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0 < r< k) has diameter less than 6,. Using the fact that the sequence
U,, Uy, ... is null, choose a positive number §,.,, I < 8., < 2, such that
it (ClU;) n{Bd0:iX (1, 8440} 5 @, then ClU;CBd0ix(1,2) and the
projection #: BACix (1,2)>Bd0; takes ClU; into some V e V.

Choose 1 = §5 < 8; << ve < 85 << 8351 < 8340 = 2 such that if r <% and
ClT; ~ {Bd O X (8, 8,)} # D, then C10; C {Bd C; X (s, 8,44)}- Leb ¢: [1,2]
—~[1, 2] be the map which takes each segment [s,, s,,] linearly to [,, f,.,,]
(0 < r< k+2) with ¢(s,) =1, (0 <7 << k+2). Define hy: 8- 8™ by the
formula

() = (e, p(1)) if 2= (¢,?), ceBdC,, 1<K 2,
o(7) = z otherwise .

Then h = hy o hy: 8" 8" satisfies the requirements of the lemma.
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On decompositions of continua

by
J. J. Charatonik (Wroctaw)

Abstract. The aim of the paper is to prove some theorems which generalize the
author’s earlier results concerning decompositions of 1-dendroids [4], and also some
of Thomas’ results on decompositions of irreducible continua [32]. An upper semi-
continuous monotone decomposition of a metric continuum is called admissible if the
layers of its irreducible subcontinua are contained in the elements of the decomposition.
The main results of the paper say that the decomposition space of an admisgible de-
composition of a continuum is hereditarily arcwise connected and that every continuum
has exacily one minimal admissible decomposition (called the canonical one). The
structure of elements of the canonical decomposition of a continuum is shown. Some
special eontinua are considered in the paper, e.g. continua X such that every upper
semi-continuous monotone decomposition of X with a hereditarily arcwise connected
decomposition space is admissible; monostratic continua; continua every element of
the canonical decomposition of which has an empty interior. Some necessary and/or
sufficient conditions are stated under which continua have the properties under con-
sideration.

1. Introduction. Upper semi-continuous monotone decompositions of
confinua have been studied by a large number of authors. E.g. Z. Jani-
szewskl in [18], B. Knaster in [19] and [20], K. Kuratowski in [21] and
[22] and also W. A. Wilson in [34] investigated such decompositions for
continua irreducible between two points. A continuation of this topic
can be found in a sequence of papers. For example, E. 8. Thomas, Jr.,
has given in [32] a large study of monotone decompositions of irreducible
continua; E. Dyer [12], M. E. Hamstrom [16], W. 8. Mahavier [26],
H. C. Miller [28], E. E. Moise [29] and many others have discnssed
interesting particular problems concerning such decompositions. Some of
these results, originally made for metric continua, have been extended
to Hausdorff continua — see e.g. G. R. Gordh, Jr. [14] and W. S. Maha-
vier [27]. Besides decompositions of continua irreducible between two
points, decompositions of some other spaces have been considered. In
particular, R. W. FitzGerald and P. M. Swingle have studied in [13]
decompositions of Hausdorff continua, especially those which have a semi-
locally connected decomposition space. Some of Miller’s results of [28]
eoncerning decompositions of continua irreducible between two points
were generalized by M. J. Russell in [31] to decompositions of continua
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jrreducible about & finite set. Upper semi-continuous monotone decomyo-
sitions of continua were investigated by G. R. Gordh, Jr. in [15] for
smooth continua, and by the present author in [4] for 1-dendroids.

The aim of this paper is to extend and generalize some earlier results
concerning upper semi-continuous monotone decompositions of continua
having & special structure (e.g. of irreducible continua or of A-dendroids)
to those of arbitrary metric continua.

After the first and the second sections (Introduction and Prelimi-
naries), in the third one a concept of an admissible decomposition of an
arbitrary continuum is introduced and studied; the decomposition space
of such a decomposition of a continuum is hereditarily arcwise connected.

The fourth section contains a proof of the uniqueness of the minimal
admissible decomposition of a continuum. It is shown that for irreducible
continua the minimal admissible decomposition. coincides with the well-
known classical decompositions of Kuratowski [21], [22], of Thomas [32]
or of Wilson [35]; it is also shown that if the decomposed continuum is
a A-dendroid, then the decomposition in question gives the canonical
decomposition described by the author in [4], and if the continuum is
smooth, then its minimal admissible decomposition coincides with that
given by Gordh in [15]. Finally the structure of elements of the minimal
admissible decomposition is described. It is patterned after the author’s
ideag concerning strata of A-dendroids in [4].

The fifth section contains investigations of some special kinds of
mappings and of continua. In particular, it concerns continua with the
property that every monotone upper semi-continuous decomposition
having a hereditarily arcwise connected decomposition space is admissible.
The concept of a monostratiform 1-dendroid ([5], p. 75) is generalized
to that of a monostratic continuum. The class C of mappings, originally —
in [6]— studied for A-dendroids only, is now extended to arbitrary
continua. At the end of the section we introduce and study the class £
of continua which coincides (for irreducible continua) with the class of
continua of type A in Kuratowski’s sense (see [22], p. 262 and [25], foot-
note on p. 197) or with the class of continua of type A’ in Thomas’ sense
(see [32], p. 13).

