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Factors of Z'** with infinitely many bad points
by
A, J. Boals (Jowa City, Iowa)

Abstract. In this paper it is shown that: if G, is an upper semi-continuous
decomposition of E" such that the set of non-degenerate elements is a countable
set of arcs and @, is an upper semi-continuous decomposition of E™ such that the
set of non-degenerate elements is a set of “nearly™ straight arcs, then E"/G,x
XE™[Gy = EM™, :

1. Introduction. K. W. Kwun [6] shows that for » > 6 n-dimensional
Euclidean E™ space can be represented as the product of two spaces,
neither of which is a manifold. In particular, he shows that if « is an
arc in E® and § is an arc in E™ then E"/a X E™/f= E™". Each of these
factors can fail to be a manifold at only one point. In [5] it was shown
that E® can be written as the product of two spaces each of which fails
to be a manifold at an uncountable number of points.

In this paper we show that for n > 6, E™ can be written as the product
of two spaces each of which has an infinite number of points which fail
to have Euclidean neighborhoods.

2. A class of factors of E™. Suppose a is an arc in E* (i.e., a is any
homeomorphic image of the unit interval) such that P = IIjja is an in-
jection, where 7, is the projection of E* onto the 1st coordinate. Then « is
said to have property @8.

Let A, 4,, ... be a sequence of compact #-manifolds (not necessarily
connected) in E” satisfying

i 4,.,Cint4; foralli=1,2,..
ii. Each component of 4, =) 4; is an arc with property ¢S.

Let I'y be the upper semi-continuous decomposition of E™ into the
ares of 4, and the points of B"— A_. Further, let I, be the associated
decomposition space. Note that I, might be any of the following de-
compositions of E? (a) “dogbone space”, (b) “unused example”, (¢) “segment
space” [4], and (d) “straight arcs space” [2].

THEOREM 1. Let o be an arc in E™ and let I, be as defined above. Then
E™ax Iy is topologically E™™,
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3. Shrinking the disks of a X.A... As a first step in proving Theorem 1

we shall show that we can shrink the components of ax A, ,C E™x B
to points with a pseudo-isotopy (see [6] and [5]). Let K’ be the upper
semi-continuous decomposition of A™x E™ which consists of the com-
ponents of ax A4,,, which are disks, and the points of (™ X E™)— (a X 4).
Further, let K be the decomposition space associated with K'.

LeMmA 1. Let A be a component of A, and U, a neighborhood of a in E™,
For every e > 0 there exists an integer N >r and a homeomorphism h: B™ x
X B*—B™x B such that

i h=1id on (B™ X BE"—(U,x 4),

ii. diam(h(ax A"))<< e for each component A’ of A ~Ay.

In order to prove Lemma 1 we need the following two lemmas from [57.

Lemva A (Lemma 3 of [5]). Suppose ¢ >0 and A,, A,,... are as
defined above, then there ewists @ finite collection of m-cells 0y i =1,2,...,p
satisfying:

1. For each C; there exists an arc a; € Ay, » int C; such that the distance
from x to boundary of C; is less than e for each x € az.

2. There exists an integer m such that if A is a component of Ay then
ACintC; for some i=1,2,..,p.

Levva B (Lemma 2.2 of [5]). Suppose B =@ is a compact subset
of the interior of an n-cell, I", and C is a compact subset of I™ disjoint from B.
Similarly, suppose D = @ is a compact subset of interior of an m-cell, I™,
and B is a compact subset of I™ disjoint from D. Then there ewists an
(n+m)-cell G with the following properties:

1. BX DCint@C G C intI™x intI™,

2. Gn[(BXE)u ((XD)v ((xXE)]=0.

Proof of Lemma 1. Let @ be an m-cell in B™ containing the arc o.
Let 6 = min(e, distance from o to boundary of U,). By Lemma A there
exists a finite collection of m-cells C,, O, ..., Cp in 4 and an integer N
such that C;Cint4 for each ¢=1,2,..,p and each component of
A n Ay is in the interior of some C;. Let W; be the union of components
of 4 ~ Ay contained in C; but not in Oy for any j < i. Without loss of
generality we shall assume that each Wi, ¢=1,2, .., p is non-empty.

Let U, = {z ¢« B™| dist(z, o)< 6}. By Lemma B there exists a col-
lection of (n+m)-cells Gy, Gy, ..., @y in B™x B with the properties

i ¢ CintQ xint(; for 1 =1, 2, ...,p,

. Gi 0 ((Q@Q—T,) X Wy) =0 for i=j,

i, Gy (axWy) =0 if j # 1,

iv. G (@-TU)x W) =@ for all i=1,2,...,p,

V. aXW;Cint@; for all i=1,2, ..., p.
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For each 1=1,2,..,p let H;CG; be an (n+m)-cell such that
diam (H;) < 6 and H; C G4— G for j + 4. Clearly such cells exist. Let h; be
a homeomorphism of G; onto itself such that h{W;)C H; and kb= id
on boundary of @G;. Clearly each h; has an extension h} of E™* onto
itself. B = Ay ohy o... ok is the desired homeomorphism.

