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Grouplike Menger algebras
by
H. L. Skala (Chicago, Ill.)

Abstract. This paper generalizes the concept of group to include sets with n-ary
operations. An n-place Menger algebra is a set A with an (n-1)-ary operation o
satisfying the superassociative law: 0(0 (g, G1s ---5 @n), by, ooey ba) = 0(@y,0(ay; by -ees by) 5 oo
ooy 0(@ny byy ooy bu)). A I8 said to be grouplike if for any sequence a,,ay,...,8n, b of
elements from A there exist unique elements %,, %, ..., s of 4 such that o(a , ..., a,_,,
Byy Qypys ooen @) = b for i =0, 1, ..., n. It is proved that there exist n-place grouplike
Menger algebras of every finite order if n is odd; if » is even there exist grouplike Menger
algebras of every order not of the form 2p where p is an odd prime. There exist no
2-place grouplike Menger algebras of order 2p. Alternate conditions for a Menger algebra
to be grouplike are presented. The existence of grouplike subalgebras is also studied.

The study of functions of many variables gives rise to a natural
extension of the concept of associativity for n-ary of)era,tions. An n-place
function f over a set § is any mapping of 8" = §x ... x 8§ (the cross product
of § with itself n times) into 8. X f, fi, ..., f» are n-place functions
over S, the composite fu(f, ..., fs) is defined in the usual way:

(fO(f] 3 *--:f"))(sls RY] Sp) = fo(fl(sly ey sn), .--,fn(Sl, ey Sn))

for each n-tuple (sy, ..., 8,) from 8™ If ¢, ..., gn are also n-place functions
over S then it is easily verified that

(1) (fo(fla‘ -~-7fn))(gu weey Gi) =fo(f1(gu ey Gn)y ooy FulGas - 7!]71)) -

For the case m =1, Bquation (1) reduces to the associative law for
transformations of a set into itself.

A set A of n-place functions is said to be an algebra of functions if
the composite of any n--1 functions from 4 is also in A. Such algebras
have been extensively studied in [1]-[12]. Generalizing the above concepts
we define an n-place Menger algebra to be a set 4 with an (n+1)-ary
operation o satisfying what has been called the superassociative law:

(2) o(o(ao, Gy eeey By)y By g onny ar’b)
= 0(@y, 0(@yy @y wery @)y very 08y Bry woiy B)))

for any elements a;, a;, 4=0,1,..,n, j=1,..,n, from A. The case
n =1 in just the ordinary associative law and hence any 1-place Menger
algebra is a semigroup.
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Tt follows immediately from Equation (1) that any algebra of fune-
tions is a Menger algebra. Conversely, it was shown by Dikker (cf. [2])
that any Menger algebra is isomorphic to an algebra of functions over
some set. Hence, in particular, any semigroup is isomorphic to a set of
transformations over some set.

In this paper we study Menger algebras which satisfy certain solva-
bility criteria, thus extending the group concept to include sets with
n-ary operations.

An n-place Menger algebra is said to be grouplike if for any se-

qUence dgy Gy, ..., an, b of elements from 4 there exist unique elements
Zgy Byy ey ¥n in A such that

(3) 0(Byy wrey @ygy By Byryy ey @) =Db  for 1=0,1,...,n.
Thus any 1-place grouplike Menger algebra is a group.
Some examples of grouplike Menger algebras are the following:

(i) The set of all n-place functions f, over the reals defined by
fl@y, oy @) = (4 ... +m,+7)/n for each real number 7.

(i) The set I, of integers modulo 2k-1 with the (2n--1)-ary
operation 0(éy, 4y, ...y fay) = Gg— G v FTop_g— Goy_g -+ 2%y, (mod 2k 4-1).

(iii) The set I, of integers modulo 2%k with the 2n-ary operation
0igy Gy veny fgpy) = Gpt 8y lg— 154 oo Flop_o— Gon_y (M0OA2E).

THEOREM 1. An n-place Menger algebra A is grouplike if and only
if A contains an element e (called the identity of A) such that

(3a) ofe, @, .., 8)=w=0(z,e,..,6) for each x in A;
and

(3b)  for any sequence ay, ay, ..., a, of elements of A, there ewist unique
elements xy, oy, ..., Ty such that .