2. Preliminaries. A continuum means a compact connected metric
space. A mapping means a continuous function. A decomposition D of
a continuum X is a collection of closed subsets of X whose union is-the
whole X, such that D, e D, D, ¢ D implies D, A~ D, = @ or D, = D,. A de-
composition D of a continuum X is called upper semi-continuous provided
that if U is an open set in X which contains D e D, then there exists an
open subset V of U which contains D and is such that if D’ is any set
of D intersecting ¥V, then D' C U (see [33], p. 122). In other words, D is
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upper semi-continuous provided that if U is an open set in X and contains
D D, then some open subset of U contains D and is the union of some
elements of D (see [32], p. 5; [24], § 19, II, Theorem 4, p. 185). The
following is well known (see e.g. [24], § 19, II, Theorems 3 and 4, p. 185;
[25], § 43, IV, Theorem 2, p. 66; [33], Chapter VII, Theorem (1.1), p. 122).

ProrosrTioN 1. Let X be a continuum and let D be a decomposition
of X. The following conditions are equivalent:

(2.1) D is upper semi-continuous,

{2.2)  for each closed set A C X the union of all D e D which intersect A
is closed,

(2.3) D~ LiD, #+ O implies LsD, C D, where D, Dy €D,

(2.4)  if Dy, D,, ... is a convergent sequence of elements of D, then its limit
is contained in a single element of D.

A decomposition D of a continuum X is said to be monotone if each
element of D is connected (in fact, it is a subcontinuum of X).

Let D be a decomposition of a continuum X. The gquotient space X/D
is a set whose points are elements of D endowed with the quotient topology,
i.e., such that a subset 4 C X/D is open in X/D provided that the union
of all elements of D which are points of 4 is open in X. The function
q: X+ X|D which assigns to 2 point of X the element of D containing
it is called the gquotient mapping. It is well known that the quotient mapping
is continuous (see e.g. [24], § 19, pp. 183-187). If the decomposition D of
a continuum X is upper semi-continuous, then the quotient space is
a continuum ([33], Theorem (2.2), p. 123, and Corollary (3.11), p. 125).
If, moreover, D is monotone, then the quotient mapping ¢ is monotone,
and conversely ([33], Theorem (3.4), p. 126, and Theorem on p. 127).

A continuum I is said to be irreducible between points a and b (or
shortly irreducible) if I contains ¢ and b but no proper subcontinuum
of I contains both of them. For every irreducible continuum I there
exists a monotone mapping g of I into the closed interval [0, 1] of reals
(see [25], p. 199) the point-inverses of which, ¢7(t), 0 <1< 1, called
layers of I, have the property that the decomposition of I into layers
is the finest of all linear upper semi-continuous decompositions of I into
continua (see [25], § 48, IV, Theorem 3, p. 200).

3. Admissible decompositions. Let X be a continuum. A decomposi-
tion D of X is said to be admissible if

1° D is upper semi-continuous,
2° D is monotone,
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3° for every irreducible continuum I in X, every layer T, 0 <1 <1,
of T is contained in some element of D.

It is immediately seen that every continuum X has an admigsible
decomposition, namely the trivial one, i.e., such that the whole X is
the only element of the decomposition. The problem of characterizing
continua X which have a non-frivial admissible decomposition is open.

PROPOSITION 2. A non-irivial decomposition of an irreducible con-
tinwum is admissible if and only if it is admissible in the sense of Thomas,
[32], p. 8.

In fact, let a continuum X be irreducible between points a and b.
Since conditions 1° and 2° are common for both definitions, it is enough
to show that condition 3° holds if and only if every element of D not
containing ¢ or b separates X. If condition 3° holds, and if an element D
of D does not contain ¢ and b, then for & point % € D there is a layer T of X
such that 2 TCD by 3° Since every layer not containing « and b
separates X — ag an element of the minimal decomposition of X admis-
sible in the sense of Thomas — D separates X. The opposite way is
obvious because every layer T, of X, by the minimality of the decomposi-
tion of X into layers, is contained in some element of any decomposition
of X admissible in the sense of Thomas, and condition 3° holds.

ProposiTION 3. If the continuum X is hereditarily arcwise connected,
then each upper semi-continuous monotone decomposition of X s admissible.

Indeed, in this case each irreducible subcontinuum of X is an arc,
thus all layers of irreducible continua reduce to points, and condition 3°
holds. :

Let X be a continuum, D — an admissible decomposition of X, and
let q: X—>X/D be the quotient mapping.

THEOREM 1. If D is an admissible decomposition of a continuum X,
then the induced quotient space X|D is hereditarily arcwise commecied.

Proof(l). To show that X/D is hereditarily arcwise connected,
ie. that every subcontinuum of X/D is arcwise connected, it is sufficient
to prove that every continuum 4 C X/D which is irreducible between
two of its points @ and b, a 5 b, is an arc. Let z e ¢"Y(a) and y ¢ g (b),
and let 0Cqg(4)CX be a continuum irreducible between x and ¥.
Since the decomposition D is admissible, it satisfies 3° and thus inequality
a # b implies that the layer of the continuum ¢ which contains the point
# iy different from the layer of ¢ which contains the point y. It follows
that there exists a mapping ¢ from ¢ onto the unit segment I such that,
for every t € I, the inverse image ¢~(f) is a layer of C. Tt is easy to verify
that the mapping f=gop™: I->X/D is well-defined (because the de-

(*) The present form of this proof is due to J. Krasinkiewicz.
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composition D is admissible) and continuous. Since the continuum f(I) is
arcwise connected and &, bef(I)C A, and since the continuum A is
irreducible between points & and b, it follows that A is an are, and the
proof is finished. ’

LevmA 1. Let M be a subcontinuum of @ continuum X and let D be
an upper semi-continuous decomposition of X into closed sets D. Then the
decomposition D, of M into non-empty sets D~ M is upper semi-continuous.

