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The Sorgenfrey plane in dimension theory

by
Peter Nyikos (Pittsburgh, Penn.) -

Abstract. The Sorgenfrey plane S* is shown in several different ways to be strongly
zero-dimensional. This eliminates it as a possible counterexample to the conjecture
that the product of strongly zero-dimensional spaces is itself strongly zero-dimensional.
Related properties of §* are demonstrated, and several allied conjectures in dimension
theory are discussed.

One of the drawbacks of ordinary Lebesque covering dimension is
that it does not behave well under products. One would like to have the
inequality dim(Xx ¥) < dimX+dim Y hold for arbitrary spaces X and
Y. But, as Nagata points out in his text [3, p. 196], it does not even hold
for the case where X and ¥ are paracompact spaces of dimension 0, and
X is homeomorphic to ¥. The counterexample there given by Nagata is the
Sorgenfrey line S, which is the real line with upper half-open intervals
[@, ) as a base for the topology [7]. We have dim § = 0 because S is
Lindelof and the base given consists of clopen [closed-and-open] sets
[ef. 2, 16.16]. But dimSx 8 > 0 because a space of covering dimension
zero is automatically normal [5, p. 196] and the Sorgenfrey plane, S X 8,
is not mormal [7]. .

A definition of covering dimension has been adopted by some authors
[2, Chapter 161, [3, p. 97] which agrees with Lebesgue dimension for
normal spaces and in some respects is more satisfactory for non-normal
spaces. One simply replaces open sets by-cozero sets at one point in the
definition of Lebesgue dimension: dimX < n if every finite cover of X
by, cozero sets can be refined to an open cover of order n. (A cover W of
a space X is of order m if every point of X belongs to at most m+1
members of U.)

For dimX = 0 this is equivalent to the following simpler condition
[2, 16.17]: given two disjoint zero-sets Z, and Z, of X, there is a clopen
set ¢ such that Z,C 0, Z,n~ C =@. A Tychonoff space satisfying this
property will be called a strongly zero-dimensional space.

In this paper, we show that the Sorgenfrey plane is strongly zero-
dimensional. This keeps alive the conjecture that dimX x ¥ < dim X+
4 dim ¥ holds for arbitrary spaces for this kind of covering dimension. The
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following conjecture is also kept in good standing: given any set {X,}, .
of strongly zero-dimensional spaces, the product X = ] X, is also

ae
strongly zero-dimensional. Unfortunately, however, none of the proofs
extend to higher products of § with itself. It is conceivable that one of
them may be a counterexample (*).

1. We begin with an important characterization of strongly zero-
dimensional spaces due to Heider: )

ILevma. Let X be a Tychonoff space. The following are equivalent.

(i) The space X is sirongly zero-dimensional. )

(ii) Hvery eero-set of X is o couniable intersection of clopen sets.

(iii) Boery countable cover of X by cozero-sets can be refined to a par-
tition of X into clopen sets. -

Proof. (i) implies (ii): Suppose X is strongly zero-dimensional.
Let Z be a zero-set of X. We can write Z as a countable intersection of

eozero-sets‘Kn, ie. Z = (") K,. For each n let C, be a clopen set contain-

n=1 -
ing Z and contained in K,. Then Z =) Cx.
n=1
(ii) implies (iii): Let {KaJp, be a cover of X by cozero-sets. For
each n let Kp = | Cmn, where each COpy i3 a clopen set. Order the sets Cma

m==1

n—1

in a sequence, {C,},, and let C, = Cp\ |J C;. Then {C,}, is a par-
i=1
tition of X into clopen sets refining {Kn},—,.

Finally, the third condition trivially implies the first.

We will show that condition (ii) holds for the Sorgenfrey plane S
For the sake of brevity we will refer to a countable intersection of clopen
sets as an (F@),-set. We will also refer to a countable intersection of
open sets as a G4, a countable union of closed sets as an F,, and a count-
able union of clopen sets as an (F'@),.

Since the topology on 8% is finer than the Huclidean topology, one
class of zero-sets on 8% is the family of Buclidean closed sets. The next
result is part of the folklore.

2. LeumA. Every Buclidean-closed subset of S* is an (F@),-set in the
Sorgenfrey topology.

Proof. Let A be a Buclidean-closed subset of 8% Since 4 is a Eueli-
dean @, it is enough to show that, given any FRuelidean-closed set B
disjoint from A, there is an S®-clopen set covering 4 and missing B.

() Added in proof. Both 8. Mréwka [4] and T, Teresaws [8] have shown that
all powers of § are strongly zero-dimensional.
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For each pair (m,n) of integers let B, ,.,, be the S clopen. unit
square with the point (m,n) at its lower left corner. That is, By, n;y) is
a square with sides of length 1 parallel to the coordinate axes, excluding
the sides at the top and to the right and including the other sides.

