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The ideal and new interval topologies on I-groups
by
Trieda Koster Holley (¥) (New Brunswick, N. 1)

Abstract, Lattice-ordered groups with. the ideal and new interval topologies are
studied to determine when they are topological groups. It is proved that any l-group
with the ideal topology is a topological group. Any commutative or Archimedean
I-group with only a finite number of disjoint elements in shown to be a topological
group when it is given the new interval topology. An Archimedean I-group with an
infinite number of disjoint elements that is not a topological group under its new
interval topology is exhibited.

If the partial order in a lattice-ordered group @ is used to define
a topology' on @, will & then be a topological group? The answer, of
course, depends upon -the topology defined. The case of the interval
topology has been investigated by Northam [12], Conrad [6], and Ja-
kubik [11]. In. this paper, we begin the investigation for the new interval
topology of Garrett Birkhoff (an investigation suggested by him in [2]
(problem 114)) and for the ideal topology of Orrin Frink.

We are able to answer the question completely for the ideal topology.
We show that any I-group with the ideal topology is a topological group.
Our results for the new interval topology are not as complete. We show
that a commutative I-group with only a finite number of disjoint elements
is a topological group in the new. interval topology if and only if it is
o finite direct sum of ordered groups. Moreover any Archimedean I-group
with only a finite number of disjoint elements is a topological group in
its new interval topology. Finally an Archimedean I-group with an in-
finite number of disjoint elements that is not a topological group in its
new interval topology is exhibited.

1. Definitions and notation. Throughout we use < and C to denote
strict inequality and strict containment.

The interval topology, denoted by 7, on a lattice I has as a subbase
for the cloged sets all sets of the form {z| & < a} = a* and {s] 2 > a} = at.
All intervals of the form [a,b] = {#| e <& < b} are clearly closed in this
topology.

(*) This work is based on a doctoral dissertation presented to the faculty of The
University of New Mexico. The author wishes to thank Professors Jorg Mayer and
Jane Day for their assistance and encouragement.
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A closed boumded set is formed by arbitrary intersections of finite
unions of closed intervals [a, b]. Closed sets in the new interval topology
v, are defined to be exactly those sets whose intersection with ever’
closed bounded set is a closed bounded set. This is equivalent to requjriny
that a set be closed if and only if its intersection with every eloseg
interval [a, b] is a closed bounded set.

An ideal (dual ideal) in a lattice is completely irreducible if it cannot
bg (?xpressed as the intersection of a collection of ideals (dual ideals)
distinet from it. The lattice L is clearly a completely irreducible ideal
and is referred to as the #rivial ideal. The completely irreducible ideals
- and completely irreducible dual ideals are the subbase for the open sets
oi. t‘he ideal topology. In [3], Birkhoff and Frink established that a non-
tnvm} ideal (dual ideal) in a lattice L is completely irreducible if and
only if it is maximal subject to not containing some element of I. We
use this characterization extensively. .

. A lattice-ordered group or l-group @ is a group that is also a lattice
in vs‘rh.lch o <y implies a--o+b < a-+y-+b for all a,b,z,y ¢ G. We use
fx.ddmon to symbolize the group operation. An I-subgroup of an I-group
128 a s%bgroulptthat is also a sublattice. An l-group that is a chain under
its order relation (i.e. any twi i
ol sromn on o -(gwup.y 0 elements are comparable) is ealled an
. A fopological group @ is a group that is also a topological space in
?vhlch the mappings (¢, y)—»>o+y from G x @ into @ and z— — 2 from G
3111}0 @ are continuous, while a semi-topological group @ is a group that
fu; a topf)logical space in which the translations z—+z+a and s—>ataz
ﬁglr:; g ﬁi‘; C;'ame continuous for all @ as well as the reflection z— — gz

Let L, .amd L, be lattices. A one-one, onto function ¢: L, L, such
fsha;t <y if and ‘only i p(@)<¢y) (x<y if and only if ¢(x) >‘<p(y))
is .called an order isomorphism (dual order wsomorphism). ¥ L, = L,, then
@ is called an order automorphism (dual order automorphism). llf G, :nd G
Zi% l;ﬁrggs a'ILd @: Gl_—> G» 18 a map which is both a group isomorphisni
o 6 Mee;zﬁggzlsm, then we call ¢ an isomorphism and we say Gy
et ihihiolizz‘l‘zi lemma is wseful; its proof is straightforward and is
W;;d ?;M;At Let U be an 'z'deal m a lattice I and let b ¢ U. Then U is
i 7},7 0 not containing b if and only if for all a ¢ U, there exists

€ U such that wva = b. The dual statement is also true.