In fact, for any closed set 4 C.X the union of all sets D with
D~ A0 i3 a closed set by the definition of the upper semi-continuity
of D. In particular, if A is a closed set in M, the union { j {D: D ~ 4 # @}
is closed, whence | J{D~M: DA # Q= (J{D: DnA#O) M
is closed as the intersection of two closed sets. This shows that D, is upper
semi-continuous. '

Lzmma 2. If D s an upper semi-continuous decomposition of a con-
tinwum X into closed sets D, then the decomposition D, of X into components
of sets D is upper semi-continuous.

In fact, this is a consequence of a more general theorem (see [25],

{47, VI, Theorem 6, p. 183; [17], Theorem 3.39, p. 137).

COROLLARY 1. Let M be a subcontinuum of a continuum X, and let D
be an upper semi-continuous decomposition of X into closed sets D. Then
the decomposition Dy of M into components of the non-empty intersections
D ~ M is upper semi-continuous. If, moreover, D is admissible, then D, is
admissible.

In fact, the first part of the corollary follows directly from Lemmas 1
and 2. So D, satisfies condition 1°. By definition D, is monotone, i.e.,
eondition 2° holds. To prove that 3° is fulfilled observe that if a layer T
of an irreducible continuum I in M has a point in common with a com-
ponent I of an intersection D ~ M, then it is contained in D by the
admissibility of D, and in M by hypothesis; thus it is in D ~ M. Since T is
a connected set having a non-empty intersection with the component D’
of D~ M, we have T C D’. Therefore D, is admissible.

4. The canonical decomposition. If D and § are upper semi-continuous
monotone decompositions of a continuum X, then D < & means that
every element of D is contained in some element of §, ie., D refines §.
Clearly < defines a partial ordering on the family of upper semi-continu-
ous monotone decompositions of X.

THEOREM 2. For every continuum X there exists an admissible de-
composition of X which is minimal with respect to <.

Proof (ef. [32], proof of Theorem 3, p. 8 and 9). Let {D,: ac A} be
2 chain of admissible decompositions of X, and for ze X and a e 4 let Z,
be an element of D, containing z. For fixed # ¢ X, {Z,: ae A} is a chain
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of continua and we denote by Z the intersection of this chain. Denoting
by D the collection {Z: z ¢ X} we see that D is a decomposition of X each
of whose elements is a continuum. Let I be an irreducible continuum
in X that contains z, and let T be the layer of I containing z. The de-
compositions D,, a ¢ 4, being admissible, we have T C Z, for each ac 4,
whence TC [ {Z,: a €A} = %. Thus D satisfies condition 3°. To prove
the upper semi-continuity of D suppose that U is open in X and containg
Z ¢ D. For some « ¢ A we have Z, C U and since D, is upper semi-continu-
ous, some open subset V' of U contains Z and is the union of elements
of D, Thus V contains Z and is the union of elements of D. Therefore D
is upper-continuous, and thus admissible. Since D refines each 0, it is
a lower bound for the chain. Applying the Kuratowski-Zorn lemma we
complete the proof.

The following lemma results from Theorem 44 in [30], p. 299:

LEMMA 3. Let D and & be upper semi-continuwous monotone decompo-
sitions of & continuum X. If there is an element of & that indersects two different
elements of D, then the family & of subsets of X whose elements are all com-
ponents _of the intersections D ~nE for DeD and E <& is an upper semi-
continuous monotone decomposition of X that properly refines §.

COROLLARY 2. Let D and & be upper semi-continuous monotone de-
compositions of a continuum X. If there is an element of & that intersects
two different elements of D, then & is not minimal.

THEOREM 3. 4 minimal admissible decomposition of a continuum is

« UNLgUue. “

Proof. Let D and & be admissible decompositions of a continuum X,
and suppose that some element of & meets two different elements of D.
Further, let & be the decomposition of X described in Lemma 3. We show
that & satisfies condition 3°. In fact, if 7' is a laiyer of an irreducible conti-
nuum I in X, then there are elements D and E of D and & respectively such
that T C.D ~ E. Since the layer T' is a continuum, and thus a connected
set, it is contained in a component of the intersection D ~ F, i.e., in an
element of &'. Thus §' is admissible. Since it properly refines &, & is not
minimal. So we have proved that a minimal admissible decomposition
of X refines every admissible decomposition of X, and thus the uniqueness
is established.

