

Factors of E^{n+s} with infinitely many bad points

by

A. J. Boals (Iowa City, Iowa)

Abstract. In this paper it is shown that: if G_1 is an upper semi-continuous decomposition of E^n such that the set of non-degenerate elements is a countable set of arcs and G_2 is an upper semi-continuous decomposition of E^m such that the set of non-degenerate elements is a set of "nearly" straight arcs, then $E^n/G_1 \times \times E^m/G_2 \cong E^{n+m}$.

1. Introduction. K. W. Kwun [6] shows that for $n \ge 6$ n-dimensional Euclidean E^n space can be represented as the product of two spaces, neither of which is a manifold. In particular, he shows that if α is an arc in E^n and β is an arc in E^m then $E^n/\alpha \times E^m/\beta = E^{m+n}$. Each of these factors can fail to be a manifold at only one point. In [5] it was shown that E^n can be written as the product of two spaces each of which fails to be a manifold at an uncountable number of points.

In this paper we show that for $n \ge 6$, E^n can be written as the product of two spaces each of which has an infinite number of points which fail to have Euclidean neighborhoods.

2. A class of factors of E^n . Suppose α is an arc in E^n (i.e., α is any homeomorphic image of the unit interval) such that $P = \Pi_1/\alpha$ is an injection, where Π_1 is the projection of E^n onto the 1st coordinate. Then α is said to have property QS.

Let $A_1, A_2, ...$ be a sequence of compact n-manifolds (not necessarily connected) in E^n satisfying

- i. $A_{i+1} \subset \operatorname{int} A_i$ for all i = 1, 2, ...
- ii. Each component of $A_{\infty} = \bigcap_{i} A_{i}$ is an arc with property QS.

Let Γ_n be the upper semi-continuous decomposition of E^n into the arcs of A_{∞} and the points of $E^n - A_{\infty}$. Further, let Γ_n be the associated decomposition space. Note that Γ_n might be any of the following decompositions of E^3 , (a) "dogbone space", (b) "unused example", (c) "segment space" [4], and (d) "straight arcs space" [2].

THEOREM 1. Let a be an arc in E^m and let Γ_n be as defined above. Then $E^m/a \times \Gamma_n$ is topologically E^{m+n} .

3. Shrinking the disks of $a \times A_{\infty}$. As a first step in proving Theorem 1 we shall show that we can shrink the components of $\alpha \times A_{\infty} \subset E^m \times E^n$ to points with a pseudo-isotopy (see [6] and [5]). Let K' be the upper semi-continuous decomposition of $E^m \times E^n$ which consists of the components of $a \times A_{\infty}$, which are disks, and the points of $(E^m \times E^n) - (a \times A_{\infty})$. Further, let K be the decomposition space associated with K'.

LEMMA 1. Let A be a component of A_r and U_a a neighborhood of a in E^m . For every $\varepsilon > 0$ there exists an integer N > r and a homeomorphism $h \colon E^m \times E^n \to E^m \times E^n$ such that

- i. h = id on $(E^m \times E^n) (U_a \times A)$,
- ii. diam $(h(a \times A')) < \varepsilon$ for each component A' of $A \cap A_N$.

In order to prove Lemma 1 we need the following two lemmas from [5].

LEMMA A (Lemma 3 of [5]). Suppose $\varepsilon > 0$ and $A_1, A_2, ...$ are as defined above, then there exists a finite collection of n-cells $C_i, i = 1, 2, ..., p$ satisfying:

- 1. For each C_i there exists an arc $a_i \in A_{\infty} \cap \operatorname{int} C_i$ such that the distance from x to boundary of C_i is less than ε for each $x \in a_i$.
- 2. There exists an integer m such that if A is a component of A_m then $A \subset \operatorname{int} C_i$ for some i = 1, 2, ..., p.

LEMMA B (Lemma 2.2 of [5]). Suppose $B \neq \emptyset$ is a compact subset of the interior of an n-cell, I^n , and C is a compact subset of I^n disjoint from B. Similarly, suppose $D \neq \emptyset$ is a compact subset of interior of an m-cell, I^m , and E is a compact subset of I^m disjoint from D. Then there exists an (n+m)-cell G with the following properties:

- 1. $B \times D \subset \operatorname{int} G \subset G \subset \operatorname{int} I^n \times \operatorname{int} I^m$,
- 2. $G \cap [(B \times E) \cup (C \times D) \cup (C \times E)] = \emptyset$.