More generally, we define, for each ordered pair (z, y) of real numbers
and each positive real number §, the set By, . = {(z, w): 2 <z << 049,
¥y < w< y-+6}. Clearly B, ,.,is clopen in §* for all @, y, and 4. We now -
take the Euclidean closures of A n By, ..y and B » By, .1y - They will be
disjoint compact sets in the Euclidean topology, hence separated by some
positive distance ems. Divide B, ., into smaller squares of the same shape,
with sides of length %ems or less. Let Rp, be the union of all subsquares
of By, . Which meet A. Then ()R, , is a clopen set containing A and

m,n

missing B.

3. The next result, discovered independently by D. Lutzer, R. Heath,
3. Mréwka, and the author, is of interest even aside from its usefulness
in showing &% to be strongly zero-dimensional.

THEOREM. Eovery cozero-set of 8¢ is a Buclidean F,.

Proof. Let 4 =f~%(0, 4 co), where we assume f is a non negative
real-valued continuous function on 8% (any cozero-set can be so expressed).

o0
We define dn= {(#,9): B,y Cf ' [1n, +o0)}. Clearly, 4 = (A4,

n=1
and 4,C4, ., for all n. We now show that 4, is closed in the Euclidean
topology for all .

Let (#,y) be a Euclidean accumulation point of A,. We wish to
show that B, y.1m C f'[1/n, 4 o). To do this it is enough to show that
the Euclidean interior of B, ..y, is in f[1/n, 4-o0). For then the rest
of B . 18 also in f7[1/n, 4 o), by continuity of f on 8%

So let (', y’) be in the Fuclidean interior of B .. There will
be a Euclidean open square centered on (', ¥') and contained in B, ..
Say its sides are of length §. Consider the open square of the same size
centered on (x, y):
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Take a point (Zm, ym) of A» Wwhich is contained in this square about (z,y).
It is easy to see that (@',y’) € By, yoiam- Hence (¢, 4') e f[1n, + o0),
_as was to be shown.

8. Mréwka has supplied an independent proof (see, [4]). It consists
of showing that every bounded continuous function from S to R ig
a pointwise limit of functions continuous from the Euclidean plane to R,
and then using a theorem to the effect that this property is equivalent
to Theorem 3. An independent proof of the first result was supplied by
W. G. Bade [1]. His proof generalizes to all finite powers 8%, as well ag
to 8%, So does the proof we have just given. The generalization to §" ig
obvious. For % we define, for each p = (p(1), p(2), ...) in 8% the basic
-open sets .

Byw=1{": pk)<p'(k)<p(k)+1ln for k=1, ..,n}.

Defining A, as {p: By, Cf7[1/n, + o)}, we can show that 4 = C)OA,,

n=1

and that 4, is closed in the Euclidean topology.

For m >, the problem reduces to the case of S¥. We have the
following theorem of Gleason (quoted in [2], p. 130): every continuous
Junction from the product of arbitrarily many separable spaces imto a first
countable Housdorff space can be factored through a countable subproduct.
So we express the appropriate projection of a cozero set as an Euclidean 7,

and the cozero set itself will be. the union of the preimages of the closed
sets obtained.

) 4. We give two proofs of the main result, independently and almost
simultaneously arrived at. The basic ideas in both are quite similar.

TeEOREM. The Sorgenfrey plame is sirongly zero-dimensional.

_ Proof A (P. Nyikos and P. Roy). Let 4 be a cozero set of S% We
will show that 4 is an (F@),.

As before, assume A =jf'(0, +co) where f is nonnegative, and
let A, be defined as above. Let

B" = U {B(z,y;lln): ("v, y) € Aﬂ} .

Clearly, 4, C B, C A. Next, let 8B, be the Euclidean boundary of Bs.
We wil} exhibit a clopen set W, containing 0B, ~ 4, and contained
in B,,.' We will then have 4, C W, v B, C B, C 4, where BY is the Eucli-
dean interior of B,. Since W, v B is an (FG), (W, because it is clopen,
B}, by Lemma 2), it will follow that A is an (F@), as well.

Let W,= U {Bu,yym: (@, y) €@By ~ Ay} Clearly, 8B, ~ A, C W,
C By, and W, is 8% open. We will now show W, is 82-closed.