N ;;SFmi-topologi&}al groups. The difficult part in. proving thit an
tof; 10p‘ el: a gopologn?al group under the interval, new interval, or ideal
gles is in showing that the group operation is continuous at the
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identity. Indeed, it is easy to show that the reflection z-> — 2 is continu-
ous and that the neighborhoods of a point are simply translates of the
neighborhoods of the origin, which we do in this section.

9.1. THEOREM. Let L, and L, be laitices. Let ¢: L,—>ILy be an order
isomorphism and 0: Ly—L, be a dual order isomorphism. If both L, and L,
are given the interval topology, the new interval topology, or the ideal topology,
then ¢ and 0 are homeomorphisms.

Proof. (a) The proof for the interval topology is straightforward.

(b) Suppose L, and L, have the new interval topology. Let F be
a closed set in I, and [¢, @] an arbitrary closed inberval in L.

o(F) e, d] = ¢(F) ~ [pp~(6), pp~ ()]
= (F ~ [g70), g HD)D) -

Now F is a closed set in L;, and [p~*(c), ¢~ (d)] is a closed bounded set
in I,. Therefore, by the definition of the new interval topology,

8

F e o), ¢ (@] = (L Los, di))
aed i=1
where A is an arbitrary index set, #, is finite for all e, and ¢; and d; are
elements in I;. Continuing, we have

o) ~ o, 1= () ( Ulor, d)

o
=N Ulpled, ¢(d)])
aed i=1
which is a closed bounded set in L,. Therefore ¢(F) is closed in L,. Since
the image of every closed set is closed, ¢! is continuous. The proof that
@ is continuous is identical. Thus g is a homeomorphism.

The proof that 6 is a homeomorphism is similar.

(e) Suppose I, and L, have the ideal topology. Let U be a non-
trivial completely irreducible ideal in I, which is maximal subject to
not containing b in I;. Clearly ¢(U) is an ideal in L,, and ¢(b) ¢ ¢(U).
Let 2 be an arbitrary element of L, that is not in @(U). Then ¢~ (%) ¢ U;
and by Lemma 1.1 there is a u e U such that ¢~ %(2)vu = b, which implies
that #ve(u) > @(b). Thus ¢(U) and @(b) satisty the conditions of
Lemma 1.1. Since @(U) is maximal subject to not containing ¢(b), it
follows that @(U) is a completely irreducible ideal. Similarly, the image
@(V) of any completely irreducible dual ideal V is a completely irreducible
dual ideal. Thus ¢ maps a subbasic open set onto a subbasic open seb,
and so ¢~ is continuous. In the same manner ¢ can be shown to be
continuous. Therefore ¢ is a homeomorphism.

ig*
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. The proof that 6 is a homeomorphism is similar except that the
image of a completely irreducible ideal is a completely irreducible dual
ideal and vice versa.

2.2. TueoREM. Let G be an 1-group. If G is given the interval topology
the new interval topology or the ideal topology, then G is a semi-topologica%
group.

‘ Proof. According to Birkhoff ([2], pp. 287, 290), every group trans-
lation is an order automorphism, and every reflection is a dual order
automorphism, By Theorem 2.1, the translations and reflections are
continuous under any of the three topologies.

) Let @ be an I-group with one of the three topologies. Because trans-
lations are actually homeomorphisms, for all # in G the neighborhoods
gf @ ar‘e simply translates of the neighborhoods of 0. To show addition
is continuous on &, we need only show that it is continuous at 0. Thus
we have the following useful corollary. '

. 2.3. COB:DLLARY. Le.t G be an l-grouwp with either the interval, mew
interval, or ideal ‘topologws. Then @ is a topological group if and only if
2,0 and y,—0 imply that x,+y,—>0 for all nets {v,},. 4 and {y},. 4 in G.

) 3. The ideal topology on I-groups. In this section we show that the
ideal topology on any I-group ¢ makes G a topological group.
3.1 Lemwma. Let L be a distributive lattice and let U be an ideal which

is mamimal subject to not containing b € L. Then ; ;
S nasinaa sukjort o 1 1 g e U if and onlg if rabeU.