To see the structure of elements of the minimal admissible decompo-
sition of a continuum X, we can apply here the basic ideas used in [4]
to describe elements. of the canonical decomposition of a A-dendroid
(see [4], p. 25). Firstly we construct a particular admissible decompo-
sition of X (called the canonical decomposition of X) whose elements
will be called the strata of X, and next we show that it coincides with
the minimal one.
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Let X be a continuum and let z be a point of X. To deseribe the
stratum S(z) to which z belongs we shall define (by transfinite induction)
an increasing sequence of continua A (z) each of which contains the
point 2. With this in view let us consider in X all irreducible continua I
that eontain the point # and take in each of them the layer 7'(x) to
which z belongs. Put

(£1) A) = U T(2),

where the union on the right side of the equality runs over all irreducible
continua I such that xeIC X. Now suppose that A,(z) are defined
for < a, and put

U{ Ls Ay(zn): liigowﬂ edy)}, U#  a=pg+1,
(42) Ax)={____ :

U4y , if a=lLmg,

B<a B<a

where, in the case of a = -1, the union is taken over all convergent
sequences of points x, ¢ X with limaz, e Ay(x).
n—-00

So the sets A, (x) are well-defined for all a < Q. It follows from the
definition — exactly as in [4], p. 19 — that the transfinite sequence
{4,(x)} is increasing, i.e., that

(4.3) zedyn) CAfx)C...CA,»)C...

In the same manner as in [4], p. 19, Lemma 1, one can prove that
(4.4) The sets A,(x) are continna.

Thus {4,(«)} is an increasing sequence of continua. Since the space
X is separable as a metric continuum, there exists a countable ordinal &
such that

(4.5) I &<n<Q, then A z) = 4,(=).
Now we define the stratum S(z) of X to which the point & belongs by
S(z) = Agx) .
Thus we conclude from (4.3) and (4.5) that
A (x) C 8{x)

(4.6)

(4.7) for every ordinal a<< Q.

It follows immediately from the above definition of §(z) that

(4.8) If X is an irreducible continuum, then 8(z)= T(») for every
zeX, ie., the notion of a stratum coincides with the notion
of a layer.

9 — Fundamenta Mathematicae, T. LXXIX
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(1.9) It the continuum X is hereditarily arcwise connected, then
8(x) = {=} for every ze X.

(4.10) If X is a A-dendroid, then the notion of a stratum defined above

coincides with that defined in [4], p. 21.

Repeating letter by letter the proofs of Lemmas 2 and 3 and of
Theorem 2 in [4], pp. 22-24 ‘one can prove the following properties of
strata of a continuum X:

(4£11) If 7Izim oy = @, then Ls 8(z,) C §(x).
(412) If S(@) ~ S(y) # @, then S(z) = S(y).

Therefore we see that for various « the strata §(s) are either disjoint
or identical by (4.12). Hence we can consider the decomposition of the
continnum X into its strata S(z). Call this decomposition canonical.
Since the strata of X are continua by (4.6) and (4.4), the canonical de-
composition is monotone. Exactly as in [4], Theorem 3, p. 25, we can
show that

(413) The canonical decomposition of a continuum X is upper semi-

continuous.

Since for each point = ¢ X and for each irreducible continuum I C X
such that @ e I, the layer T'(z) of I to which # belongs is contained in the
stratum S(z) by (4.1) and (4.7), condition 3° holds true for the canonical
decomposition. Hence

{(£14) The canonical decomposition of a continuum X is admissible.

We shall now prove the following
. TEI;DREM 4. The canonical decomposition of & continuum X coincides
with the minimal admissible decomposition of X.

Proof. Let D be an arbitrary admissible decomposition of X and
let D be an element of D. We claim that

(£15) If w e D, then A (x)C D for every a<< Q.

Apply transfinite induction. Fivstly let o = 0. Take a point
.v.eX, and let 7' (‘az) denote the layer containing » of an irreducible con-
tmuurg I .CX. Since the decomposition D is admissible, the condition
re D implies T(;c.) CD by 3°. This leads to | T'(x) C D, where the union
is taken over all irreducible continua I containing 4. The element D of B
being closed, we have | T'(x) C D, which means Ay(2)C D by (4.1).

Secondly let « > 0. Now the proof runs exactly as the corresponding
part of tl;e proof of Lemma 4 in [4], p. 28. So (4.15) follows.
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Therefore, if = e D, then—in particular — 4,(z) C D, where & is
an ordinal for which (4.5) holds. According to definition (4.6) of the stratum

‘we see that ¢ D implies S(x)C D and the theorem is proved.

Theorem 4 can be reformulated in the following equivalent form:

COROLLARY 3. If D is an element of an admissible decomposition of
a continuum X, and if 8 is a stratum of X, then 8 n D # @ implies 8C D.
Since ‘the decomposition of a hereditarily arcwise connected con-
tinuum into one-point sets is admissible and minimal, Theorem 4 implies

ProrosITION 4. Strata of a hereditarily arcwise connected continuum
are one-point sets.

Tet D be the canonical decomposition of a continnum X. The ca-
nonical mapping is defimed to be the quotient mapping ¢: X - X/D. As
the quotient mapping of an admissible decomposition, ¢ is onto, continu-
ous and monotone (see e.g. [33], (4.1), Theorem, p. 127). In the particular
case where X is a A-dendroid the canonical mapping ¢ is considered
in [4], p. 29. Corollary 1 and Theorem 4 imply ’

COROLLARY 4. Let M be a subcontinuum of a continuum X, and let
v: M>p(M) and ¢: X —>¢(X) be canonical mappings of M and of X re-
spectively. Then for each point t e p(M) there is a point s e p(X) such that
» (1) C o7 Y(s).