O(Byy vy Oglyy Byy Gy ey @) =¢ for i=0,1,..,n.

First suppose 4 is grouplike. Let a be any element of 4 and let ¢ be
the element of A such that o{e, a, ..., a) = 4. For any element » in A,
there exists an element y such that o(a,y,a, ..., a) = z. Hence

z=oole, &, ..,a),y,a, .., a))
=ole,0(a,9,a,...,4), ..;0(a,9,a, .., a))=o(e, o, ..., ).

To prove the second equality of Condition (3a), choose elements ¥, ..., ¥
such that o(z, 4, ..., ¥u) = ¢. Then

o(o(e,:p, w3 B)y Yuy oeny Yp) = 0(37 0@y Yuy vy Ypds woes O(By Yy g nny yn))

= o(e,€,...,e)=¢.
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Therefore by the unique solvability criterion # must equal o(e, @, ..., #)
and Condition (3a) follows. Clearly Condition (3b) is satisfied.

Conversely suppose 4 is a Menger algebra satisfying Conditions (3a)
and (3b). Let ay, ay, ..., an, b be any sequence of elements from 4. We
first prove there exists a unique element x, such that o(w,, a;, ..., @) = b.
By Condition (3b) there exist elements b, , ..., by such that o(b, by, ..., ba) = e.
Let @, be the element such that o{we, 0(ay, by, ..., bu)y ooy 0(Gny by, ooy b))
= e. The left-hand side of this equality is just o(o(wo, iy arey Gn)y byy oery Dn)
and it follows from the uniqueness stipulation in Condition (3b) that
0(@y, @y ..., @n) = b. Now suppose there exists another element z, such
that o(zy, &, ..., @z) = b. Then also

0[5y 0(ayy byy eeey D)y ey 0(y, Byy ooy By)) =€

Again, the uniqueness stipulation of Condition (3b) implies that z, = z;.
For ¢ =1, ..., n, let y; be the element of 4 such that

0((1.0, 0(@yy Byyeney By ey Yiy wees 0By Dyy oeey bn)} =é€.

By the above, there exist elements x; such that o(®i, by, ..., ba) = 91,
whence

€= 0(ay, 0(Q, by, ey By)y weey 0@, by wey By)y eony 0(@, by oy By))
= 0{0(yy @y vrey Biy wey @)y Byy wuy )

And by the uniqueness stipulation in Condition (3b), 0(ay, @1, .oey Lty very An)
=b. If also 0(ag, Gy, -vey Tyy -y ) = b for another element z;, then
0(%;y by, ey by) = 0(27, by, ..., b,) and, from the above, it follows that
T, = ;. .
We remark that the uniqueness stipulations of Conditions (3) and (3b)
cannot be dropped. For example, the set of integers is a 2-place Menger
algebra if we define
. i+3(j+ %), if j-+% is even,
o(i,j, k) =1, | e g s
i+ 3(j+k—1), if j4-%k is odd.
Clearly 0 is the identity of this algebra and the equality o(¢,j, %)= m
always has a solution if m and two of the three integers ¢, j, k are given.
But 0(0,0,0)=0(0,1,0) = 0. We prove however the following
THEOREM 2. A finite Menger algebra A is grouplike if
(8") for any sequence dy, Gy ..., Gn, b of elements from A, there ewist
elements Ty, Byy ooy T SUCH thAE b = 0(Ug, wony Qy_yy Byy Bypyy ooy Gy); OF if
Condition (3a) and the following condition holds:
(3b") for amy sequence dy, Gy, ..., an Of elements from A there ewist
elements %y, Ty, ..., n Such that €= 0(Byy ..., G;_1, Tyy Ggryy cony On)-
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Let A= {#;..,2. By Condition (3’) there exist elements ¢,
i=1,..,k j=0,1,..,n such that o(tg, ooy Gi1y Cijs Bjpry vy G) = 2;.
Since 2, # 2, for s # 1, 6, # ¢; for 8 # 1. Thus A = {¢,, ..., ¢y;} for each j
and it follows that the elements postulated in Condition (3') are unique.