Pro‘of. The only if is clear. Suppose rAbe U but » ¢ U. Since r¢ U
there exists, by Lemma 1.1, a % ¢ U such that wvr > b. Since rAbe U,
and ue U, we have uv(rab) e U. But uv(rab)= (wVr)A(wvVb) = b, and
80 be U. Thus we have a contradiction. o

The dual is proved similarly.

) 3.2.. LEMZMA'. Let L be a distributive lattice and let U be an ideal which
18 mammal subject to not containing beL. If v¢ U, then U is mamimal
subject to not containing rAb. The dual is also true

th&tI;rooi I])By I.lemma, 31, rAb¢ U. If a ¢ U, there exists a u ¢ U such
VU > b > rAb. Thus, by Lemma 1.1, U is maximal subject to not
containing rAb. The dual is proved similarly.
3.3. LeMmA. Let G be an 1
: ~group. Then for z,y,r,8 <@ [(m+s)v
V(r-;y)]A(rf}—s) >(m+y)(\(r-}—s) and the dual inequ,ali’ty’hold. S
o ;-OS(:;; According to C. Holland ([9], Theorem 2) @ is isomorphic
o Suﬁﬁei,glrlzugoﬂhof 13111;;,1 gtfo;p of all order automorphisms on a chain.
] show tha satisfies the above ine iti
qualities. To de-
scribe H more fully, let € be a chain and let 4 be the group of ord:r

iom®
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automorphisms on C. If #,y ¢ A, then <y if and only if z{c) < y(e)
for all ¢« C. The group operation on A is composition. Thus it z,9 €4,
we denote the group operation by # oy where z o y(¢} = w(y(c)). In terms
of H the inequality becomes

[z es)V(roy)]A(res)] = (moy)Alres).
We need only show that this inequality holds for each c¢e C. Since
s(e), y(c) € O, either s(¢) <y(c) or s(c) >y(o).

Case 1. Assume s(c) < y(c). Then r(s(c)) < r(y(¢)) and

(s () vr(y (o)) Ar(s(e) = rly(e)A r{s(0)
rls(e)
> o(y(e))Ar(s(0))-
s(c)) > 2(y(c)) and
[z(s(e) vr(y(@)|ar(s(e) == s(e))ar{s(e)

> a(y(e)ar(s(e)) .

I

Case 2. Assume s{¢) > y(¢). Thus

g
=2
= =

The dual inequality is proved similarly.

The proof of part (¢) of Theorem 2.1 establishes that if ¢ is an order
isomorphism, then the image ¢(U) of every ideal U maximal subject
to not containing b is maximal subject to not containing ¢(b). In an
I-group G every group translation is an order isomorphism. Thus if U is
an ideal in @G maximal with respect to not containing b, then U+a
(= {u+a} weT}) is an ideal maximal subject to not containing b+-a,
and so U-a is a completely irreducible ideal. We use this fact and the

knowledge that every l-group is a distributive lattice in the following

theorem.

3.4. THEOREM. Let @ be an 1-group and let U be a completely irreducible
ideal in @ which contains 0. Then there ewist completely irreducible ideals V
and W such that 0 ¢V ~ W and if #,y eV~ W, then s+y « U. The result
also holds for completely irreducible dual ideals.

Proof. Since the theorem is clearly true if U is trivial, we assume
that U is nontrivial and thus is maximal subject to not containing b ¢ G.
Suppose there exist 7,5 e U such that r+s¢ U. (If no such elements
can be found, let V= W= T.) Let V= U—s and W= —r+U. By
Theorem 2.1, ¥ is maximal subject to not containing b—s and W is
maximal subject to Dot containing —7+ b. Sinee r,se U, we have
0=s—seV and 0= —r+reW.

To show the final condition, let z,y eV W. Now ax ¢V implies
z+seU and y e W implies 7+y € U. Since z+s and r+4y are in U,
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(e+s)vir+y) e U and so is [(#+8)V(r+9)]A(r+$)Ad. By Lemma 3.3
[@+s)Vr+yIA(r+8)Ab = (a+y)A(r+8)Ab .