5. Special kinds of mappings and of continua. Let a mapping f of
a continuum X be continuous and monotone. The mapping f is said to
helong to the class @ if for any point y € f(X), for any point  « X and
for any irreducible continuum I in X it is true that if »ef~(y) I,
then the layer T'(z) of # in I is contained in f~%(y). In other words, fe¢ @
if, given a point < X and an arbitrary irreducible continuum I that
contains =, the whole layer T(z) of z in I is mapped onto the point f(=x)
under f. .

The following two propositions can easily be deduced from the
definitions. ‘

ProPOSITION 3. If the decomposition D of a continuum X is admis-
sible, then the quotient mapping q: X—X[D is in .

ProrosITION 6. If fe®, then the decomposition D of X into continua
I y), v ef(X), is admissible.

Thus Theorem 1 implies

COROLLARY 5. If fe®, then f(X) is hereditarily arcwise comnected.

Proposition 5 and Corollary 3 lead to

COROLLARY 6. If fe @, then f takes every stratum of X into & point

of f(X).

9
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'PROPOSI'J.‘ION 7. If a monotone mapping f of a hereditarily unicoherent
continuum X is in B, then for every subcontinuum K of X the partial mapping
fIK also is in @.

In fact, f|K is monotone ([3], Lemma 1, p. 932), and if z e T(x)
CICKCZX, then (f[K)(T(m)) =f(T(m)) = {f(=)}.

It is not too difficult to show that the assumption of the. hereditary
unicoherence of X is essential in Proposition 7.

PROPOSITION 8. Every monotone mapping of a i-dendroid onto am
arcwise connected space is in .

. In fact, i# the mapping f of a 1-dendroid X is monotone, then f(X)
is a A—de'ndrmd (§ee [4], Theorem 4, p. 25). Being arcwise connected by
hypothesis, f(X) is & dendroid ([4], p. 15). Now the proposition follows
from Corollary 3 in [4], p. 29 and from Proposition 5.

The projection f of a square onto its side shows that Proposition 8

fails to be true if X is an arbitrary continnu i i i
1 3 m, even if f(X) is h i
arcwise connected. , JE s Eretliarly

PROPOSITZEON 9. Every monotone mapping of a hereditarily arcwise
connected continuum is in D,

In fact, this follows from Propositions 3 and 5.

COoROLLARY 7. The hereditasr i i
] 0 . Y arcwise conmectedness of cont i
wnvariant under monotone Mmappings. 7 continuia i an

11.1 fact, this follows from Proposition 9 and Corollary 5.

Since a monotone image of an irreducible continnum is irreducible
(see [25], § 48, I, Theorem 3, p. 192) we have

Prorostrion 10. If a continuum X is irreducible and f 18 a monotone

mapjpmg ] X 0N CWLS M contin ’ ’
[ to an arcw € CON ected O ywum, then f e a/ﬂd X ¥8
i ) h e @ ’ ( )

Consider now the following example. let z a ¥
;;cmrdmates in the plane. Put 4 = {(m?y): 0<a <]?Ld Zb?llldb?/ 1=e (;fil(lf;;ﬁlﬁr
th— {1(:,?/)- 2=0 and —1<y<1}, and let ¢ be an arbitrary arc iI;
the plane 'Whlch joms points (0,—1) and (1, sinl) and which has onl
1t.s end-points in common with 4 UB. Then S—= A U B oL C is ‘a, cons-r
bmum.n, namely the well-known sinl/z-circle. Let f be a monotone
mapping of § onto the unit circle {(z,y): »*+9y2 =1}, the onl
degenerate point-inverse of which is the segment B. I’t can easyil 110]]:7)1(;
gfbs?r;ed ﬂ?t f € @. Moreover, it is not too difficult to conclude ythafc
x ]f_u :dg( ) is a monotone mapping of 8§ onto a hereditarily arcwise

ected continuum g¢(8), then ge®. But if k: S->h(
and %(8) is arcwise connected only, without bei'n

connected, then » need not be in &, as an exam
on 8 shows.

8) is monotone
g hereditarily arcwise
ple of the identity mapping
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As we see from the example of the sin 1jz-circle § and also from
Propositions 8, 9 and 10, there are continua X with the property that
every monotone mapping of X onto a hereditarily arcwise connected
continuum is in @, Adopt the following definition. A continuum X belongs
to the class X if every monotone mapping of X onto a hereditarily arcwise
connected continuum is in @. In other words, X « X if and only if every
monotone upper semi-continuous decomposition with a hereditarily arc-
wise connected decomposition space is admissible (cf. Propositions 35
and 6). Propositions 8, 9 and 10 lead to

COROLLARY 8. The class % contains all A-dendroids, all irreductble
continua and also all hereditarily arewise connected continua.

The union of the square {(z,%): 0 <o <1 and 0Ky < 1} and of
the segment {(x, 0): 1 <& <2} is an example of a continuum which has
a non-trivial admissible decomposition but is not in K.

It is known that if f is an arbitrary monotone mapping of a A-den-
droid X onto a dendroid (thus onto a hereditarily arcwise connected
continuum) and if ¢ is the canonical mapping of X, then ¢ *p(z))
Cf7f(x)) for every @ e X (see [4], Corollary 3, p. 29). This result cannot
be generalized to arbitrary continua X, as can be seen by the example
of the unit square I, where ¢ is the trivial map of I? onto a point, and
f the projection of I* onto its side I. But if we assume that X e ¥, then
the following theorem shows that this is the case.