Suppose v = (', y') is an $*limit point of W,. Select a sequence {Um}
of points of W, converging to it in the Sorgenfrey topology. For each vm
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let u, be the corner point of the half-open square from which vm is taken
(if there is more than one candidate for um, pick one at random). By the
Bolzano-Weierstrass theorem for the plane, the u, have a subsequence
which converges in the Euclidean topology. Let u = (%,%) be its limit .
point, and consider the clopen square Bg 5.y, side 1/n with - in its
lower left corner.

Since the uy are in A, ~ 2By, so is w. Where is (', y')? If it is in the
square we are done, for it is then in W,,. Furthermore it must be on the
Euclidean boundary of the square. By symmetry we may assume it
is on the right-hand edge. We may also assume the point u to be the
point (0, 0).

We cannot have any s, in the half-open square because that would
put them in the Euclidean interior of B,. Similarly, we cannot have any
of them for a distance of less than 1/n below and to the left of w, for then
would be in the Buclidean interior of By, but we know that u is in 4,
A 8B,. So we may assume all the u, are in the second or fourth quadrants.
But then (z', ') is not a limit point of the v, in the Sorgenfrey topology.
Hence W, is §*-closed, and we have

A= (W, OB,

Proot B (R. Heath and D. Lutzer). Let f be as above, and lef
Z = f~Y0). Let F be the Euclidean closure of Z. For each n let Ty
= F~ A,, where A, is defined as above. Let '

VW- = L,‘I {B(m,y;l/n): (937 ?/) € Fn} .
We will show that ¥y is 82 clopen. Since the complement of F is an (FG),
by Lemma 2, it will follow that the complement of Z is an (F@), also,
making Z an (F&),.

Clearly, ¥y is 8%open. Let (#', ') be an accumulation point of ¥, in
the Sorgenfrey topology. We will assume (as we may) that (', ¥') = (0, 0).
There will be a sequence {vn} of points in By .y, contained in Vi and
converging to the origin.

As in Proof A let up be the corner of a square in which vy, is found.
The uy are points of F, used in defining V,. If infinitely many un, are
in the first or third quadrants, then the origin is in V., either because
it is a limit of points in Fy (a Buclidean closed set by the proof of Theo-
rem 3) or because it is in one of the squares defined by the um.

Assume infinitely many w, ave in the second quadrant. The se-
quence {u,} has at least one accumulation point on the z-axis. If any
limit point (z, 0) is less than 1/n to the left of the origin; then the origin
is in By .y, because (i, 0) is in F,. The other possibility is that {um}
converges to (—1/n,0). Bubt this means that some point u, is in the
Euclidean interior of B, ,...m for some other point uz = (wx, ¥x)- And
10 — Fundamenta Mathematicae, T. LXXIX
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this contradicts the assumption that (#m,ym) is in ¥, the Euclidean
closure of Z.

A similar argument holds if infinitely many points are in the fourth
gquadrant. Thus V, is §*-closed. '

A third proof was supplied by 8. Mréwka [4]. Neither his proof nor
the two given above generalize to Sorgenirey 3-space.

To see why the above proofs do not generalize, consider the line
segment {(—=,z, #): 0 < @< 1}. Suppose this line segment were 4, in
the above notation. The set B, can be imagined as a parallelepiped with
a square face resting on a table, an edge sloping up and to the left and
away from the observer, the other edges parallel-plus a cube on top of
the parallelepiped. Now if we try to define W, as above, we find that
W,=B,, and W, is not 8% closed: the line segment {(—z, x+1,a):
0 < # < 1} is in the 8% closure of W, but is not in W, itself. Proof B does
not generalize, either: if 4, = F,, then V, is the parallelepiped-plus-cube
we have just constructed.

Another proof of Theorem 4 was given by W. G. Bade [1]. He proved
first the following lemma: Let K be compact in the Buclidean topology.
Let ¢ >0 and let

w (@, HK B(m; H
If K does not meet the Euclidean interior of W, then W is clopen. (The
proof of this lemma is similar to proofs A and B above.) Then he showed
the following theorem: Let V be any S*-open set. There exists a sequence {Qn}
of clopen sets such that

VCJ@uCelV.

, n=1
(Here cl denotes the closure in the Sorgenfrey topology). Strong zero-
dimensionality of § then followed quickly. Unfortunately the lemma
does not extend to §° We need only let K be the line segment A in the
preceding discussion. Letting ¢ = 1, we see that W iz not closed.

5. The anti-diagonal D = {(—=, x): # is a real number} is an im-
portant subset of §° It is closed, and it is discrete in the relative topology.
Sorgenirey’s original proof that 8% is not normal (see [7]) made use of
the two disjoint -closed sets P = {(—a, 2): @ is irrational} and @
= {(—w=, #): # is rational}. By using the Baire category theorem, Sorgen-
frey showed that P and @ cannot be contained in disjoint open sets.

