60 L. Pacholski

» Corollary 4.3 is a consequence of the existence of good ideals (see
eg. [4]).

The following fact was stated in [4].

LEMMA 4.4, If G is »™-good, then it is w-incomplete if and only if it
is (w, x)-regular.

CoroLLARY 4.5. If § is %*-good and w-incomplete and 2g is x*-uni-
versal, then, for every class K whose similarity type s of power < x, the
class S(K) is compact.

Finally, let us remark that the assumption of x*-goodness in Theo-

rem 4.1 is not necessary. The proof of it is easy. Also there iy o x-sepa-
ratistic ideal @ such that the Boolean algebra iy »T-universal and § is
not (w, »)-regular.
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Concerning closed quasi-orders
on hereditarily unicoherent continua

by
G. R. Gordh, Jr. (Lexington, Ky.)

Abstract. The purpose of this paper is to define and study a class of hereditarily
unicoherent Hausdorff continua, called nearly smooth, which admit a closed quasi-order
that is closely related to the weak cutpoint order. The major result is that for each
point p of a nearly smooth continuum M there exists a decomposition D of M such
that (i) D is upper semicontinuous, (i) the elements of D are continua, (iii) the decom-
position space of D is a generalized tree which is smooth at the element of D contain-
ing p, and (iv) D is the finest decomposition satisfying (i), (ii), and (iii). In addition,
characterizations of nearly smooth continua, smooth continua, and generalized trees
are obtained in terms of closed quasi-orders and the set-valued function T. A preliminary
result of independent interest is that every semi-aposyndetic, hereditarily unicoherent
continuum is a dendroid.

The notion of weak cutpoint order has been useful in studying the
structure of arcwise connected, hereditarily wnicoherent continua. For
example, Koch and Krule [10] have shown that a hereditarily unicoherent
continuum is a generalized free [12] if and only if there exists a point p
such that the weak cutpoint order with respect to p is a closed partial
order. Charatonik and Eberhart [3] have applied the notion of weak
cutpoint order to obtain characterizations of smooth dendroids and to
study their mapping properties. .

Tt is the purpose of this paper to study hereditarily unicoherent
continua admitting a closed quasi-order which is closely related to the
weak cutpoint order. One should observe that for non-arcwise connected,
hereditarily unicoherent continua the weak cutpoint order is a quasi-
order and not a partial order.

It is shown that a hereditarily unicoherent continuum is smooth at
a point p [6] if and only if the weak cutpoint order with respect to p is
closed. This result motivates the definition of a nearly smooth continunm
as a hereditarily unicoherent continuum admitting a closed quasi-order
which “approximates” the weak cutpoint order. Characterizations of

nearly smooth continua, smooth continua, and generalized trees are

obtained in terms of closed quasi-orders and the set-valued function T [4].
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A major result of the paper is a decomposition theorem for nearl
smooth continua which implies, as a special case, the known decomposiﬁoi
theorem for smooth continua [6]. In particular, it is shown that if the
continuum. M is nearly smooth at a point p, then there exists a de-
composition D of M such that (i) D is upper semi-continuous, (i) the
elfrments of D are continua, (iii) the decomposition space of D is'7a, gener-
ah.zed tree which is smooth at the element of D containing p, and (iv)
D is the ﬁnest among all decompositions satisfying (i), (ii), and’(iii). This
th}lepll‘fm is :?Jnalogqus to known decomposition theorems for certain continug
Zv_ &Zn dej:)?dlsrrfg]l.lclble about a finite set of points (e.g., [5], [11]); and for

Finally, examples of smooth and neaxrly smooth continua are presented.

. For simplicity, the results have been stated above for hereditaril
unicoherent continua; however, most of the results will be proved mori
. generally for continua which are hereditarily unicoherent at a point [6].

The author wishes to express hiy appreciation to Carl Eberhart for

many helpful suggestions during the course of this work.

