R. C. Solomon

212

to F. Hence for some n, $e_j \cap a_{nj}^j - (h_1 \cup ... \cup h_j) \in X_{nj}^j$. (Otherwise $h_1 \cup ... \cup h_j$ would already be in F). Let $a_j = e_j \cap a_{nj}^j - (h_1 \cup ... \cup h_j)$.

Let $d_a = \bigcup_{n \in \omega} a_n$. For each $n, m \in \omega$, $e_n \cap d_a \in X_r^m$ for infinitely many

r's. Hence if F_a is generated by d_a and F, F_a obeys the induction hypothesis. However, if $X_m^n \in X^a$, $d_a \cap a_m^n$ is contained in the union of finitely many a_r^p s, for j < n. By the contrapositive of D, $d_a \cap a_m^n \notin X_m^n$. Hence if q contains d_a , $q \notin \overline{X}^a$.

Finally, let q be the unique ultrafilter containing F_a for every a, and $q \in \bigcap \overline{X}^n$. Then the only relative types of q^{\sim} are the p_n^{\sim} .

References

- [1] D. Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970), pp. 1-24.
- [2] Z. Frolik, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), pp. 87-91.
- [3] M. E. Rudin, Types of ultrafilters, Wisconsin Topology Seminar. (1965).
- [4] A. K. Steiner and E. F. Steiner, Relative types of points in βN N, Trans. Amer. Math. Soc. 159 (1971), pp. 279-286.

DEPARTMENT OF MATHEMATICS BEDFORD COLLEGE, London

Recu par la Rédaction le 5. 4. 1972

Almost continous functions on In

by

Kenneth R. Kellum (Birmingham, Ala.)

Abstract. Suppose n and m are positive integers and let I denote the closed unit interval [0,1]. It is proved that there exists a pair of almost continuous functions $f\colon I^n\to I^m$ and $g\colon I^m\to I^n$ such that the composed map $gf\colon I^n\to I^n$ has no fixed point and is not almost continuous. The function f is a dense subset of I^{n+m} .

The main purpose of this paper is to give a partial answer to a question posed by J. Stallings [2]. Unless otherwise stated, all functions considered have domain and range I^n , where I denotes the closed unit interval, [0,1], and n is a positive integer. No distinction is made between a function and its graph. If each open set containing the function f also contains a continuous function with the same domain as f, then f is said to be almost continuous. Stallings introduced almost continuity in order to prove a generalization of the Brouwer fixed point theorem. He asked the following question. "Under what conditions is it true that if $f\colon X\to Y$ is almost continuous and $g\colon Y\to Z$ is almost continuous, then the composed map $f\colon X\to Z$ is almost continuous?" In the present paper it is shown that there exists a pair of almost continuous functions $f\colon I^n\to I^m$ and $g\colon I^m\to I^n$ such that gf has no fixed point. Since each almost continuous function on I^n has a fixed point, it follows that gf is not almost continuous

Suppose $f \colon A \to B$. The statement that the subset C of $A \times B$ is a blocking set of f in $A \times B$ means that C is closed relative to $A \times B$, C contains no point of f and C intersects g whenever g is a continuous function with domain A and range being a subset of B. If no proper subset of C is a blocking set of f in $A \times B$, C is said to be a minimal blocking set of f in $A \times B$. If the set C is a minimal blocking set of some function $g \colon A \to B$, then C is said to be a minimal blocking set in $A \times B$.

Suppose D is a subset of $A \times B$. Then $p_A(D)$ will denote the projection of D into A and $p_B(D)$ will denote the projection of D into B. If K is a subset of $p_A(D)$, then $D \mid K$ denotes the part of D with A-projection K.

THEOREM 1. Suppose $f\colon I^n\to I^m$ is not almost continuous. (To simplify notation, we denote I^n by A and I^m by B.) Then there exists a minimal blocking set C of f in $A\times B$. Further, $p_A(C)$ is a non-degenerate continuum and $p_B(C)=B$.

from A to B. This completes the proof.

Proof. The proof that there exists a minimal blocking set of f in $A \times B$ is essentially the same as that given for a more restricted case in [1], and is omitted. Assume that $p_A(C) = U \cup V$ where U and V are closed and $U \cap V = \emptyset$. Then $C \mid U$ and $C \mid V$ are closed proper subsets of C. By the minimality of C, there exist continuous functions $g_1 \colon A \to B$ and $g_2 \colon A \to B$ such that $g_1 \cap C \mid U = \emptyset$ and $g_2 \cap C \mid V = \emptyset$. Using a Urysohn function, it is easy to construct a continuous function $h \colon A \to B$ such that $h \mid V = g_2 \mid V$ and $h \mid U = g_1 \mid U$. Then $h \cap C = \emptyset$, a contradiction. Thus $p_A(C)$ is a continuum. That $p_A(C)$ is non-degenerate is obvious. That $p_B(C) = B$ follows from the fact that C intersects each constant function

THEOREM 2. Suppose n and m are positive integers. There exist almost continuous functions $f: I^n \to I^m$ and $g: I^m \to I^n$ such that gf has no fixed point.

