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A positional characterization of the
(n—1)-dimensional Sierpinski curve in § (n#4)

by
J. W. Cannon (*) (Madison, Wis.)

Abstract. Let X be a compact metric continuum which can be embedded in the
n-sphere 8%, say by a map h: X 8", in such a manner that the components of §"—h(X)
form a null sequence T, Us, ... satisfying the following conditions: (1) §"—U; is an
n-eell for each 1, (2) CLU; ~ C1U; = @ if i # j (Cl denotes closure), and (3) e J Uy = 8.
Then X is ealled an (n—1)-dimensional Sierpiiski curve. A beautiful theorem of
G. T. Whyburn [11] states that, for » = 2, there is precisely one (n—1)-dimensional
Sierpifiski curve X up to homeomorphism and that properties (1), (2), and (3) are
satisfied for each embedding h: X -8 We observe in this note that recent developments
in the topology of manifolds allow one to extend Whyburn's result directly to higher
dimensions (n # 4).

Conventions. In all proofs we shall assume that n=3 or n > 5.
Our manifolds will have no boundary. If X is an (n—1)-dimensional
Sierpifiski curve and h: X — 8™ an embedding of the type ensured by that
fact, then kh(X) will be called an S-curve; ie., an S-curve is a nicely
embedded Sierpifiski curve. We assume the reader is thoroughly familiar
with [11] and simply indicate the alterations necessary in higher di-
mensions.

The recent developments alluded to in the first paragraph ave the
following.

Axnurus TegorEM [7]. Let U be o connected open subset of a topo-
logical n-manifold M (n # 4) and let B and B’ be two locally flat n-cells
in U. Then there is a homeomorphism h: MM, fizved outside U, such
that h(B) = B'. ;

APPROXIMATION THEOREM FOR CELLULAR MAPS [2][10]. Let f: M —+N
denote a proper cellular map of n-manifolds (n # 4) and {U,} an f-satu-
rated open covering of M (i.., ff(U,) = U, for each index o). Then
there is a homeomorphism g: N->M such that g o f= identity mod{U,}
(i.e., for each p e M, there is an index a such that {p,gef(p)}C U,).

CoROLLARY. Suppose K is a compact subset of M such that ff(p) = p
for each p e K. Then g may be chosen so that g o f|K = identity. Hence,

(1) The author is a Sloan Foundation Research Fellow.
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if K is also a sphere of some dimension, then K is locally flat in M if and
only if g(K) is locally flat in N.

Proof. Choose an f-saturated open cover {V;} of M—K in M—K
which refines {U,} and which has mesh approaching 0 uniformly near K,
Then flM— K: M— K-> N—f(K) is a proper cellular map of n-manifolds.
By the Approximation Theorem, there is 2 homeomorphism g: N—f(K)
+M—K such that g o f= identity mod{V,}. One easily sees that g can
be extended continuously to take N onto M if one defines g(z) = f~%(x)
for » e f(K).

Other older results which we shall need are the following.

DrcomposiTioN THEOREM [9]. Let B, B,,.. denote a sequence,
either mull or finite, of disjoint flat n-cells in 8* and U am open subset of
8" which contains () Bi. Then there is a surjective map f: 8" 8", fized
outside U, such that the nondegenerate point inverses of f are precisely the
cells By, By, ... (Mayer's proof extends to higher dimensions. )

CELLULARITY THEOREM [8]. Lét § denote an (n—1)- sphere in 8™(n # 4),
U and V the components of S"— 8. Suppose there is a sequence Si, S, ...
of (n—1)-spheres in U such that, for each 4, 8; lies in the 1/i-neighborhood
N(8,1/i) of § and separates V from U—N(8,1/i) in 8™ Then CLV is
cellular in S™.

Proof. It §; and §; are disjoint, then it is an easy matter to show
th?.t the closure of the region between them is simply connected. Using
this fact, it is an easy exercise to show that McMillan’s cellularity cri-
terion [8] is satisfied for CIV in 8" But ClV is a compact absolu.te Te-
tract by [4]. Thus CLV is cellular in §* by [8, Theorems 1 and 1]

We also need an easy lemma, an observation, and a definition.