1. Definitions and preliminary remarks. A i i

. continuum is a compact
connectec_i H@us-dorﬁ space. An are is a continuum (not necessarily metriz-
able) which is irreducibly connected between some pair of poifats.

_A continuum is hereditarily unicoherent at the point p [6] if the inter-
sec?non Qf,a,ny two subcontinua, each of which contains p iy connected
It is easily verified that if X is a continuum, then X is hereditarily 11ni:
eoheren‘-o at p if and only if given any point # ¢ X there exists a unique
fsub_contmuu.m which is irreducible between p and . If the éonfin11(111m
M is hereditarily unicoherent at the point p and q e M—{p}, 1;11:311 the

symbol pqg will d i i 7 PR
betweenpgq; ! ;.note the unique subcontinuum of M which is irreducible

e ;i glogémium M is lz?fld to be smooth at the point p [6]if I is hereditarily
rent a and i - i in X
fpaconeront & P, and if'for each convergent net of points {a,, n ¢ F} in »M
(i) limay, = a
implies that
(ii) {pan,n e B} is convergent, and
(iil) Limpa, = pa.

A geief-aaelifeldg]t;s ¥ Illgregltamy unicoherent, locally connected continnum.
continumm whi ;le [12] &s a hereditarily unicoherent, arcwise connected
a generalized tiz s sm'ooth. According to [10] the above definition of
(not necessaril © 18 equivalent to that given originally in [12]. A dendroid
. essarily metrizable) is a hereditarily decomposable, hereditaxil
unicoherent, arewise connected continuum. o iy
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A continuum X is aposyndetic [8] at a point # with respect to & point ¥

if there exists a subcontinuum H of X such. that

ze HHCHCX—{y}.
A continuum X is semi-aposyndetic at a pair of points {#,y} if X is
aposyndetic at one of the points with respect to the other. If X is a con-
tintum and z € X, then

T(x)= {y e X: X is not aposyndetic at y with respect to z} [4],
and

K(z)= {y e X; X is not aposyndetic at # with respect to ¥} .

The sets T'(x) and K (x) are closed, and T(x) is connected [8]. Observe that
K (z) =N {K; K is a subcontinuum of X and z e K.

A quasi-order on a set X is & reflexive, transitive relation. A quasi-
order on a topological space X is closed if ity graph is closed in X' X X.
If < is a quasi-order on X and 4C X, then the set

L(4) = {#x ¢« X; < a for some ae A}
i said to be the lower set of 4; and the set
D)= {ye X; a <y <o}
is said to e the level set of x.

Tf I is a continnum which is hereditarily nnicoherent at a point p,

then the quasi-order < on M, defined by
z <y if and only if paCpy,
is said to be the weak cutpoint order with respect to p.

2. Hereditary unicoherence at a point.

Convention. Throughout the remainder of the paper, the letter M
will denote a continuum which is hereditarily wunicoherent at a point p.

In this section we prove several useful theorems concerning hereditary
unicoherence at a point and present two examples to iltustrate the notion.
The first theorem is an immediate consequence of the definitions.

TeeorEM 2.1. The continuum X is hereditarily unicoherent if and
only if X is hereditarily unicoherent at each of its poinis.

TusorEM 2.2. If M is arewise connected, then M is hereditarily uwi-
coherent.

Proof. Suppose that I is not hereditarily unicoherent. Let H and K
be subcontinua of M such that H ~ K= A B where A and B are
mutually separated sets. Assume without loss of generality that p ¢ H v K,
and let px be an arc in M such thab

pz o (A v B)={z}.
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If ze A, then
(pxv H)~(prow K)= (pg v Ad)v B,

and consequently the intersection of two subeonfinua containing p is
not connected. This is a contradiction.

TuEOREM 2.3. If M is semi-aposyndetic, then DM is a dendroid.

Proof. According to Theorem 2.2, it suffices to show that pa is an
arc for each @ ¢« M —{p}, and that M is hereditarily decomposable.