Proof. Again, we simplify notation by letting $A=I^n$ and $B=I^m$. Denote by θ the set to which the subset C of $A\times B$ belongs if and only if C is closed and both $p_A(C)$ and $p_B(C)$ have cardinality c. Then the set θ also has cardinality c. There exists a well-ordering $C_1, C_2, \ldots, C_{\omega}, \ldots, C_a, \ldots$ of θ such that if C is in θ , the set of elements of θ which precede C has cardinality less than c. For each C_a in θ we will define $x_a, z_a, f(x_a), f(z_a), g(f(x_a))$ and $g(f(z_a))$ such that $x_a \neq g(f(x_a)), z_a \neq g(f(z_a)), (x_a, f(x_a))$ is in C_a and $(g(f(z_a)), f(z_a))$ is in C_a .

Choose a point (x_1, y_1) in C_1 . Let $f(x_1) = y_1$ and let $g(y_1) = x$, where $x \neq x_1$. Now, let (z, y_2) be a point in C_1 , where $y_2 \neq y_1$. Let z_1 be in $A - \{z, x_1\}$. Let $f(z_1) = y_2$ and $g(y_2) = z$.

Suppose that C_a is in θ and assume that x_{β} , z_{β} , $f(x_{\beta})$, $f(z_{\beta})$, $g(f(x_{\beta}))$ and $g(f(z_{\beta}))$ exist and have the desired properties for each C_{β} which preceds C_a . Denote by M the set to which x belongs if and only if $x = f(x_{\beta})$ or $x = f(z_{\beta})$ for some C_{β} which preceds C_a . Let L denote the set to which x belongs if and only if x is x_{β} , z_{β} , $g(f(x_{\beta}))$, or $g(f(z_{\beta}))$ for some C_{β} which preceds C_a .

Let x_a be in $p_A(C_a) - (p_A(C_a) \cap L)$ and choose y_1 such that (x_a, y_1) is in C_a . Let $f(x_a) = y_1$. Since x_a is not in L, if y_1 is in M, then $g(y_1) \neq x_a$. If y_1 is not in M, simply choose $g(y_1)$ in A such that $g(y_1) \neq x_a$. Then $(x_a, f(x_a))$ is in C_a and $x_a \neq g(f(x_a))$. Now, let (z, y_2) be in C_a where y_2 is not in $M \cup \{y_1\}$. Let z_a be in $A - (L \cup \{z, x_a\})$. Let $f(z_a) = y_2$ and $g(y_2) = z$. Then $(g(f(z_a)), f(z_a)) = (z, y_2)$ is in C_a and $z_a \neq g(f(z_a))$.

Thus, by induction, x_a , z_a , $f(x_a)$, $f(z_a)$, $g(f(x_a))$, and $g(f(z_a))$ exist and have the desired properties for each C_a in θ . Let N be the set to which x belongs if x and only if x is x_a or x_a for some C_a in θ . In case x is in A-N, let f(x) be in f(N) where $g(f(x)) \neq x$. Let y be in B, and choose x in A such that $f(x) \neq y$. Let D be a non-degenerate continuum in A containing x. Denote by S the line segment with end-points P and (x, y), where P is

the mid-point of the line segment joining (x, y) and (x, f(x)). Then $S \cup (D \times \{y\})$ is in θ and must contain a point (z, f(z)) of f|N. Since (x, f(x)) is not in S, f(z) = y, so f(N) = B and the above induction defines g(y) for each y in B.

If C is a minimal blocking set in $A \times B$, by Theorem 1, C is in θ and contains a point of f. Thus f is almost continuous. Similarly, g is almost continuous. Clearly, gf has no fixed point, and the proof is completed.

Note that each of the functions f and g defined in Theorem 2 is a dense subset of I^{n+m} . This generalizes the result of Example 2 of [1].

We now make two additional definitions in order to pose some questions. The function f is said to be of Baire Class 1 if f is the pointwise limit of a sequence of continuous functions. The function f is said to be a connectivity function if $f \mid C$ is connected whenever C is a connected subset of the domain of f. Suppose $f: I^n \to I^n$. If n = 1 and f is almost continuous, then f is a connectivity function. If n > 1 and f is a connectivity function, then f is almost continuous [2].

Question 1. To what extent can the results of Theorem 2 be extended to connectivity functions?

Question 2. What are the relationships of functions of Baire Class 1 to connectivity functions and to almost continuous functions? Specifically, if $f\colon I^2\to I$ is a connectivity function, under what conditions is f of Baire Class 1? Also, if $f\colon I\to I$ is of Baire Class 1 and is a connectivity function, is f almost continuous (*)?

References

- K. R. Kellum and B. D. Garrett, Almost continuous real functions, Proc. Am. Math. Soc. (to appear).
- [2] J. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), pp. 249-263.

MILES COLLEGE

Reçu par la Rédaction le 27. 4. 1972

^(*) A note should be added to the effect that the last part of Question 2 has been answered by J. B. Brown in a paper recently submitted to Fund. Math.