. Lemma 0 If X is an (n—1)-dimensional $-curve in 8%, then there
is am embedding h: X—>8" such that the components of 8"—h(X) have flat
- (n—1)-spheres as boundaries. (Note that [5] implies that h(X) is alse
an §-curve in 8".) ‘

Proof. If U.is 8 component of §"— X, then §"— U is an n-cell and
n:fm% ;)Ie] pulled slightly into its interior in such a manner that the image
o is bicollared, hence flat [5]. It follows from [5] that the imao
of X is also an §-curve. 9] that he fmage

An infinite iteration of this process vields the lemma. The reader

who is unfamiliar with the details of sueh infinite iterati
consult [3], an infinite iteration should

Remark (cf. [11, Remark, p. 321]). If X is an (n—1)-dimensional

S-curve in 8% 8§ is a flat (n—1)-sphere in X, and for some component 7

of 8"~ 8, no component of "— X has clo ich i
- - 5 sure which int 3
(8uV)nXis an S-curve in S*. iersects 5, then
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DeriNrrioN (of. [11, Definition, p. 321]). A subdivision ¢ of an
(n—1)-dimensional §-curve X in 8" is a division of X into a finite number
of (n—1)-dimensional S-curves effected by taking a simplicial sub-
division o' of the closed region R obtained by adding to X all but a finite
number Uy, ..., Un of its complementary domains in such a way that
the (n—1)-skeleton of o' lies entirely in X and contains the boundary
of B but does not intersect the boundary of any component of §"—X
other than Uy, ..., Um. The intersection of the n-cells of ¢’ with X gives
a collection of (n—1)-dimensional §-curves (see the remark) constituting
the “n-cells” of the subdivision of X. The subdivision is said to have
mesh less than & or to be an e-subdivision if each “n-cell” of the subdivision
has diameter less than e.

Learva 1 (cf. [11, Lemma 1, p. 321]). Suppose X and ¥ are (n—1)-di-
mensional §-cuives in 8 (n £ 4), U and V are components of 8"— X and
8*— ¥ respectively, & is any positive nwmber and h is any homeomorphism
of BAU onto BAV. Then there exist e-subdivisions of X and Y whose
(n—1)-dimensional skeletons K and K' correspond under o homeomorphism
which is an extension of h.

Proof. Proceed exactly as in [11, Proof of Lemma 1, pp. 321-322].
As the bounded complementary domains Cy, Cs, ... and Oy, C;, ... of X
and Y one is to understand the components of §*—X and §"—Y re-
spectively not equal to U and V. One forms the decomposition spaces
(W, @: X—>W) and (W', ¢: V>W’) of X and Y respectively, exactly as
in Whyburn’s paper. One concludes that W and W’ are homeomorphic
to0 m-cells minus a finite number (same number for W and W’) of holes
by the Decomposition Theorem. (One may assume that C1U, Clv, OlG;,
and ClC; are all n-cells by Lemma 0.) The Annulus Theorem allows one
to conclude, as in Whyburn’s paper, that the homeomorphism ¢'he™" of
the boundary sphere @(BdU) of W onto the boundary sphere @'(BdV’)
of W’ can be extended to a homeomorphism #: W—W"

Exactly as in [11], there is, for each 6 > 0, a simplicial subdivision X
of W’ of mesh < 6 whose (n—1)-skeleton G does not intersect the images
of the nondegenerate elements of the decompositions (W, ¢) and (W', ¢)
under the maps tg and ¢’ respectively. That the sets K’ = (p')7(@) and
K = ¢"47¥@) effect subdivisions o’ and o of ¥ and X respectively which
correspond in 1-1 fashion with X is obvious once we note that if § is
the boundary of an n-simplex in X, then (¢')~%(S) and ¢~ t7(8) are flat
(n—1)-spheres in ¥ and X respectively by the corollary to the Approxi-
mation Theorem (cf., also, the remark).

The remainder of the proof of Lemma 1 requires no changes from [11].

THEOREM 1. Any twe (n—1)-dimensional Sierpinski curves (n # 4)
are homeomorphic.
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Proof. It suffices to assume that each is an 8-curve in 8™ Then
Theorem 1 follows directly from Lemma 1 as does [11, Theorem 3] from
[11, Lemma 1]

TreROREM 2. If X is an (n—1)-dimensional Sierpishski curve and
h: X—8" is an embedding (n # 4), then h(X) is an S-curve in S™.