Suppose that N is an indecomposable subcontinuum of M with
non-void interior relative to pz. Then N = cl(N?), and we may assume
that p ¢ ¥ and 2 ¢ N. Let P (respectively X) denote the component of
px— N° which contains p (respectively #). Chooseh e P ~ N and k ¢ ¥ ~ ¥,
Then W is clearly irreducible between % and k.

Since M is semi-aposyndetic, we may assume that there exists a sub-
continuum H of M such that

heHCHCM—{k}.

Since the composant of % in ¥ must meet HO ~ N, it follows that there
exists a subcontinwum A of N such that

A'=@ (relative to N), ke d, and A ~H @ .
Clearly, Pw Hw 4 U X is a subcontinuum of M containing p and o, bub
' N—(PUHUVALX)#@,

whieh is a contradiction. Thus pz contains no indecomposable sub-
continuum with interior relative to pa.

According to [5] there exists an are [¢,b] and a monotone map
f: pz—[a, b] such that f~*(¢)= G for each cela, b]. Without loss of
generality suppose that f~%(c) is non-degenerate for some ¢ « (a, ) and
choose distinet points = and w such that

z e cl[f™[a, o)]] ~ el[f (e, bl)], and  wefYe).

Then there does not exist a subcontinuum of M which misses 2 (re-
spectively w) and contains w (respectively 2) in its interiov, This contradicts
. the assumption that M is semi-aposyndetic.
Consequently the map f must be one-one; in particular, pa iy an are.
Now let N be any non-degenerate subcontinuum of M, and let o
and y be distinct points of N. Since I is semi-aposyndetic we may as-
sume that there exists a subcontinuum F of I such that

2ePCFC M —{y},

Since I iy hereditarily unicoherent (Theorem 2.2), F ~ N is a proper
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subeontinuum of N with non-void interior relative to N. Thus N is de-
composable; consequently M is hereditarily decomposable.

CorROLLARY 2.1. If M 1is aposyndetic, then M is a tree.

Proof. If M is aposyndetic, then M is semi-aposyndetic; hence,
M is hereditarily unicoherent. It follows easily that M is locally connected.

ExavrLE 2.1. Let X denote any Hausdorff compactification of the
half-open interval [0,1). Then X is hereditarily unicoherent at each
point of [0,1). Clearly X need not be hereditarily unicoherent, since X
may be chosen so that X —[0, 1) is homeomorphic to any given metric
continuum.

ExamrLe 2.2. Let H be a pseudo-arc (e.g., [1]) and let p, ¢, and »
be points which lie in distinet composants of H. Given any totally dis-
connected compact Hausdorff space K, define Hy to be the continuum
obtained by “collapsing” the sets {p} X K and {¢g}xK in Hx K. If
f: HxX K—Hg is the natural map, then Hg is hereditarily unicoherent
at each point of f({r} X K). Thus Hy is a non-unicoherent continuum
which is hereditarily unicoherent at each point of a dense subset.

3. Characterizations of smooth and nearly smooth continua. Recall the con-
vention that M denotes a continuum which is hereditarily unicoherent
at p. The first result is a partial generalization of the theorem in [10].

THEOREM 3.1. The continuum M is smooth at p if and only if the weak
cutpoint order with respect to p is closed.

Proof. Let < denote the weak cutpoint order with respect to p.
Let {(@1, yu), n € E} be a net of points in M x M such that

n KYn and  Lm(@a, ya) = (z,¥) .
Since M is smooth at p, it follows that
pz = Limpx, C Limpy, = py .

Thus z <y, and < is closed.

Conversely, suppose that 3 is not smooth at p. By Theorem 2.3
of [6] there exist nets {am, m ¢ B} and {bn, m ¢ B} such that (i) lima, = a,
(i) limby = b, (iii) bm e pam for each m ¢ E, and (iv) b ¢ M —pa. Thus
b < am for each m e B, but b<£ a. This contradicts the hypothesis that
= is. closed.