LeMwMA 2. Let A, A,, ... be defined as above. Then there ewists a pseudo-
4sotopy H: E™*x I->E™™ such that

1. H{E™"*x {0} = id.

2. If Hyx) = H(z, i) then for all t < 1, H, is a homeomorphism of E™*"
onto itself which s the identily on the complemeni of a compact set.

3. H, maps E™™ onto ilself and maps each component of ax A, onto
a distinct point.

4, If z e B™—(aX A,,) then H'(H,(z))= .

Proof. Let &;= (})* and let N;= {z e B™| dist(x, a)< 1/i}. We define
a sequence of homeomorphisms h;, positive integers M (i), and positive
numbers &; for ¢=1,2, ... inductively as follows. First, let M(1)= 1.
By Lemma 1 we get a homeomorphism %: ™+ — E™*" and an integer M (2)
such that

(1)
2)
Assume that hx: E™t%» E™ has been defined so that

for zeE™"—(N,xA4,),

hy(z) =2
diamhyaX Aye) < 8= & .
for @eE™"—(NpX Ayg),

for each component A e A MU+D)

hi(x) = @
diam (hx(a X 4)) < 6

where 0 > 0 and if W C B™" with diam(W) << 85 then diam(h(w)) < ex.
Sinee hy is uniformly continuous there exists a d;,, such that if W C B™**
and diam (W) < d;., then diam(hk(W)) < &.,. By Lemma 1, there exists
a homeomorphism f,,, mapping E™*"™ onto E™+" and an integer Ny,
satisfying :

Ipy(d) =2 H 0B~ (N X Aygry) s

diam(hy,,(aX 4))< 8, for each component 4 C A ;py.y -
Define a sequence f;= liyohyo...0ly for i==1,2,.. Since each h; is
isotopic to the identity we have that for each ¢= 1,2, ..., s is isotopic
to hy,,. Moreover, the isotopy between h: and h;,, moves no point more
than ¢,_, for i=2,3, ... If we define f(x) = limfi(2) for x ¢ E™*" then
f is well defined and continuous. Thus we can use the f; along with con-
necting isotopies to construct the desired pseudo-isotopy.
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TmmuA 3. Let P: E™"—>K be the projection map onto the decompo-
sition space K defined above. Then K is homeomorphic to E™" and K has
a metric with respect to which P is uniformly continuous.

4. Shrinking the arcs, In order to complete the proof of Theorem 1
we must shrink each of the ares of

1. P(axw) for each weF"— A4, and

2. P(2x f) for each z ¢ E™—q and f a component of 4.

To accomplish this shrinking we shall use the method of [6]. So let
X, = {P(axw)| weE"—A4,} and X,={P(zx p)] 2e B™—a and p is
a component of A.}.

Let T; D T,D ... be the sequence of compact neighborhoods of ¢ in B™
used in the proof of Lemma 1. Now define the following open sets:

U, = U Plint T, x (B"— 4y))
U,= | P((B™— Ty x int 4,) .

Note that X;CU; for i=1,2 and U; n U, = 0.

By the Lemma of [6] there exists a pseudo-isotopy of B+ which
shrink the arcs P(a X w) to points and is fixed on E™+"— TU,. To complete
the proof we need a pseudo-isotopy which shrinks the arcs P(zx ) to
points and is fixed on E™"—U,. The existence of such a pseudo-isotopy
ig established if we amend the construction of the pseudo-isotopy for U,
given in [6] as follows.

1. Replace T% by Ti and T5 by 4.

2. In the proof of the Lemma use Theorem 3.6 of [5] in place of
Theorem 1 of [6].

5. E™ mod an infinite set of disks. Let G be an upper semi-continuous
decomposition of E™ such that the set H of non-degenerate elements
of @ is a compact set each of whose components is an are.

In light of Lemma 2 and the proof of Theorem 1 of [3], we have the
following result.

Let L’ be the upper semi-continuous decomposition of E™™ whose
only non-degenerate elements are the disks ax f where a ¢ H and fe 4.
Let L be the decomposition space associated with L.

Levwma 4. L is homeomorphic to E™™ and L has a metric with respect
to which the projection map P: E™™ K is uniformly continuous.

Now by Theorem 3 of [7], Theorem 3.6 of [5], and the proof of Theo-
rem 1 above, we have the following result.’
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THEOREM 2. Let GF be the decomposition space associaied with the
decomposition G and let Iy be the space defined above. Then Fx Ty is
topologically B™+™,
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