Now suppose A satisfies Conditions (3a) and (3b’). We first show
that for any element a of 4 o(a,®,.., o) # o(a,y,...,y) for o #y.
For suppose that equality holds. By Condition (3b’) there exists an
element o’ such that o(a, a, ..., a) = e. But then

g=0(6, 8, ..., ) = 0(0(a, @, ..., 0), @, ..., @)
=o(a, 0(@, Ty vovs @), ey 0(@, @y oory )
= 0((1.', 0(@, Yy eeny Y, ...,‘o(a,y, sy ?/))
= ofo(a’, @y ey @), Yy ey ¥)
=o0(€, Yy ., ¥) =19,
whence z = y.
We now prove that Condition (3') holds. Let @, ay, ..., an, b be

elements from A. By Condition (3b’) there exists an element y, such
that o(yy, Gy, ..., @n) = €. Hence

b=o(b,e,..,6) = O(ba 0(Yos Gyy eey )y ooy O(Ygy By ovey a‘n))
= O(O(b; Yoy +oey Yol s Guy ey a’n} .

Hence there exists an element z,, namely @, = 0(b, %, ..., ¥,) such that
0(Zay Gyy oory An) = .

For i>0 let b’ be the element of A such that e=o(d', b, ..., b).
By Condition (3b’) there exist elements #; such that

e=0(0(D, @y, vuiy Gg)y Ay y ery Ty ery B
= o(b’, 0(Byy Gy eeey By cony Gl y wony O(dgy Ayycoey By vony a,)) -

On the grouplike Menger algebra 4 we define a binary operation =
by a%b=o(a,b, .., b). It is easily verified that, since the operation o is
superassociative, * is associative. By Condition (3a), axe=¢xa=a
and hence ¢ is an identity of A with respect to *. Condition (3b) implies
the existence of left inverses, whence A, with the operation *, is a group,
which we will call the diagonal group of A and denote by Ax. By direct
calculation one easily shows that

4) o{a* by ey ey n) = ax(o(b, ey ..., tn))
for any elements a, b, ¢, ..., ¢, from A.

TaEOREM 3. For any Sequence a, ..., an of elements from a grouplike
Menger algebra A there exists an element a such that 0(By Ayy vvuy Op) =D * @
for every z in A.
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Let b be an element of 4 and o(b, @y, ..., an) = ¢. Since A* is a group
there exists an element a such that b+ a = ¢. We show o(z, ay, ..., 0a)
— z«a for every z in A. Now o= 2 * b™' = b, where b™' is the inverse
of b in A*. Hence by Equation (4),

OB, Qyyeeey @) = 0(B* b7 %D 0y, .,y )
=z%b7 x(0(by 4y, ., a,))=2*b T Re=a*xa.

Tt follows from Theorem 3 that any grouplike Menger algebra A is

completely determined by its diagonal group and the set

{(mls ey Dy 0(@y Byy oeey wn))}
for any particular element a. For if b is in A4 then 0{b, Byy ony Tn)
=D a % (0(a, Ty, ey B))-

That nonisomorphic grouplike Menger algebras may have isomorphic
diagonal groups is seen by the following examples. On the set I; of integers
modulo 5 we define three superassociative operations:

o(i,j, k) =i—j+2k(mod3),

o'(i,j, k) = i—2j+3k(modd),

0"(i,], k) = i—3j+ 4k(mod5) .
That I, with each of these operations is a grouplike Menger algebra, no
two of which are isomorphic, is easily verified. But the diagonal group
of I, with respect to each of these operations is just the eyclie group of
order 5.

Though there exist groups of every finite order, this result is not
true for grouplike Menger algebras. For example, there exist no 2-place
grouplike Menger algebras of order 2p, where p is an odd prime. Before
showing this, we prove the following

THEEOREM 4. In order that a finite group G be isomorphic to the diagonal
group of an n-place Menger algebra, n>1, it is mecessary and sufficient
that there exist a map ¢ of G onto G such that
(pa) @(e, ., 0) =€, where e is the identity of @,

(BD) @@y wey By o5 Gpg) # @@y eory Ty -ony ) for @ # Qg s
(56)  @(ayby ey @y_1 D) # @(Oyy ey Gy_y)b for b £ e where the operation of
@ is denoted by jumtaposition. :

We first prove that the diagonal group of any grouplike Menger
algebra A satisfies the conditions given in the theorem. Setting
@Oy vrey By_y) = 0(8, €, Uy cney Uy_;) ODNO immediately verifies Conditions
(54) and (5b). Moreover,

play % by oy @+ b) = o(e, 6,0, %D,y Oy * b)
=o(e,ex b7 @y, ey Oy ) * b.