CoROLLARY 3.1. The continuum M is a generalized tree which is smooth
at p if and only if the weak cutpoint order with respect to p is a closed
partial order.

Proof. Let < denote the weak cutpoint order with respect to p.

If M is a generalized tree which is smooth at p, then < is a partial

order since M is arcwise connected; and < is closed by Theorem 3.1.
5 — Fundamenta Mathematicae, T. LXXVIII
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Tf < is a closed partial order, then I is arcwise connected by Koch’s
arc theorem [9]. By Theorem 2.2, M is hereditarily unicoberent; and by
Theorem 3.1, M is smooth at p.

e now introduce a generalization of the nofion of weak cutpoint
order. A quasi-order < on M is said to he an approwimate weak cuipoint
order with respect to p provided that '

(i) L(x) is a continuum,

(i) p e L(x), and

(iii) L{x) C pz v K (x)
for each x e M.

Clearly the weak cutpoint order with respeet to p satisfies conditions
(i), (i), and (iii); in fact, the weak cutpoint order with respect to p is
contained in each approximate weak cutpoint order with respect to p.
If M is aposyndetic, then K (z) = {2}, and the weak cutpoint order with
respect to p is the unique approximate weak cutpoint order with
respect to p. :

Theorem 3.1 motivates the following generalization of the notion of
smoothness. A continuum M is said to be nearly smooth at p in case there
exists a closed approximate weak cutpoint order with respect to p on M.

COROLLARY 3.2. If the continuum M is smooth at p, then M is nearly
© smooth at p. ' .

THEOREM 3.2. If < is a closed approximate weak cutpoint order with
respect to p on M, then z < y for each y € T(z).

Proof. This follows from Theorem 4 of [3].

THROREM 3.3. A gquasi-order < on M is a closed approvimate weak
cutpoint order with respect to p if and only if the lower sels of < are of
the form

L(z)=px v K(z).

Proof. Let < be closed and suppose that there exists a point ¥

such that
Y eprvw K(x)]—L(x) .

By Theorem 3.2, D(x) ~ T(y) = @; hence there exists a subcontinuum H
such that
ze HUCHC M—{y}.
Thus,
Yyepzw K(x) Cpew HC M —{y}

which is a contradiction. Consequently, L(x) = pa « K ().
Conversely, suppose that < has lower sets of the form L (z) = pa v
v K(x). If y «, then y ¢ L(x) = pa v K (x). Hence there exists a con-
tinuum H such that
ze HCHCM—{y}.
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Let
U=[M~—(pxvw H)]x H.

Then U is open in M x M, and for (2, w) e U it follows that
Lw)CprwvH and =z¢pro H.

Thus z<£ w, and < is closed.

COROLLARY 3.3. If the continuwm M is nearly smooth at p, then there
exists a unique dlosed approvimate weak cutpoint order with respect to p.

Notation. Let M be a continnum which is nearly smooth at p.
Let <, denote the unique closed approximate weak cutpoint order with
respect to p; Lp(x) the lower set of #; Dy() the level set of #; and D, the
decomposition of Jf into level sets. This notation will be used consistently
throughout the remainder of the paper.

TWe now obtain a usable criterion for determining when a given
continuum 3 is nearly smooth at p. Define a relation g, on M by the
condition

(z,y) eop if and only if z epy v K(y).

The relation gp is clearly reflexive but not necessarily transitive (see
Example 5.2). In case gp is transitive, it follows that g, is a quasi-order
whose lower sets are of the form L(#z) = px v K (2). According to Theo-
rem 3.2, g, is a closed approximate weak cutpoint order with respect to p.
We have just proved the following corollary of Theorem 3.2.

COoROLLARY 3.4. The continuum M is nearly smooth at p if and only
if the relation pp is transitive.

The remainder of this section is devoted to proving generalizations
of known theorems concerning smooth dendroids [3].