Proof of Lemma 1. Let Q be an m-cell in E^m containing the arc a. Let $\delta = \min(\varepsilon, \text{ distance from } \alpha \text{ to boundary of } U_a)$. By Lemma A there exists a finite collection of m-cells $C_1, C_2, ..., C_p$ in A and an integer N such that $C_i \subset \text{int} A$ for each i = 1, 2, ..., p and each component of $A \cap A_N$ is in the interior of some C_i . Let W_i be the union of components of $A \cap A_N$ contained in C_i but not in C_j for any j < i. Without loss of generality we shall assume that each W_i , i = 1, 2, ..., p is non-empty.

Let $U_{\delta} = \{x \in E^m | \operatorname{dist}(x, \alpha) < \delta\}$. By Lemma B there exists a collection of (n+m)-cells G_1, G_2, \ldots, G_p in $E^m \times E^n$ with the properties

- i. $G_i \subset \text{int } Q \times \text{int } C_i \text{ for } i = 1, 2, ..., p,$
- ii. $G_i \cap ((Q U_{\delta}) \times W_j) = \emptyset$ for i = j,
- iii. $G_i \cap (a \times W_j) = \emptyset$ if $j \neq i$,
- iv. $G_i \cap ((Q-U_\delta) \times W_i) = \emptyset$ for all i = 1, 2, ..., p,
- v. $a \times W_i \subset \operatorname{int} G_i$ for all i = 1, 2, ..., p.

For each i=1,2,...,p let $H_i \subset G_i$ be an (n+m)-cell such that $\operatorname{diam}(H_i) < \delta$ and $H_i \subset G_i - G_j$ for $j \neq i$. Clearly such cells exist. Let h_i be a homeomorphism of G_i onto itself such that $h_i(W_i) \subset H_i$ and $h_i = \operatorname{id}$ on boundary of G_i . Clearly each h_i has an extension h_i^* of E^{m+n} onto itself. $h = h_1^* \circ h_2^* \circ ... \circ h_n^*$ is the desired homeomorphism.

LEMMA 2. Let $A_1, A_2, ...$ be defined as above. Then there exists a pseudo-isotopy $H: E^{m+n} \times I \rightarrow E^{m+n}$ such that

- 1. $H/E^{m+n} \times \{0\} = id$.
- 2. If $H_t(x) = H(x, t)$ then for all t < 1, H_t is a homeomorphism of E^{m+n} onto itself which is the identity on the complement of a compact set.
- 3. H_1 maps E^{m+n} onto itself and maps each component of $a \times A_{\infty}$ onto a distinct point.
 - 4. If $x \in E^{m+n} (\alpha \times A_m)$ then $H_1^{-1}(H_1(x)) = x$.

Proof. Let $\varepsilon_i = (\frac{1}{2})^i$ and let $N_i = \{x \in E^m | \operatorname{dist}(x, a) < 1/i\}$. We define a sequence of homeomorphisms h_i , positive integers M(i), and positive numbers δ_i for i = 1, 2, ... inductively as follows. First, let M(1) = 1. By Lemma 1 we get a homeomorphism $h: E^{m+n} \to E^{m+n}$ and an integer M(2) such that

(1)
$$h_1(x) = x \quad \text{for} \quad x \in E^{m+n} - (N_1 \times A_1),$$

(2)
$$\operatorname{diam} h_{1}(a \times A_{M(2)}) < \delta_{1} = \varepsilon_{1}.$$

Assume that h_k : $E^{m+n} o E^{m+n}$ has been defined so that

$$h_k(x) = x$$
 for $x \in E^{m+n} - (N_k \times A_{M(k)})$,

$$\operatorname{diam}(h_k(\alpha \times A)) < \delta_k$$
 for each component $A \in A_{M(k+1)}$

where $\delta_k > 0$ and if $W \subset E^{m+n}$ with $\operatorname{diam}(W) < \delta_k$ then $\operatorname{diam}(h(w)) < \varepsilon_k$. Since h_k is uniformly continuous there exists a δ_{k+1} such that if $W \subset E^{m+n}$ and $\operatorname{diam}(W) < \delta_{k+1}$ then $\operatorname{diam}(h_k(W)) < \varepsilon_{k+1}$. By Lemma 1, there exists a homeomorphism h_{k+1} mapping E^{m+n} onto E^{m+n} and an integer $N_{N(k+2)}$ satisfying

$$h_{k+1}(x) = x \quad \text{ if } \quad x \in E^{m+n} - (N_{k+1} \times A_{M(k+1)}) ,$$

$$\operatorname{diam}(h_{k+1}(\alpha \times A)) < \delta_{k+1}$$
 for each component $A \subset A_{M(k+2)}$.