Therefore (¢4 y)A(r-+s)Abe U. By Lemma 3.2, U i i
+. . . is maximal subject
to not containing (r4 s)Ab. ’ o
B g (r+8)Ab. By Lemma 8.1 (z-+y)A(r+s)Ab e U implieg
The proof for completely irreducible dual ideals is similar.

gmu;‘.& THEOREM. Any 1-group G with the ideal topology is a topological
Proof. By Corollary 2.3, it is sufficient to show that if two net

{#}ecq a0d {y,},., converge to 0, then the net {#,+ 9.} converges to 0‘s
We s@mw that {z,+9,} is eventually in every subbas;e open sef whicﬁ
eont@ns 0. Let U be an arbitrary completely irreducible ideal which
contains 0; completely irreducible dual ideals can be treated simﬂarllc

1]évlyt'_l‘hesorem 3.4 ther'e exist completely irreducible ideals V and W sucyh'

at 0 eV W‘and ifz,yeV W, then 2+ye U. Since VAW i

open set co'nta,ming 0 and #,+0 and y,—0, the nets {z,} and " aro
eventually in V ~ W. Thus {z,+,} is eventually in U. ) (e} oo

4. Direct sums, lexico-sums and th i
; ; e new interval topology. Let @ and
:I(: Zz il;(())ups.b’l‘hg Cartesian product of the sets G and H can be mada(; ing
-group by defining both the order and the i
y . L group operation di-
natewise. We call this I-group the direct sum of G and H and deli?)gz ilt

by G+ H. The direct sum of n l-groups @, G,, ..., &, is denoted by 5’ G
or by ZGI‘ =

41. TuroREM. Let Gy be an ordered group for k=1, 2 7. Then
y ovey M

S
Gr with i ;
Ié’l & With the new interval tozzology 18 a topological group.

Proof. The new interval topology o i i
topolzgy on 3 Gy ([1], Theorem 10)?Th§{he(])lre§1 ?c]:lltl)iv: ;lrlzi ;‘%eﬁzgd“a’egl
. Stﬁi?;e#oéﬁd an - group is called disjoint if all the members of A
are s equf,l Alzrel and if a/\? = 0 for all elements a and b of 4 which
ot o . o Of-io_u%l G is an ordered group if and only if it does
oty II; .l OSJomt elt‘en?ents ([8], p. 76). We adopt the following
domontic IfG . a;;o{d}’ the trivial group, we say that @ has no disjoint

e u’bset o a; lered gToupZ we say that @ has one disjoint element.
interval [a, b] whenever-gil;zoiponfa;iseaéllzdewg ”3? }cf e entire
: ndpoints o )
gl : fzzlégfx, normal subgroup of G. If ¥ is E;n l-ideala’ﬁl(fi a?i fﬂ (f "Ld@gl

group G/¥ can be made into an I- group by defining irelz)l;dex"

-/ ©
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relation between the cosets by the rule: a4+ N <b-+XN if and only dif
a' < b’ for some a’ in a-+ XN and b’ in b+ N,

4.9. DEFINITION. An I-group G is a lemico-extension of an 1-group N

if the following conditions hold
(i) N is an l-ideal of &,

(i) G/ is an ordered group,

(ili) every positive element in @ butnot in N exceeds every element in N.

(Notation: G= (N>).

In [7] Fuchs proved that if G is a lexico-extension of N, then @ is
isomorphie to ¢ X N, where O is an ordered group that is isomorphic
to G/N and where the order on €' N is defined lexicographically: (¢, n)
> (¢’, n) if and only if ¢ >¢', or 6= ¢ and n > n’. The group operation
on Cx N is defined as follows:

(e, 1)+ (@, m) = (e+d, p(o, d)-+ Oa(n)+m)

where v is a map from ¢ X C into N, and 0 takes C into the group of auto-
morphisms on N which preserve both the order and the group structure
(we denote 6(d) by 8,), and p and 6§ satisfy the following four conditions:

(1) 6{04n) = —(@, )+ g1 () +y(d, o),

(2) Byln) = m,

(8) w(c, 0)= p(0,4d) =0,

(&) p(o, d+b)+(d, b) = p(c+d, )+ bfv (e, ),
for all b,¢,d<C and neN.

We emphasize that if @ = (N), then the order is lexicographic no
matter how the group operation is defined. Also, for all definitions of

the group operation,
(0, @)+ (0, B) = (0+0, (0, 0)+ O(a)+b) = (0, a-+b)

by the identities (2) and (3) above.