THEOREM 3.4. Let < be any approximate weak cutpoint order on M
with respect to p. Then < is closed if and only if

Lix) »n T'(x) C D(x) for cach & < M.

Proof. If < is closed, then Theorem 3.2 implies that L(x) ~ T (i)
C D(x).

Conversely, suppose <t y. Observe that if 2 € 7' (2), then pz ~ D(x) #
(since L(x) ~ I'(x) C D(x)); hence z <z In particular, y ¢ T'(x), and
there exists a subcontinwum H of M such that

ye HOCHC M —{x}.
Now a ¢ pyv H, and L(2) C py v H for each z¢ H° It follows that
[M—(py v H)]}x H
is an open subset of M x M which contains (r,y) and misses =. This

implies that < is closed.
5
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COROLLARY 3.5. Let D(2)= {y <« M; px=py}. Then M 1is smooth
al p if and only if
pr ~T(@)CD(w) for each xe M.

Proof. Let < denote the weak cutpoint order with respect to p and
apply Theorem 3.{.

COROLLARY 3.6. The continuum M is a generalized tree which is smooth
at p if and only if
pxn T(z) = {x} for each xe M.

Proof. If M is a generalized tree which is smooth at p, then Corollary
3.1 and Corollary 3.5 imply that :

pxnT(z)= {x} for eachme M.

Let < e the weak cutpoint order with respect to p. By using methods

similar to those applied in the proof of Theorem 2.3 it can be shown
that the level sets D(#) of < are degenerate. In particular, < is a partial
order which is closed by Corollary 3.5. Corollary 3.1 implies that M
is a generalized tree which is smooth at p.
Levua 3.1. Let X be a dendroid. If {An, n e B} is a collection of subarcs
of X which is linearly ovdered by inclusion, then cl({ ) An) is an are.
Proof. This lemma is an immediate consequence of Lemma 3 and
Theorem 1 of [13].
THEOREM 3.5. Let X be a hereditarily unicoherent continuum. Then X is
a generalized tree if and only if given a« and y in X, either
oy nT(x)={x} o ay~Tly)={y).
Proof. If X is a generalized tree, then the proof for metrie dendroids
is valid (see [3], Theorem 6). .
Suppose that X is a hereditarily unicoherent continuum such that
ay nT(e)={wy or aynT(y)={y}.
In particular, X is semi-aposyndetic; and, according to Theorem 2.3,

X is a dendroid. The result now follows from Lemma 3.1 and the proof
of Theorem 6 in [3].

4. Monotone decompositions of nearly smooth continua. Certain types of
continua are known to admit minimal monotone upper semicontinuous
decompositions whose . decomposition spaces Dbelong to some clags of
arcwise connected continua. For example, certain continua irreducible
about a finite set (e.g., [6],[11]); A-dendroids [2]; and smooth continua [6]
are known to admit such decompositions. In this wsection we prove an
analogous decomposition theorem for nearly smooth ‘continua.
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©

Concerning closed quasi-orders on hereditarily unicoherent continua 69

Lema 4.1, If the continuum M is nearly smooth at p, then the level

set Dy(x) is a continuum for each & e M.

Proof. Suppose that Dy(x) is not connected (note that Dp(z) is
closed), and let C; and C, be distinet components of Dy(x). Choose y ¢ 0,
and z e 0,. It is not difficult to verify that .

pynC=0 or prnC=0.
Assume that py n Ch= . '
Tt ¢~ T(2) = @, then (using the compactness of 0,) it is possible
to construct & continuum H such that
C,CH' CHC M—{z}.
In this case we have

seL(z)=L(y) Cpyv E(y) Cpy v H

which is a contradiction.
I ¢~ T(z) # 9, then psCpyw T'(2). Choose

w e pz [T (2)—Dyp(@)] .
Then w <p2; and according to Theorem 3.2, ¢ <p . Consequently,
T<Lp pWw<p2<p ¥,

or w e Dy(#) which contradicts the choice of w.

