deD, ieN, and gz X;—>Y is a map such that
Pafa (2, Ky, &) - approvimates ¢, for some 1> 8 > 0. Then there emist
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an dement ¢ > d of D and o map @0 X,~Y, ., such that ozf5= git'p,
and @,f, (2, K;y1, 05,1)-approzimates g, F, for some 6;., > 0.

Proof. Let n-+1 denote the number of vertices of K, , and take
&' << 8/(n-+1). Then by Theorem 3 there is an element ¢ > d of D and
a map ¢, X,~>Y¥,,, such that if 0< 6 < ¢'/2, then :

1) (P;fe (¢'y

To see that ¢,f: Ki-approximates ¢i*lg,, let ye X, @=71,(y),
v denote a vertex of K, and {v°, ..., v"} = (g’“)“‘(v) We suppose that
g9 (w) [v] = 0 and show that @, fi(x)[v] = 0. If 0 < j < %, then ¢ (z)[v']
= qo,je )[#7] = 0, since g&** is simplicial, and so g, F (y)[ v’]< ¢y by (1).
Also,

K., 6)-approximates g, F.

9P (y)[0] = gi* g, P (y) 0] = Z GisiF
< (k-+1)e" <

So, since pgfy (2, Ki, 61)-approximates g:F, ¢;f3(x)[v]= @afa(y)[v]= 0.
So, since @;f; K;-approximates ¢*'p., we have from Theorem 2
(by letting B = gi*'¢,) a map ¢,: X,~Y,,, such that ¢,f; = ¢i"'p,, and

2)

That ¢,f, (2, K;,,, )-approximates g, ; F. follows immediately from (1)
and (2).
Proof of Theorem 4. We use the standard metric on P:

y)[v"]

< (’n—]—l)a < 6i.

@, Ki+1—approximates @, -

oo

Y dgu(a), guly) 270

i=1

a(z,y) =

where d; is a metric for P; with respect to which P; has diameter <C1.
Let j denote a positive integer such that 277 < ¢/4. We assume that if
4 < j, then K; has mesh < ¢4, for if not Theorem 1 yields subdivisions
with this property which can be used instead.

By Theorem 3, there is an element e(1) of D, a number & > 0, and
a map ¢ XY, such that ¢ f,, (2,X,,d)-approximates g, F
Continuing recursively with Lemma 3, there are sequences (1) < 6(2) < ...
of D, positive integers dy, d;, ..., and maps @;: X, - ¥, for each ¢ such
that @, fy (2, Ki, 61)-approximates g F, and @, f245 = gi+ig,, . . Moreover,
since for each 2 in X, ¢;fyyle) lies in the closure of the open simplex
of K; that contains g.F(z), there is a linear homotopy hi: ¢, f,, =~ g F,
and since ¢+ is simplicial %} = g,ﬁ‘hiTl So the maps ¢; induce a map
p: X ,—~P,, and the homotoples % induce a homotopy #': ¢ ~ F. Note
that for each xe X, 2i(z) remains in the closure of the open simplex
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of K, that contains .l («) for all 0 <t < 1. Hence if g, 7 is a vertex of K,
for each 4, ¢(2) = F(2), and in any case,
7
iR (@), M(@)) < 2 (¢/4)-27"4- f (127 < efdtefh = ¢f2,
. == fe=gu1
0 that no point is moved further than e during the homotopy.

4, Examples. This section containg two examples. In the first there
is & mapping from one inverse limit onto another satisfying the hypothesis
of Theorem 4, but no induced map is onto. The second shows that the
condition that (Y, K, g, N) be uniformly simplicial in Theorem 4 is
necessary even for inducing e-approximations to mappings, and so also
for e-homotopic approximations.

Examerr 1. For each 4, let X denote a space of 2* points, ¥; denote
the interval [0, 1], fi: X, —~X, denote a map such that each point-
preimage has only 2 points, and g¢: Y., ~7Y; denote the identity map.
Then X, is a Cantor set, ¥, is homeomorphic to [0,1], and there is
a standard at most 2-to-1 map from X; onto ¥;. Suppose ¢: X Y, is
induced by maps ¢;: X, - Y, for all positive integers ¢, where n, < n, <
Then ¢,(X,,,) consists of not more than 2™ points, and since g ¥~ ¥;
is a homeomorphism, ¢(X,,) is also finite. So no induced map throws X,
onto Y. By taking cones over the spaces of this example, and extending
the maps linearly, i can be seen that the induced map obtained in the
manner described. in this paper need not be onto, even if all the spaces
are connected and I is onto,