Proof. We may assume that X is an §-curve in 8" and, by Lemma 0,
that the closure of each complementary domain of X in 8" is an #-cell.
Let Uy, U,, ... be the components of §"— X and Vy, V,, ... the components
of §"—h(X). It suffices to show that S"—V, is an n-cell. We assume
indices chosen such that BdV;= hBdU;.

Choose i 1. By the Decomposition Theorem, there is a map
fr 88", fixed on C1U;, such that the nondegenerate point inverses
of f are precisely the cells ClU; (j = ¢). -Since there are only countably
many nondegenerate point inverses of f and BAU; is collared from

87— ClUy, there is a sequence 8y, 8, ... of (n—1)-spheres in §*—f(|_JC1U;)
! et

which eonverges to BdU; homeomorphically. Then hf~Y(S,), hf“]l( 8s), ..
is a sequence of (n—1)-spheres in 8"— ClV; which converges to BdV;
homeomorphically. We conclude from the Cellularity Theorem that
"C1V; is cellular in S™

Examine the decompositions & and @& of §*—U, and S"— V. re-
spectively which have as nondegenerate elements ClU,, C1U;, ... and
ClV,, C1V,, ... respectively. It follows from the result of the previous
‘paragraph that each is a cellular upper semicontinuous decomposition
-of ity respectively space. Further, if (W,q: §"— U,—~W) and (W', ¢'":
S8"—V;+W') are the associated decomposition spaces, there is a unique
homeomorphism %’: W—W’ such that the diagram

x L@
I m
s—u, 8"—V,
o
v L ow
commutes.

By the Decomposition Theorem, §"-— Uy, W, and, therefore, W’ are
all n-cells. We wish to show the same to be true of S'— V.. We prove this
by applying the Approximation Theorem. Choose 2 ¢’ -saturated open
cover {W,} of §*— ClV, in S"— ClV, whose mesh approaches 0 uniformly
near CIV,. The map ¢'|S"—ClV;: 8*— ClV,»W'—¢'BaV, is a propér
cellular map of #-manifolds. Hence by the Approximation Theorem,
thgre is & homeomorphism f: W' —¢'BdV,~8"—ClV, such that foo
= identity mod{W_}. Since the mesh of {W.} approaches 0 uniformly
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nedr ClV,, it is easy to see that the homeomorphism extends to take W’
onto §*—V, if one defines f(z) = (¢’) (=) for z e ¢'(BdV;). Thus §"—7V,
is an m-cell as desired. This completes the proof of Theorem 2.

DErFINITION. A compact space Y is called a closed n-cell-complement
if there is an embedding h: ¥ - 8" such that C1(S"—Y) is an n-cell.

Remark. By the Hosay—Lininger Theorem ([6] contains the easiest
proof), every crumpled cube in 8 is a closed 3-cell-complement. A disk
is the only closed 2-cell-complement.

TrEOREM 3. Let X be an (n—1)-dimensional 8-curve in 8 (possibly
with # = 4), Uy, U,, ... the components of S"—X, C,, C,, ... a family of
closed n-cell-complements, and hi: BAC;—>BdV, (i=1,2,...) a family of
homeomorphisms. Then the identification space X {JC;|JCy ... is

P R Fa
homeomorphic to S* and X is an S-curve in the identifgcatim; space.

Proof. We may assume by Lemma 0 that ClU; is an n-cell for
each 4. Since each C; is a closed n-cell-complement, we may assume
that €;C U; and that Cl(U;— (i) can be written an a product Bd 0 x
%[0, 1] with ¢ = (¢, 0) and h(c)= (¢, 1) for each ¢ ¢ Bd(C;. We consider
the cellular upper semi-continuous decomposition G of 8" having as non-
degenerate elements the ares ¢ x [0,1] where ¢ ¢ BAC; for -some i.
The result follows from standard decomposition space techniques (cf.
{1, pp. 10-11]) after we prove the following lemma.

LevMMA. For each integer i, each open set U containing ClU;, and each
& > 0, there is a homeomorphism h: 8" — 8", fized on C; and outside of U
such that )

1) Diamh(ex [0,1])<<e¢ for each ¢ e BdC;
and
(2) Diamh{ClU;) < (DiamClU;)+¢e for j#1i.