THEOREM 5. A continuum X is in K if and only if for every monotone
mapping f of X onto a hereditarily arcwise connected continuum and for
every point x in X we have

- (8.1) ¢ lp(@) CF7Y(f (@),

where @ denotes the canonical mapping of X.

Proof. Given a continuum X in %, the decomposition D of X into
continua f~Yy), ¥ « f(X), is admissible by the definition of X and by
Proposition 6. Since g~ p(x)) is a stratum of X, inclusion (5.1) follows
from Corollary 3.

Conversely, assume that inclusion (5.1) holds for every zeX and
for every monotone mapping f of X onto a hereditarily arcwise connected
continuum. Let T(x) be the layer of the point # in an irreducible continuum
IC X. Since ¢~ }{p(x)) is an element of the canonical (and thus admis-
sible) decomposition of X, we have T (a:)C(p_l(q)(zv)) by condition 3°,
and (5.1) leads to T'(z) C f~*(y) for each y e f(X). Therefore the decompo-
sition of X into continua f~Y(y) is shown to satisfy condition 3°. It obvi-
ously satisfies conditions 1° and 2°, and so the decomposition in question
is admissible. Thus fe @ by Proposition 5, whence X ¢ X.
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G.OB,OLLARY 9. 4 continuum X is.in 3 if and only if for every monotone
mapping f of X onto a hereditarily arcwise connected continuum there exists
one and only one mapping g of ¢(X) onto f(X) such that the diagram

X —" s p(X)

(3.2) \f\ /

(X

commutes, and g is monotone (here ¢ denotes the comonical mapping of X)

In fact, the corollary follows from Theore
o m 6, and the proof i i
similar to that of Theorem 7 in [4], p. 29 and 730. proot s quie

3 COROLLARY- 10. The decomposition space of an admissible decompo-
sition of a continuum X belonging to K is a monolone image of @(X) »
o tA eoptu@um X ig .said to be monostratic if it consists of only one
* eiu um, i.e. if tvh'e canonical mapping ¢ is the trivial one of X into a point
. § easy o verify that each indecomposable continuum ig monostmtic.
decoifp()::%;nple of a monostratic continuum which is hereditarils;

e one can take a monostratiform A-dendroid. A ivia

example of such a 1-dendroid can be £ i ont for 1 don
] ound in [5]. In general, for 1-den-
xgéfls,tﬂ{e.eonycept of monostratiformity defined in [5], p. ’75 and ?E-
mmlvlogire;fo ) 1.12 [a]]?: [3], [6] and [7], p. B8 coincides with the concept. of
o aj mon«;lsg;.a : f?)?;nﬂ;e (i(bbczlve -Zz)camples (an indecomposable continuum
: thorm 4-dendroid) are in the class K. An n-dimensional

eube;n ;;lvhere n>1,is 2 monostratic continuum which does not belong tonjz
& next proposition follows from Corollary 9. ‘

weryl?zg;g;a@:;o;:ﬁ;lz A ct;tmuum X e X is monostratic if and only if

ind o P .

A ping of X onto a hereditarily arcwise conmected continuum
It is easy to verify the following

P . . .
Stmmlzg?i;j;mh ;2 If a continuum X is the union of a family of mono-
of the ‘l @ &g that for every two points of X there is a chain of members
family joining them, then X is monostratic
THEOREM 6. ; .
nd let D b aln Gadiiisglebg a mon@t?"atw subcontinuwum of o continuum X
dlement of . ecomposition of X. Then M is contained in some
Proof. 3
ments Ir anfl%)goae on the contrary that. there are two different ele-
sition of M i of D such that D'~ M 3 @ D" ~ M. The decompo
s admi.;;sible ;Iz’lz; fl(?mp;m%nts of the intersections D ~ M. , where D epg)
rding to Corollary 1, and i Vi ; L
the aﬁssumption that I is 'monog;miu iend 18 not trivial, which contradicts
W . " -
e take the canonical decomposition as D in Theorem 6, we have
, ;
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CoROLLARY 11. Monostratic subcontinua of @ continuum X are con-
tained in strata of X.

Generalizing the concept of the class ¢ of mappings introduced
in [6], p. 337, let us adopt the following definition. A mapping f of
a continuum X into a continuum Y is said to belong to the class € if f
takes every stratum of X into a stratum of Y. In other words, if g: X ¢ (X)
and p: Y >y (X) are canonical mappings of continua X and Y respectively,
then the mapping f: XY is defined to be in € provided that for every
point s € p(X) there is a point tep(Y) such that fle7xs)) Cy7*(t). The
following proposition can immediately be seen from the definition.

ProrostTiON 13. If f; and f, are mappings of a continuum X into ¥
and of X into Z respectively, f and f, both being in C, then the mapping
fofi: X>Z is in C.