4.3. DErFINITION. Let A;, Asy ..., A» be ordered groups. Then by
o finite alternating sequence of direct summations and lexico-extensions,
an I-group can be constructed from the A; in which each A, is used
exactly once to make a direct summation and the ordered groups used
to make the lexico-extensions are arbitrary. Such groups are called
lewico-sums of the As.

The concept of lexico-sum was introduced by Conrad in [5] where

he proved the following theorem.

4.4, CONRAD'S THEOREM. An I-group @ is a lewico-sum of n ordered
subgrowps if and only if G contains n disjoint elements but does mot con-

tain n-+1 such elements.
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The proof of the theorem indicates that in a lexico-sum it can be
agsumed that the sequence beging with a direct summation (see especially
[8], p. 177; [8], p. 85-86) and that no direct summation is trivial ([5]
p- 177-178; [8], p. 86). Some or all of the lexico-extensions may bé
trivial. From these assumptions we see that if # = 2, then the lexico-sum
of 4, and 4, is <4;+ 4,). If n = 3, then the lexico-sum of A, 4,, and 4
in that order is (<4,+4,>+A4,> or Ai+<4,4+ 45> ([5], p. 171). I;
n =4, two of the possible lexico-sums of 4,, 4,, 4,, and A, are
LA 4+ Ay + .4, and <<—A1+A2>+<A3+A4>>- If @ is the lexico-
sum of 4, 4,,..., 4,, then G= (44 B>, where 4 is a lexico-sum of
4;,4,,..., 4, and B is.a lexico-sum of Agiyy Agpgy ey A, for a suitable
ordering of the subscripts ([5], p. 171) and s # 0 and s # n. If all the
lexico-extensions are trivial, then the lexico-sum of Ay, Ay, oy Ay i
equal to the direct sum of the 4. R

45 LeMMA. The interval and new interval topologies -agree on any
nontrivial lewico-ewtension G of am I-group N.

Proof. In this proof ANB= {z] 2¢4 and # ¢ B}. According to
Fuchs [7], & is isomorphic to ¢ x N, , Where O is a nontrivial ordered group
and where the order on Ox N is lexicographic.

(a) Let a,b ¢ ¢ be such that a< b, and let p V.

Then ‘ (@, )" =(—o0, @) x Nu {a} x p*
and
b, p)* = (b *

hms (b, D) ( ,+°°)XNU{b}Xp'

(e, p)* 1= (a, + o0) X N U {a} x (N~p*),
and

GNI(b, 2)*] = (— 00, )X N U {B} x Nop?) .
As a result,

V={(\(a, p)*]) ~ (N3, p)"))
= (@, D)X N v {a} X (N\p*) U {b} X (N~p¥)
is open in the interval topology.

ot ]il;)n]:;egmse ﬂ;{a interval topology 7 is always weaker than or equal
ol -closué eivt topology 3, we need only show that every »-closed
Ordemg ed. ] et F Dbe closed under v, and let (z,y) ¢ F. Since C is an
orcered %roup, It is an unbounded chain. Thus there exist a,b,r,s¢C
Fmite a )1‘(? a<< z< b<s. Let p be an arbitrary element of N. Now
Bec&us; p( a; ,) ;p)%7 s a closed bounded set, and thus it is 7-closed.
it o y);%;ndné(r,p), (s; )], there exists an n-open set U such
XN\J%G Nt ﬂFﬂ[(T,p),(gS‘,_p)]:@. BS’ Part(a’)’v=(“sb)x

PX(NNpt) O {B) X (N p®)  is n-open; and clearly (z,y4) V.

e ©
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Therefore U ~V is -open, and (z, y) ¢ U n V. Moreover, VC[(r, p), (s, )]
which implies that U~V "FC-U~F n[(r,p), (s,p)] = 0. Thus A\F is
n-open, and F is 7-closed.

4.6. THEOREM. Let A,, A,, ..., An, where n =2, be ordered groups,
and let G be a lewico-sum of the A; in which there is at least one nonirivial
lexico-extension. Suppose also that @ is commutative. Then G is not a topo-
logical group in its mew imierval topology.

Proof. The proof is by induction on the number » of ordered groups.

Case 1. If n =2, then @ = {A,+ A,y where the lexico-extension
is nontrivial. Now (&, ») = (@, n) by Lemma 4.5. If (@, n) is commutative
and is a topological group, then, according to Jakubik [11], it must be
an ordered group. But this is impossible because, by Conrad’s Theorem,
G has two disjoint elements. Therefore, (@, v) (= (&, ) is not a topo-
logical group.