Proof. Extend the collar Bd € x [0, 1] to a collar Bd ;% [0, 2] in U
such that each of the fibers ¢ x [1, ] and ¢Xx [£, 2] (¢ « Bd (;) has diameter
less than }e. Consider the homeomorphism h;: 8%-»S™ defined by

(¢,0t) if ax=(c,t),ceBdl;, 0K,
(¢, [36—3]4[3—201%) = (¢, 6-+[t—1][3—24])

i z=(c,1),ceBdC;, 1<t<E,
e otherwise ,

hyfw) =

where d >0 is so small that each of the fibers ¢x [0, d] has diameter
less than e. '

Choose 6, >0 such that §;-zets have e-images under h,. Choose
positive numbers 1= #, << ..<fr=3<t,,, < t.,=2 and an open
covering U of BAU; such that any set of the form V x[t,,1,.,.,] (V eV,
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0 < r< k) has diameter less than 6,. Using the fact that the sequence
U,, Uy, ... is null, choose a positive number §,.,, I < 8., < 2, such that
it (ClU;) n{Bd0:iX (1, 8440} 5 @, then ClU;CBd0ix(1,2) and the
projection #: BACix (1,2)>Bd0; takes ClU; into some V e V.

Choose 1 = §5 < 8; << ve < 85 << 8351 < 8340 = 2 such that if r <% and
ClT; ~ {Bd O X (8, 8,)} # D, then C10; C {Bd C; X (s, 8,44)}- Leb ¢: [1,2]
—~[1, 2] be the map which takes each segment [s,, s,,] linearly to [,, f,.,,]
(0 < r< k+2) with ¢(s,) =1, (0 <7 << k+2). Define hy: 8- 8™ by the
formula

() = (e, p(1)) if 2= (¢,?), ceBdC,, 1<K 2,
o(7) = z otherwise .

Then h = hy o hy: 8" 8" satisfies the requirements of the lemma.
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On decompositions of continua

by
J. J. Charatonik (Wroctaw)

Abstract. The aim of the paper is to prove some theorems which generalize the
author’s earlier results concerning decompositions of 1-dendroids [4], and also some
of Thomas’ results on decompositions of irreducible continua [32]. An upper semi-
continuous monotone decomposition of a metric continuum is called admissible if the
layers of its irreducible subcontinua are contained in the elements of the decomposition.
The main results of the paper say that the decomposition space of an admisgible de-
composition of a continuum is hereditarily arcwise connected and that every continuum
has exacily one minimal admissible decomposition (called the canonical one). The
structure of elements of the canonical decomposition of a continuum is shown. Some
special eontinua are considered in the paper, e.g. continua X such that every upper
semi-continuous monotone decomposition of X with a hereditarily arcwise connected
decomposition space is admissible; monostratic continua; continua every element of
the canonical decomposition of which has an empty interior. Some necessary and/or
sufficient conditions are stated under which continua have the properties under con-
sideration.

1. Introduction. Upper semi-continuous monotone decompositions of
confinua have been studied by a large number of authors. E.g. Z. Jani-
szewskl in [18], B. Knaster in [19] and [20], K. Kuratowski in [21] and
[22] and also W. A. Wilson in [34] investigated such decompositions for
continua irreducible between two points. A continuation of this topic
can be found in a sequence of papers. For example, E. 8. Thomas, Jr.,
has given in [32] a large study of monotone decompositions of irreducible
continua; E. Dyer [12], M. E. Hamstrom [16], W. 8. Mahavier [26],
H. C. Miller [28], E. E. Moise [29] and many others have discnssed
interesting particular problems concerning such decompositions. Some of
these results, originally made for metric continua, have been extended
to Hausdorff continua — see e.g. G. R. Gordh, Jr. [14] and W. S. Maha-
vier [27]. Besides decompositions of continua irreducible between two
points, decompositions of some other spaces have been considered. In
particular, R. W. FitzGerald and P. M. Swingle have studied in [13]
decompositions of Hausdorff continua, especially those which have a semi-
locally connected decomposition space. Some of Miller’s results of [28]
eoncerning decompositions of continua irreducible between two points
were generalized by M. J. Russell in [31] to decompositions of continua
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