15 — Fundamenta Mathematicae, T. LXXIX
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Since
0(8, 6% bY Gy, ey By _y) # 06,6, @yy ey Oy y)  TOr b o6,
it follows that
@A %Dy ey @y % D) # 0(6, 6,815 ey By y) %D =@(d1y ey Gy y) %D .

Conversely suppose the finite group @ satisfies the conditions of
the theorem. We define the (n-1)-ary operation as follows:

0(ayy Byy wery Gy) = GP(B,077 ey @, 071 a, .

It is easily verifed by direct calculation that the operation o is super-
associative. Now let b be any element of 4. Then the equality

b= 0(y Gy ey @) = mc‘P(a’zafly N L

is satisfied for &, = ba;(p(a,ar" ..., aya7"))™". Because @ is finite, in
order. to prove there exist unique elements , ..., #, from G such that
0By, veey Bgy ooey 4,) = b it suffices to show that

pla,a7 ..y a’nwnl)m # @(ay ™ vy 6,97 Y
and

-1 -1 —1 ~ —
P07 ey BATT oy G077 F @ (007 L YA ey Gy Al

for # # y. The second inequality follows immediately from Condition (5b).
In order to verify the first inequality we suppose

P87 ey G0 )T = (@97 ey 4,57y
Setting ¢; = a;#™' we obtain

P(Ogy vy C)BY ™ = @loyay™, ..., ¢, 24 7")

aﬂ;}d it follows f‘rom Condition (5¢) that oy~ = e, that is » = y. Hence G
Wlth the operation defined above is a grouplike Menger algebra. Moreover,
:;izewsat;btréol(az by ey b};)[: ap(e, ..., e)b=ab by Condition (Ba), it
at @ is isomorphic to the diagonal group of t i

Senger algchns g group of the above defined

THZEOB.EM 5. I.f G is a finite group and n an odd integer, there ewists
:zon ;. -place grouplike. Menger algebra whose diagonal growp is isomorphie
o 3 if 18 even and the order of G odd, there ewists an n-place grouplike

enger algebra whose diagonal group is isomorphic to G.

For n=2m-+1, we- define "

B @y, oy Ogy) = a, a7t .. @y, a5k, For
n; 2m :ttltd tghe order of ¢ odd, we deﬁn’g go(all, Z, ang”:);zglag !
".’—az_ .. . ST .."'
y T,]; ezre,;l 2;1:,;,,1 1- The maps ¢ are easily seen to satisfy the conditions

If both n and the order of & is ev
) en there need not exist n-place
grouplike Menger algebras whose diagonal group is isomorphic tI()) Q.
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For example the cyclic groups of even order and the dihedral groups
of order twice an odd integer cannot be the diagonal group of any 2-place
grouplike Menger algebra. In order to show this we let G be one of the
above groups and assume there is a map ¢ satistying the conditions of
Theorem 4. Hence ¢(a) # @(b) for a # b and ¢(ab) # @(a)d for b #e.
Setting ¢ = ab, we obtain from the second condition that g(c)c™ # @(a) a™t
for a + ¢. Hence the sets {g(#): « in G} and {p(z) 7z~ @ in G} are both
equal to @ itself. Hence if G = {@y, ey Gy}, the product ;.. Gy = b
equals the product of e(aj)ar 1., p(a) gy in some order. But since
G={p®): 2 in G}= {z7*: » in G} b must therefore equal the. product
in some order of all the elements of @ taken twice. If @ is the cyclic group
of order 2k let it be generated by, say, ;. The product of all the elements
of @ is therefore a¥, while the product of all the elements of G taken twice
is a2 = ¢ # aF. If @ is the dihedral group of order 2k, where k is odd,
let a, and a, be its generators such that a* = af = e. We write every
element of G in the form a;’a; where 0 < s< k and 0 <<t<1. Since k is
odd the product of all the elements of @ in any order is of the form ata,
for some integer i; but the product of all elements of G taken twice and
in any order is of the form of for some integer j. Hence neither of the
above groups can be the diagonal groups of a grouplike Menger algebra.
) Since the only groups of order 2p where p is a prime are the cyclic
and the dihedral group, it follows that there exist no 2-place Menger
algebras of order 2p, where p is an odd prime.