Leania 4.2, If < is a closed quasi-order on o compact Hausdorff space X,
then the decomposition D into level sels is upper semicontinuous; and the
induced partial order <’ on X|D is closed.

Proof. Define an equivalence relation ¢ by the condition

(x,y)eo if and only if 2z <y and y<=.

Then o is closed, since < is closed; and consequently the decomposition
of X into equivalence classes (i.e., D) is upper semicontinuous.

It x denotes the natural continuous map from M x M onto M/D X
X M[D, then =(<) = <'. Hence <’ is closed.

LEvma 4.3, Let X be a continuum which is drreducible between two
points @ and b. Then the set

B,= {veX; X is irreducible from a to x}
has empty interior.

Proof. Suppose that ¥ is open and that b « V C H,. Choose an open
set T such that be W Ccl(W)CV, and let ¢ denote the component
of X —7¥ which contains a. By Theorem 2-16 of [7], ¢ nV % @. Thus
¢ is a proper subcontinuum of X containing the point « and some point
of E,. This is a contradiction.
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TreorEM 4.1. If M is nearly smooth at p, then there exisls a decompo-
sition Dy of M such that ‘

(i) Dy is upper semicontinuous,

(ii) the elements of Dy are continua,

(iii) the decomposition space of Dy is a generalized tree which 18 smooth
at Dylp), and

(iv) if &p is @ decomposition satisfying (i), (ii), and (iii), then Dy < &p
(i.e., Dy refines Ep).

Proof. Let D, denote the decomposition into level sets. Then D, is
upper semi-continuous by Lemma 4.2, and the elements of Dy, are
continua by Lemma 4.1. The induced partial order on MDDy is closed,
monotone (i.e., lower sets are connected) and has a unique minimal
element Dy(p). By Koch’s arc theorem [9], M/D, is arcwise connected.
Since M[D, is hereditarily unicoherent at Dy(p) (see Theorem 4.1 of [6]),
it follows from Theorem 2.2 that M/D, is hereditarily unicoherent.
According to [10] the weak cutpoint order with respect to Dy(p) is closed.
In partienlar, M/D, is a generalized tree which is smooth at Dp(p).

Suppose that &, = {Hp(%): @ « M} is decomposition satisfying (i), (ii),
and (iii) such that D,< &p. There exists an element Dy(z) of Dp and
distinet elements E,(2) and Ex{w) of & such that Fp(w) n Dy(z) #
Let g: M—~M/[¢, denote the natural map and let

¢ =g(By2)), w =g(Bp(w), and p'=g(B(p)).
Ve can assume without loss of generality that w’ ¢ pe’. Since M/E, is

a generalized tree, it follows from Theorem 3.3 that K (z')Cp'z’. In
particular, there exists a subcontinuum H of /6, such that

e H°CHC M[8,—{w'}.

Now g~ Yp'?’ v H) is a continuum in M (since g is monotone) which
contains pzvw K (2) and misses a point of Dy(z). This contradicts the
fact that '

Dy(e) C Lp(z) C pe v K(z).

As a corollary we obtain the following known decomposition theorem
for smooth continua [6].

CororiAry 4.1, If M is a smooth continuum, then there exists a de-
composition D of M such that

(i) D is upper semicontinuous,

(ii) the elements of D are continua,

(ili) the decomposition space of D is arcwise connected, and

(iv) if & is a decomposition satisfying (i), (i), end (iii), then D <L &.

Moreover, the decomposition space of D is a generalized tree and each
element of D has void interior.
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Proof. Let M be smooth at p, and let D = D;. Theorem 4.1 implies
that properties (i), (ii), and (iii) are satisfied and that M/D is a generalized
tree. If § is any decomposition satisfying (i), (ii), and (iii), then by Theo-
rvem 4.1 of [6] M/€ is a generalized tree which is smooth at the element
of § containing p. It follows from Theorem 4.1 that D < & According
to Lemma 4.3, each element of D has void interior.