QUESTION. Suppose in Theorem 4 that X is connected and F
throws X, onto ¥,. Then is F' e-homotopic to some induced map from X,
onto Y, for each ¢ > 0%

Examprre 2. Let X, = [0,1], and B= {b,, b,, ...} denote a count-
able denge subset of X,—{0,1}. Supposing X,,fr, Xy, f3,..., Xn to be
defined, define X, and f2* from X, ., onto X, such that there is an
are o in X, with b, in its interior such that

(a) (fM~Ya) is an arc in Xy,

(b) (fF*Y"Y(a) is the union of an are f,,, and two topological rays,

each spiraling down to f.q;

() fW Y Bryy) 18 degenerate and fit*(f,..) = bu, -

(d )f,’,L 1[(An,”1 fBruq) i8 one-to-one,

Then X, is a chainable contammm with only eoun‘mbly many non-
degenemte arc-components f7(fy), f5'(Bs), ..., and for each =, HS
3 monotone map.

Sinee X, iy chainable, it is homeomorphic to the limit of a proper

inverse sequence on arcs, Iy,I,,.., and by Brown’s approximation
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theorem ([2], Theorem 3, p. 481), we may take the bonding map ¢i+! to
Dbe a light (i.e. with point preimages totally disconnected) simplicial map
from I, onto I;. Let F denote a homeomorphism from X_ onto ¥
n{1),n(2), ... denote an increasing sequence of positive integers, (pnm
XY denote a map for each i such that g, /et = g+t
and ¢: XY, denote the map induced by the sequence {g,,}.
We show first that there is a map ¢ from X, onto ¢(X,,), by proving
the following lemma.
LemuMA 4. If i is a positive integer, y € Xy, and H is a connected subset
of gnin(¥), then K = @, (fis™) " (H) is a degenerate subset of (gi+%)7(y).
Proof. Since f¥i*Y is monotone, K is connected. If ze K, then
2= Pipnl) for some z e (frstY)"(H). Hence

Pr(i+1))

y= ‘Pn(z)fnu) = gz 97n(i+1)(-’70) = !]::H(z) .

So K lies in (g57%)"*(y), which is totally disconnected since gi*! is light,
and K must be degenerate.

Using the Lemma, we proceed to define ¢: X,,—Y¥.,. Suppose
oe Xy, and y, = ¢o(a). By the lemma, g,(fu3)~"(z) is a point y, in
(63) (). Also, H,= (fa)"%x) is a connected subset of ¢;(y,), so by
the lemma, q;s(fz{;,) YH,) is a point y; of (¢3)~*(y,). Continning, we see
that ¢ (fuyy) (@) is the point (y;, ¥, -..) of Y. We let o (@) = (31, 4, )y
and observe that since f,; maps X, onto X, o(X,,) = ¢(X). ‘

To see that ¢ is continuous, suppose xe X, ¥ = o(), O is an
open set in Y
containing y; = gi(y) sueh that g;7%(0;) C 0. Then C= B[ Xpn— (p,j(t(O )
is a compact subset of X,,, which does not contain w sinee (fo =)
Comn(ys), and if 0'=X,,~0, 2<0 and gy (07) = @[ (o) (0]
C FualPan 0] = 0s. Hence o(0") C g7(09) C 0.

We have shown, then, that ¢ is a map from X, onto ¢(X,). But
it is easily seen that X, contains a sequence a,, a5, ..., a; of open arc-
components such that if 1 <¢<j, Then @ intersects @, ,. So, since
every arc-component of Y, is closed, o(X,,) = ¢(X,) must lie in one
arc-component of Y.

Now, we take the usual metric on X, = [0, 1] for d,, and metrics ds
for Xy such that the diameter of X; = di{(f)1(0), (f)™}(1)) = 1 for i >1,

and define a metric on Y, by

(@, y) = Zd (fiF (@), fiP(y)-2".

(This is the metric induced by the homeomorphism ¥ from the standard
metric on X;.) Since each non-degenerate arc-component of ¥, is thrown

containing y, and for some 4, O; is an open set in ¥y

icm

Inducting approximations homotopic to maps between inverse limits 289

by f,F~* onto one of the points b,, b, ...
arc-component satisfies

the diameter 8 of each such

2(1) =12,

i=2

Hence ¢(X,) has diameter < 1/2, while if & = Ff{*(0) and y = Ff7Y(1),

d(@,y) = D (@), ()2 21 27 =
=1 i=1

and Yoo has diameter 1. So, with this metric on Y, no induced map can
g-approximate F if £ << 1/4.
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