There do exist 2-place grouplike Menger algebras of every other
order, however. First, let Hy denote the group of order 2% in which every
element has order 2. Hence Hy is generated by % elements, 8ay, @y, .-y G-
We define the sequence &, @, .., Tae_; Of elements from Hy in the
following manner: @ = a¢ for i=1, ..., b and @, = %;_; P g4 10T i > k.
The elements z; are all distinet and unequal the identity. Moreover, for
%k >1, the map g@(e) = e, @(&;)= Zipxs ¢ (@g_y) = @, satisfies the con-
ditions of Theorem 4. Hence there exists a 2-place grouplike Menger
algebra of order 2* for every integer k>1.

Tf A and B are n-place grouplike Menger algebras then the direct

. product 4B is also an n-place grouplike Menger algebra with the operation

0((“0, 2y P (On,y bﬂ)) = (O(aO, ey n) s O(bm weey b’ﬂ)) .
Hence, since there exists 2-place grouplike Menger algebras of every
odd order and of order 2* for k > 1, there exist 2 -place grouplike Menger
algebras of order 2% where m is odd and k>1.

Let A be an n-place grouplike Menger algebra of order m. We show
there exists an (n-+2)-place grouplike Menger algebra of order m. Let ¢ be
the map of Theorem 4 associated with the n-place algebra. The map
@8y oy vrry Bpyr) = Oy 05 P(Bgy wovy Gpr) is easily seen to satisty the con-
15%
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ditions of Theorem 4. And it follows by induction that there exist n-place

grouplike Menger algebras of every order 2*m, where & > 1. Summarizing

these results we obtain the following

THEOREM 6. There exist n-place grouplike Menger algebras of every
fintle order if n is odd; if n is even there emist grouplike Menger algebras
of every order not of the form 2p where p is an odd prime. There exist no
2-place grouplike Menger algebras of order 2p.

The existence of even place grouplike Menger algebras of order 2p
for the place number greater than 2 is as yet undecided.

A gubset B of a Menger algebra A4 is called a subalgebra if it is closed
with respect to the operation on A.

TeROREM 7. Any finite subalgebra of a grouplike Menger algebra is
also grouplike.

Let B be a finite subalgebra of a grouplike Menger algebra A. Then
0(bos vy b1y @, Diyyy ey B) 5 0(byy oany bicts ¥y Vigay ey b)) for Y

since 4 is grouplike. Thus {o(b,, ..., b1y @y 051y ey by): @ in B} equals B
for each 4 and hence Condition (3') is satistied and B is grouplike.

THEOREM 8. The order of any subalgebra B of a finite grouplike Menger
. algebra A divides the order of A.

It 15 easily shown that B* is a subgroup of A*. Hence the order of B*
divides the order of A*. But 4* and 4, and, respectively, B* and B have
the same order.

Any grouplike Menger algebra of prime order therefore has no
subalgebras. A composite order, however, does not guarantee the existence
of subalgebras. For example the 2-place algebra Hy of order 2% defined
above has no subalgebras. The following 2-place grouplike Menger algebra
of order 15 also has no subalgebras. Its diagonal group is the set of. integers
modulo 15 and we denote its elements by 0 through 14, and define the
algebra by means of the map of Theorem 4:

pl0)=0, o@B)=11, g10)=2,
pl)=3, ¢6)=14, ¢@11)=38,
’P(2)=57 97(7)=1; ¢(12)=13;
B =T, ¢@B) =6, @I13)=12,
pd)=9, g9 =4, @(14) =10,
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