The decomposition obtained for nearly smooth continua is not as
well behaved as that for smooth continua. Even in simple examples
(see Example 5.3) the decomposition D, of & nearly smooth continuum
depends on the point p. Also, the decomposition D, of a nearly smooth
continuum is not in general the minimal monotone upper semicontinuous
decomposition whose decomposition space is arewise connected. In fact,
the monotone image of a nearly smooth continuum in an arewise con-
nected continuum need not even be a generalized tree (see Example 5.3).

For smooth continua each element of the canonical decomposition
has void interior, whereas the decomposition for nearly smooth continua
may be degenerate. The next theorem characterizes those nearly smooth
continua which possess degenerate decompositions.

THEOREM 4.2. Let the continuum M be nearly smooth at p. Then Dy is
degenerate if and only if M is indecomposabdle.

Proof. It follows from Theorem 3.3 that D, iy degenerate if and
only if K(r)= M for each x e . Consequently, D, is degenerate if and
only if M is indecomposable. ‘

5. Examples of smooth and nearly smooth continua. e hegin by discussing
the examples of Section 2 in more detail.

Exanpie 5.1. Let X denote any Hausdorff compactification of [0, 1),
as in Example 2.1, and assume that X —[0,1) is nondegenerate. Then
X is smooth at each point of [0,1), but it is not smooth at any point
of X—[0,1), since X is not locally connected there (see Corollary 3.1
of [6]). However, X is nearly smooth at p if and only if X is hereditarily
unicoherent at p. In particular, the familiar “sinl/r curve” is nearly
smooth at each point.

BxaMpLE 5.2. Let Hy denote a continuum as described in Ex-
ample 2.2. Let 7 and % be distinct points of I and define » = f(r, k), and
y = f(r, k) (v as previously defined). We have observed that Hg is he-
reditarily unicoherent at the point z. We shall show that Hy is not nearly
smooth at x. According to Corollary 3.4, it suffices to prove that the
relation g, is not transitive. This follows from the easily verified facts that

Y,p)eos, (ps@)eoz, and (¥,)¢0s,

~here p = f({p} X K). More generally it can be shown that Hx is not
nearly smooth at any of its points.


Artur


-
o

G. R. Gordh, Jr.

The next example was presented in [10] as a dendroid which is not
a generalized tree.

ExXAMPLE 5.3. In the plane let .4 consist of the unit segment [0, 1]
on the #-axis, the unit segment [0, 1] on the y-axis, and the vertical
segments of length % erected over the points with coordinates (%), 0),
where » is a positive integer. Let B denote the reflection of A through
the line ¥ = 1. The continuum X = A v B is a dendroid which is not
smooth. However, X is nearly smooth at each point. Let p = (0, 0),
g=(0,2). Then the decomposition D, (respectively D) has as its only
non-degenerate element the set [%, 2] (respectively [0, 1) on\the Y -axis.
Consequently, Dp 7 Dy; although, in this example, M/D, is homeomorphic
to M/Dy.

ExXAMPLE 5.4. Let X denote a pseudo-are (e.g., [1]). Then X is in-
decomposable and hereditarily unicoherent. Consequently X (#) = X and
oz = X x X for each »eX. It follows that X is nearly smooth at each
point, and that D is degenerate for each » ¢ X.

Exampre 5.5. Let Y denote a circle of pseudo-ares [1], and let
fi ¥ -0 be the open decomposition map from ¥ onto a circle ¢. Let 4
denote a subarc of ¢ and define X = f~Y(4). It can be shown that X is
hereditarily unicoherent (since the pseudo-arc is hereditarily unicoherent)
and that K(x) = f~(f(z)) for each » « X. It follows that g, is transitive
for each z e X. Consequently X is nearly smooth at each of its points,
Since X iy not locally connected at any point, X is not smooth at any
point. However, a slight modification of X produces a continuum which
is smooth. Let H = f~(a) for some a ¢ A. Then X/H is smooth at the
“point” H.
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