As in [6], p. 338 one can observe that the canonical decomposition D
of a continunm X into its strata, or the canonical mapping ¢: X ~¢(X),
defines an equivalence relation on X: two points of X are in the relation
if and only if they belong to the same stratum of X, or — in the other
words — if they are mapped on the same point of ¢(X) under p. Thus
it follows from Theorem 7.7 in [11], p. 17, and from the definition of
the class C of mappings that for every mapping f: XY in C there exists
one and only one mapping g (called the mapping induced by f) of ¢(X)

into p(Y) (where p is the canonical mapping on Y) such that

(5.3) gloe(@) =v(fl@) for wzeX,
i.e. that the following diagram commutes:
x . v
(5.4) o iu
(D) — (D)

Exactly as in [6], Property 2, p. 338, one can prove

Proposition 14. If X -and Y are continua and if fi: XY belongs
10 €, then the induced mapping g of ¢(X) into w(¥) is continuous. Con-
versely, if f is continuous and if there exists a mapping g such that diagram
(5.4) commutes, then f belongs to C and g is the mapping induced by f.

Since strata of hereditarily arcwise connected continua are points,
Corollaries 5 and 6 imply

PRrOPOSITION 13. If fe ®, then feC.

PROPOSITION 16. If a continuum X belongs to X and a mapping f:
XY is monotone and onto, then feC.

Indeed, the superposition yf in (5.4) is a monotone mapping of X
onto p(Y) which is hereditarily arcwise connected; 80 Corollary 9 is applic-
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able. Thus there exists exactly one mapping g of ¢(X) onto pf(X) = ¢(¥)
which satisfies (5.3). Therefore fe C by Proposition 14.

The following two propositions are easy consequences of the defi-
nitions.

ProposITION 17. The class C contains all mappings of continua into
monostratic continudg.

ProrosITION 18. Monosiraticity of continua is an invariant wunder
mappings belonging to C.

Propositions 18 and 16 imply

ProrosiTioN 19. Monostraticity of continua belonging to X is an
invariant under monotone mappings.

Recall that a mapping f of a continnum X onto Y is called confluent
if for every continuum ¢ in ¥ each component of (@) is mapped onto @
under f (see [1], p. 213). The mapping f is said to be open (or interior)
if the image under f of every open set in X is open in ¥. Each monotone
and each open mapping is confluent (see [1], V and VI, p. 214). Following
J. B. Fugate (see [6], p. 340) one can agk the following question: is mono-
straticity of continua belonging to J an invariant under confluent or
open mappings? The question is unanswered.

An irreducible continnum is said to be of type 1 (see [25], p. 197,
footnote) or of type A’ (see [32], p. 13 and [14]) if it has a non-trivial
admissible decomposition whose elements (i.e. the layers of the continuum)
have empty interiors. Extending this concept to arbitrary continua, we
define a class £ of continua in the following way. A continuum X is said
to be in the class £ if and only if it admits a non-trivial admissible de-
composition each of whose elements has an empty interior. Theorem 4
implies immediately .

ProrosiTioN 20. A" continuum X Dbelongs to the class £ if and only
if each stratum of the canonical decomposition of X has an empty interior.

Since for irreducible continua layers coincide with strata, we have

ProrosrrionN 21. Hach irreducible of type A continuuwm belongs to
the class .

Since the strata of a hereditarily arewise connected continuum are

one-point sets (see Proposition 4), we have

PROPOSITION 22. Bach hereditarily arcwise conmected continuwum belongs
to the class €.

A continuum X is said to be hereditarily unicoherent at o point p if
the intersection of any two subcontinua each of which contains p is
connected (see [15]). It is easy to observe that a continuum X is heredi-
tarily unicoherent at p if and only if, given any point x ¢ X, there exists
a unique subcontinuum I(p,s) which is irreducible between p and @

icm®
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(see [15], Theorem 1.3). A continnum X is said to be smooth at a point p

if X is hereditarily unicoherent at p and for each convergent net of points

{@s: n e D} in X the condition lima, = a implies that the net {I(p, an):

7 € D} is convergent, and LimI(p, a,) = I(p, a) (here D denotes a directed

set). A continuum X is said to be smooth if there exists a point p such

that X is smooth at p (see [15]). Theorem 5.2 in [15] implies the following
PRrOPOSITION 23. Hach smooth continuum is in L.

To compare the classes % and £ of continua let us observe firgt that
there are continua belonging to both of them (cf. e.g. Corollary 8 and
Propositions 21 and 22). To see the difference between the classes con-
sidered, we describe two examples of continua which show that neither
JNL nor £\K is empty.

Firstly let A be an arc with end-points ¢ and b, and let B be an in-
decomposable continunm such that the common part 4 ~ B reduces to
the point b. Let C denote the composant of B containing b. Thus A v B
is a continmum irreducible between a and each point of B\C. As an
irreducible continnum, 4 w B is in % by Corollary 8, and it is not in £
since its stratum B does not have an empty interior.