Case 2. We now assume that the theorem is true for r ordered groups
where 7 is strictly less than n. Let G be a lexico-sum of n ordered groups
in which there is at least one nontrivial lexico-extension. Thus ¢ = (A -+B),
where A is a lexico-sum of r ordered groups, B is a lexico-sum of s ordered
groups, r+8 =n, and r # 0 # s ([5], p. 171). If the last lexico-extension
is nontrivial, then (&, ») = (G, n), and an argument identical to the one
given in Case 1 suffices. Suppose, however, that the last lexico-extension
is trivial. Then G = A-+ B. Because ¢ containy a nontrivial lexico-ex-
tension, either A or B must contain a nontrivial lexico-extension. Assume
that B does. Since s < %, the induction hypothesis implies that (B, »)
is not a topological group. Suppose, however, that (&, ») is a topological
group. Then B (= {0}x B) is a topological group under its relative
topology ([4], p. 225). It is easy to check that the relative topology on B is
equal to the new interval topology on B, and thus (B, ) (= ({0} X B, »))
is a topological group. This contradicts the induction assumption.

Since a lexico-sum which has no nontrivial lexico-extension is
a direct sum, Theorems 4.1, 4.4, and 4.6 imply the following corollary.

4.7. CoROLLARY. Let @ be a commulative 1- group that contains n disjoint
elements and not n+1 such elements. Then @ is a topological group in its
new interval topology if and only if G is a finite direct sum of ordered groups.

5. Archimedean [-groups. An I-group is Archimedean if for all elements
a and b in the I-group, na < b for every integer » implies that a = 0.
An I-group is complete if it is conditionally complete as a lattice, i.e., if
every nonempty bounded set has a least upper bound and a greatest
lower bound.

5.1. THEOREM. Let G be an Archimedean 1-group that has n disjoint
elements and not n-+1 such elements. Then @ is the direct sum of n ordered
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groups, and therefore is a topological group wunder the mnew imterval
topology. :

Proof. We first show that a nontrivial lexico-extension H of an
l-group N is not Archimedean. Now H = (X N, where C is an ordered
group and where the order on ¢x N is lexicographic. The group oper-
ation can be perfomed in a number of ways. Let a = (0, p) where p > 0
in ¥, and let b= (¢, 0) where ¢ >0 in C. Under any definition of the
group operation n(0,p) = (0, np) for any integer m. Moreover, (0 , Np)
< (e, 0) for all ». Since (0, p) # (0,0), H is not Archimedean.

Clearly any l-subgroup of an Archimedean I-group is Archimedean.
Using these two facts and Conrad’s Theorem, Theorem 5.1 follows by
an induction argument similar to that of Theorem 4.6.

5.2. CoROLLARY. Let G be a complete 1-group that contains n disjoint
elements but not n+1 such elements. Then @ is the direct sum of n ordered
groups and is a topological group wnder the new interval topology.

Proof. Aceording to Birkhoff ([2], p. 291), any complete 1-group
is Archimedean.

We have shown that any Archimedean or complete I- group with
only a finite number of disjoint elements is a topological group in its
new interval topology. The following is an example of an Archimedean
I-group that has an infinite number of disjoint elements and that is not
a topological group in its new interval topology.

5.3. COUNTEREXAMPLE. An Archimedean I-group with an infinite
number of disjoint elements that is not @ topological group in its new interval
topology.

Prooi. We give as an example C[0, 1], the additive group of all
continuous real functions on the closed unit interval, which is an I-group
under the natural ordering. Clearly it is Archimedean and has an infinite
number of disjoint elements.

The interval topology, which is a T, topology, is clearly weaker than
the new interval topology. This forces the new interval topology to be 7.
Any T, topological group is a Hausdorff space ([4], p. 223). Thus, if
010, 1] is a topological group under the new interval topology, then it
must be a Hausdorff space. Since the property of being a Hausdorff,
space is hereditary, [0, 1], (where 0 (1) is the funection identically equal
%o 0 (1)) must be a Hausdortt Space in its relative topology. By Theorem 3
of [10], the relative topology on [0, 1] equals the interval topology on
[0, 1]. Therefore, [0, 1] with the interval topology must be a Hausdorff
space. But Northam [12] has shown that [0, 1] is not a Hausdorff space
in its interval topology. Thus we have 2 contradiction.
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