The fo.llowi.ng theorem gives additional information about zero-sets
of D, relating Theorems 3 and 4.

THEOREM. Let A be a subset of D. The following conditions are equivalent.
1. 4 is an (FG), subset of &
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9. A is a zero-set of S

3. A is a Euclidean @, set.

Proof (Outline). We need only show that the third condition implies
the first. For this it is enough to show the following result: every Buclidean-
closed subset F of D can be expressed as C~ D, where C is a clopen sub-
set of S%.

Consider the set F’ gotten by rotating F through an angle of 45°
counterclockwise. Consider now the graph & of the distance function
of F’. With each point on the z-axis we associate its distance to F'. The
intersection of G’ with the z-axis is just F itself.

Now rotate G 45° clockwise and consider the set € of all points
above and to the right of the resulting set, &, including & itself. We have
that F = C ~ D and that C is §*clopen.

The rest is elementary. Any BEuclidean @, subset 4 =[) Us of D

n=1
00
can be expressed as () C2)~ D, where the Cp are 8%-clopen sets de-
n==1
termined by the closed sets ¥, = Ug ~ D. {(Complementation is denoted

by a superscripted ¢.) Sinece D is an (FP@), set, s0 is A= () C})n D.

n=1

6. 8. Mr6wka has generalized the above result to arbitrary subsets of 8%

TarorEM. Let A be a subset of 8% The following conditions on A are
equivalent.

1. A is an (FG); subset of S

2. A is a zero-set of S

3. A is a Buclidean Gy, S*-closed subset of 82, and, for every Buclidean-
closed F C 8% with F ~ A = O, F and A are contained in disjoint S-open sets.

Proof. See [4], Theorem 2.7. . .

Without the two additional conditions in 3, this theorem would be
false. For example, any open circular disk is a Buclidean @, but is not
&2 closed and so cannot be a zero-set of 8% Nor can we get by with just
the first two conditions in 3, as the following example, discovered by
P. Roy, shows.

7. BxaMPLE. We will use the notation of Theorem 5. Let A be the
Cantor set on D. Let ¢ be defined as before, and let I, ..., In, ... be the
sequence of removed intervals. Let ¢’ be the subset of ¢ obtained by
deleting those points of G which are associated with points of I, and
are at a distance of 1/n or more from D. The set ¢’ is an 8% open,
10*
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FEuclidean T, (it is the union of the Cantor set, the Buclidean interior of 0,

and countably many line segments which are Euclidean F ’s). Byt

a standard argument, using the Baire Category Theorem applied to the
o0

Cantor set, shows that ¢’ is not an (F@),. Indeed, if | O, = ¢’ and a
fr=1

the C, are clopen, define
-Amn = {(m7 y): B(w,y;l/n) C 01,71,}

we have the Cantor set on D as a countable union of these (Euclidean-
closed) sets and this is an impossibility.

A similar example was provided independently by S. Mréwka
[4, Example 2.8].

ConorusioN. By Theorem 4, we have eliminated 8* as a possible
counterexample to the conjectures cited in the introduction, although
higher powers of § still pose a problem. Our result also leaves unsolved
another problem which will now be discussed briefly. Additional infor-
mation and references may be found in an earlier article [6].

An N -compact space is one which can be embedded as a closed sub-
space in a product of countable discrete spaces. It is known that every
strongly 0-dimensional, realcompact space is N -compact. As for the
converse, one readily obtains that every N -compact space is realcompact,

but is every N -compact space strongly zero-dimensional? This question

remains unanswered (*).

Now using Gleason’s Theorem cited earlier, we can show that every
product of countable diserete spaces is strongly zero-dimerisional. Indeed,
every countable produet of countable discrete spaces is strongly zero-
dimensional, because it is Lindelst (being separable and metric) and has
a base of clopen sets (cf. [2], 16.16). From this we can see that these two
questions are equivalent:

1. Is every N-compact space strongly zero-dimensional?

2. Is every closed subspace of a strongly zero-dimensional real-
compact space itself strongly zero-dimensional?

) Since a product of ¥ - compact Sspaces is itself N -compact, an affirma-
tive answer to the above questions would imply the following: given
a family {X} _. of strongly zero-dimensional realcompact spaces, the

product ]l X, is also strongly zero-dimensional. This is a special case
ae !

of one conjecture mentioned in the introduction, and it too remains an

() Added in proof. 8. Mréwka has recently announced the existence of an
N-compact space which is not strongly zero - dimensional.
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open problem, even for finite products. In fact, sincc? the Sorgenfrey line
and all its powers are realcompact, they were candidates for a counter-

example until recently.
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