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Abstract. It has previously been shown by the author that any abelian variety
containing a connected compact group is a p-variety. As a consequence, it is seen
that the varieties V(R) and P(T), respectively generated by the additive group of
reals and the circle group, are f-varieties. It is proved here that any variety gene-
rated by arcwise connected Hausdorff groups is a B-variety. From this it is deduced
that connected locally compact groups generate fB-varieties. It is also noted that any
variety containing a non-abelian connected compact group is a j-variety.

§ 1. Preliminaries. A non-empty class ¥V of topological groups (not
necessarily Hausdorff) is said to be a variety if it is closed under the ope-
rations of taking subgroups, quotients, arbitrary cartesian products and
isomorphic images. (See [8]-[11].) '

We note that a variety (of topological groups) determines a variety
of groups [15]; the latter is simply the class of groups which with some
topology appear in the former. '

The smallest variety containing a class £ of topological groups is
said to be the wariely generated by 2 and is denoted by V(Q). (See [2],
[3] and [12]-{14].)

A full variety is a variety ¥V which contains every topological group
algebraically isomorphic to a member of V.

If Vis a variety, X is a topological space and F is a member of ¥,
then ¥ is said to be a free topological group of ¥V on X, denoted by F(X, V),
if it has the properties:

(a) X is a subspace of F.

(b) X generates F algebraically.

{c) For any continuous mapping y of X into any group H in V,
there exists a continuous homomorphism I" of F' into H such that I'| X = y.

The following results on free topological groups are proved in [8]:
(a) F(X, V) is unique (up to isomorphism) if it exists (b) F(X, V) exists
if and only if there is 2 member of ¥ which has X as a subspace, (¢) F(X, V)
is the free group of the underlying variety of groups on the set X.
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Tychonotf space X, then V is called a f-variety.

Using Swierczkowski [16] it is shown in [9] that every full variety
is a f-variety. Finally we note that in [10] it is proved that f-varieties -

exist in profusion.
§ 2. The theorems.

TrroREM 1. If Q is any class of arcwise comnected Hausdorff groups

and Q contains a non-trivial group then V(Q) is a f-variety.

Proof. If X is any Tychonoff space, then Lemma By, p. 116 of [6] [
implies that X can be embedded in a product of copies of any member -

of Q. Therefore F(X, V(R)) exists.

To show that F(X, V(Q)) is Hausdorff it is sufficient to find for
each element a 5 ¢;, a member H of Q and a continuwous homomorphism I’ i
of F(X, V(2)) into H such that I'(a) ¢, where ¢ and ¢, denote the

identity elements of H and F(X, V() respectively

Suppose @ = af* ... ;! where 2; ¢ X and &; is an integer for ¢ = 1 ) weny N
Since @ # e, 7§ ... 2 is not a law [15] of the underlying variety V(?ﬁ
of groups. Noting also that F(Xx, V(.Q)) is the free group on the set X
of V(£2), we see that there is a member H of Q and a (not neccessarily
continuous) homomorphism ¢ of ¥ (X yV(Q)) into H such that
et ... 2*) £ e.

Since X is a Tychonoff space and H is arcwise connected Hausdortt,
Theorem 3.6 of [5] implies that there exists a continuous mapping y
of X into H such that y(2) = p(m) for ¢ = 1, .., n. This implies that
there exists a continuous homomorphism I" of F(X,V(Q)) into H sich
thgt I''X =y. Clearly I'(a) = ®(a) # ¢ and the proof is complete.

If the “arcwise connected Hausdorff” condition is weakened to “con-
nected Hausdorft” we expect, but have failed to prove, that the resulting
proposition is falge.

It would be interesting to know the answer to the following:

OPEN QUESTION (%), Can every $-variety be generated by its arcwise
connected Hausdorff groups?

) ’l‘.wo remarks are relevant. Firstly, we mnote that every f-variety
contains non-trivial arcwise connected Hausdortt groups. Thig iy easily
seen by letting X be any arcwise connected Tychonoff space and observing
that the subgroup of F(X » V) algebraically generated by «™'X, for any
© e X, is an arcwise connected Hausdorft group. Secondly, we point out

that it is elear from [4] that every full variety is generated by ity arcwise
connected Hausdorff groups.

(%) This question is answered in the negative in [2].
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If ¥V is a variety such that (X, V) exists and is Hausdortf for eaéh 1
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THEOREM 2. If O is any class of connected locally compact groups then
V(Q) is a p-variety.

Proof. It is clear from § 4.6 of [7] that any connected locally compact
group H is a subgroup of a product of Lie groups, each of these Lie groups
being a quotient of H. This implies that V(Q) = V(I"), where I' is a class
of connected Lie groups. Noting that any connected Lie group is arcwise
connected, the result immediately follows from Theorem 1.

We note that the “connected” condition in the above theorem cannot
be removed. For example, it is shown in [10] that a variety generated
by discrete groups is not a B-variety.

It is (essentially) shown in [10] that any abelian variety containing
a connected compact group is a f-variety. Example 3.2 of [10] shows
that the “abelian” condition ¢annot be omitted. However our final theorem,
which is a simple consequence of Theorem 3 of [1] and Lemma 4.8 of [10],
is a companion to this.

THEOREM 3. If the variety V contains a locally compact connected
non-solvable group (in particular, a compact connected non-abelian group)
then V is a B-variety.
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Some mapping characterizations of unicoherence

by
R. F. Dickman, Jr. (Blacksburg, Va)

Abstract. In this paper we characterize unicoherence in terms of certain real-
valued mappings. The following theorems are typical of the results obtained: (1) Let X
be a separable, locally connected, connected, perfectly normal space. Then X is uni-
coherent if and only if for every pair of disjoint non-empty closed sets A and B of X
there exists a mapping f of X onto I = [0, 1]such that 0 ¢ f(4), 1 f(B) and INf(4 U B)
contains a dense subset D of I such that for every d ¢ D, f*(d) is connected. (2) Let X be
a separable, loeally connected, connected, compact normal space. Then X is unicoherent
if and only if for every pair of disjoint non-empty continua 4 and B of X there exists
a monotone mapping f of X onto I such that f(4) = 0 and f(B)= 1.

The concept of non-alternating mappings was introduced by
G. T. Whyburn in [8] and in {9] he showed that if M is a locally con-
nected, compact connected metric space and J is any arc in M, there
exists a non-alternating- retraction »: M -+J which, when M was uni-
coherent, was monotone. His proofs depended heavily upon cyclic element
theory for compact locally connected continua. In [1], K. Borsuk charac-
terized unicoherence for compact, locally connected metric continua in
terms of mappings into the circle. More recently, K. Kuratowski proved
that when X is a compact and locally connected space and Y is a metric
space, N°, the set of all non-alternating mappings of X onto Y, is a G,-set
in the space of all continuous maps of X into Y.

In this paper we characterize unicoherence for separable, perfectly
normal, locally connected, connected spaces in terms of non-alternating
mappings onto [0, 1].

Notation and termirology. Throughout this paper let X denote a con-
nected, locally connected normal space. By a continuum we mean a closed
and connected set and a region is an open connected set. By a mapping
we will always mean a continuous function. We will use I to denote [0, 1]
and a surjection f of X onto a space ¥ will be denoted by f: X =Y.
A perfectly normal space is a normal space in which every closed subset
is a @4 set.

DerFiNITIONS. We say that X is wunicoherent provided whenever
X = Hwv K, where H and K are continua, H ~ K is a eontinuum.
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