Define a sequence $f_i = h_1 \circ h_2 \circ ... \circ h_i$ for i = 1, 2, ... Since each h_i is isotopic to the identity we have that for each $i = 1, 2, ..., h_i$ is isotopic to h_{i+1} . Moreover, the isotopy between h_i and h_{i+1} moves no point more than ε_{i-1} for i = 2, 3, ... If we define $f(x) = \lim f_i(x)$ for $x \in E^{m+n}$ then f is well defined and continuous. Thus we can use the f_i along with connecting isotopies to construct the desired pseudo-isotopy.

LEMMA 3. Let $P: E^{m+n} \rightarrow K$ be the projection map onto the decomposition space K defined above. Then K is homeomorphic to E^{m+n} and K has a metric with respect to which P is uniformly continuous.

- 4. Shrinking the arcs. In order to complete the proof of Theorem 1 we must shrink each of the arcs of
 - 1. $P(a \times w)$ for each $w \in E^n A_\infty$ and
 - 2. $P(z \times \beta)$ for each $z \in E^m \alpha$ and β a component of A_{∞} .

To accomplish this shrinking we shall use the method of [6]. So let $X_1 = \{P(\alpha \times w) | \ w \in E^n - A_\infty\}$ and $X_2 = \{P(z \times \beta) | \ z \in E^m - \alpha \text{ and } \beta \text{ is a component of } A_\infty\}.$

Let $T_1 \supset T_2 \supset ...$ be the sequence of compact neighborhoods of a in E^m used in the proof of Lemma 1. Now define the following open sets:

$$U_1 = \bigcup P(\inf T_1 \times (E^n - A_i)),$$

$$U_2 = \bigcup P((E^m - T_i) \times \inf A_i).$$

Note that $X_i \subset U_i$ for i = 1, 2 and $U_1 \cap U_2 = \emptyset$.

By the Lemma of [6] there exists a pseudo-isotopy of E^{m+n} which shrink the arcs $P(\alpha \times w)$ to points and is fixed on $E^{m+n} - U_1$. To complete the proof we need a pseudo-isotopy which shrinks the arcs $P(z \times \beta)$ to points and is fixed on $E^{m+n} - U_2$. The existence of such a pseudo-isotopy is established if we amend the construction of the pseudo-isotopy for U_1 given in [6] as follows.

- 1. Replace T_i^1 by T_i and T_i^2 by A_i .
- 2. In the proof of the Lemma use Theorem 3.6 of [5] in place of Theorem 1 of [6].
- 5. E^{m+n} mod an infinite set of disks. Let G be an upper semi-continuous decomposition of E^m such that the set H of non-degenerate elements of G is a compact set each of whose components is an arc.

In light of Lemma 2 and the proof of Theorem 1 of [3], we have the following result.

Let L' be the upper semi-continuous decomposition of E^{m+n} whose only non-degenerate elements are the disks $\alpha \times \beta$ where $\alpha \in H$ and $\beta \in A_{\infty}$. Let L be the decomposition space associated with L'.

LEMMA 4. L is homeomorphic to E^{m+n} and L has a metric with respect to which the projection map $P: E^{m+n} \to K$ is uniformly continuous.

Now by Theorem 3 of [7], Theorem 3.6 of [5], and the proof of Theorem 1 above, we have the following result.

THEOREM 2. Let G^* be the decomposition space associated with the decomposition G and let Γ_n be the space defined above. Then $G^* \times \Gamma_n$ is topologically E^{m+n} .

References

- J. J. Andrews and M. L. Curtis, n-space module an arc, Ann. Math. 75 (1962), pp. 1-7.
- [2] S. Armentrout, A decomposition of E into straight arcs and singletons (to appear).
- [3] R. H. Bing, Upper semicontinuous decompositions of E³, Ann. Math. 65 (1957), pp. 363-374.
- Decompositions of E⁸, Topology of 3-manifolds and Related Topics 1962, pp. 5-21.
- [5] A. J. Boals, Non-manifold fastors of Euclidean spaces, Fund. Math. 68 (1970), pp. 159-177.
- [6] K. W. Kwun, Product of Euclidean spaces mod an arc, Ann. Math. 75 (1964), pp. 104-108.
- [7] D. V. Meyer, More decompositions of Eⁿ which are factors of Eⁿ⁺¹, Fund. Math. 67 (1970), pp. 49-65.

Reçu par la Rédaction le 7. 12. 1971