Secondly let (x,y,2) be a point of the Fuclidean 3-dimensional
space endowed with a rectangular coordinate system Ozyz. Put

BE={0,y,2): —1<y<1land 021}
and

_ 1 2m—1
Sum = (@, ¥,2): 0 <2 <277, yzsmgé and z=—ZT ’
where n=1,2,... and m =1, 2, ...,2""%, Defining

on-1

J=Ru | ( U Snm)
n=1 m=1
we see that J is a continuum for which R is the only non-degenerate
stratum. Since the interior of R is empty, we have J to be in £. On the
other hand take the projection f of J into the plane y = 0, i.e. the mapping
fofJ that maps each point (z, y, 2) of J to (w, 0, 2). Obviously f is continu-
ous with the hereditarily arcwise connected image of J:

F)={0,0,2: 0<2<1}u

oo [ 2n-1 2m—1
o ( U {(m,O,z): 0<w<2" and z=lt——})
n=1\m=1 2
* Further, f is not in &, because f(R) = {(0,0,2): 0 <z <1} is not
a point. Consequently J is not in XK.
Corollary 11 and Proposition 20 imply
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PropoSITION 24. If a continuum X is in the class L, then every mono-
stratic subcontinuum of X has an empty interior.

Kuratowski ([25], § 48, VII, Theorem 3, p. 216) and Thomasg ([32,
Theorem 10, p. 15) have characterized irreducible continua of type }
(i.e. of type A’ in the sense of Thomas, [32], p. 13) as irreducible con-
tinua I with the property that each indecomposable subcontinuum of 1
has an empty interior. Since each indecomposable continuum is mong.
stratic, one can believe that monostratic continua play a similar role
in the theory of decompositions of arbitrary continua as indecomposable
continua do in the theory of decompositions of irreducible ones, and
that — consequently — continua belonging to the class £ can be charac-
terized as those which have the property that each monostratic sub-

continuum has an empty interior. The following example shows that -

this is not the case, i.e. that the inverse to Proposition 24 does not hold.

Let Oxy be the rectangular coordinate system in the plane. Let N,
be the irreducible continuum lying in the unit square with the opposite
vertices (0, 0) and (1, 1), deseribed by Knaster in [20], section 2, p. 570
(see also [25], § 48, I, Example 5, p. 191). Put

v I={(#0):0<z<1}
and

8= {(®,y): o= |sin(1fy)] and -1 < y< 0}

and let K = Ny w I 8. We see that Tu § is an irreducible continuum
between the point (sinl, —1) and every point of I and that the layer I
of I'w 8 intersects every layer of N, . Further, K is a continuum each
monostratic subcontinuum of which is a single point. Continua having
this property are called hereditarily stratified (see [3], p. 933; cf. also [6],
p. 343 and [7], p. 58). The strata of K are single points of S and the
continuum Ny o I — as the only non-trivial stratum. Since the stratum
Ny Iof K has a non-empty interior, K is not in £; however, K contains
no non-trivial monostratic subcontinwum.

It is easy to observe that the example of the. continuum K is
& particular case of a more general situation deseribed below in Propo-
sition 25, the proof of which is immediate.

PROPOSITION 25. If a stratum of a comtinuum X intersecls each
stratum of a continuwum Y, then Y is contained in a stratum of Xu¥.
If, moreover, Y has common points with only one stratum of X, then the
decomposition spaces of X and of X w ¥ arg homeomorphic.

. The example given above of the hereditarily stratified continuum K
which does not belong to the class £ is not a A-dendroid. The following
problem is open. Suppose X is a 1-dendroid. Does it follow that, if every
monostratic subcontinaum of X hag an empty interior, then X is in £?
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The Sorgenfrey plane in dimension theory

by
Peter Nyikos (Pittsburgh, Penn.) -

Abstract. The Sorgenfrey plane S* is shown in several different ways to be strongly
zero-dimensional. This eliminates it as a possible counterexample to the conjecture
that the product of strongly zero-dimensional spaces is itself strongly zero-dimensional.
Related properties of §* are demonstrated, and several allied conjectures in dimension
theory are discussed.

One of the drawbacks of ordinary Lebesque covering dimension is
that it does not behave well under products. One would like to have the
inequality dim(Xx ¥) < dimX+dim Y hold for arbitrary spaces X and
Y. But, as Nagata points out in his text [3, p. 196], it does not even hold
for the case where X and ¥ are paracompact spaces of dimension 0, and
X is homeomorphic to ¥. The counterexample there given by Nagata is the
Sorgenfrey line S, which is the real line with upper half-open intervals
[@, ) as a base for the topology [7]. We have dim § = 0 because S is
Lindelof and the base given consists of clopen [closed-and-open] sets
[ef. 2, 16.16]. But dimSx 8 > 0 because a space of covering dimension
zero is automatically normal [5, p. 196] and the Sorgenfrey plane, S X 8,
is not mormal [7]. .

A definition of covering dimension has been adopted by some authors
[2, Chapter 161, [3, p. 97] which agrees with Lebesgue dimension for
normal spaces and in some respects is more satisfactory for non-normal
spaces. One simply replaces open sets by-cozero sets at one point in the
definition of Lebesgue dimension: dimX < n if every finite cover of X
by, cozero sets can be refined to an open cover of order n. (A cover W of
a space X is of order m if every point of X belongs to at most m+1
members of U.)

For dimX = 0 this is equivalent to the following simpler condition
[2, 16.17]: given two disjoint zero-sets Z, and Z, of X, there is a clopen
set ¢ such that Z,C 0, Z,n~ C =@. A Tychonoff space satisfying this
property will be called a strongly zero-dimensional space.

In this paper, we show that the Sorgenfrey plane is strongly zero-
dimensional. This keeps alive the conjecture that dimX x ¥ < dim X+
4 dim ¥ holds for arbitrary spaces for this kind of covering dimension. The
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