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mn
potent, and so it is of the form > @i, where m is 0dd. All these operations

i=1
are generated by the polynomial s(z, ¥, 2) = s+y+%, and so A is the
idempotent reduct of B.
By these three lemmas the theorem is proved.
We wish to add another fact about quasitrivial homogeneous oper-
ations, namely
TemorEM. Every quasitrivial homogeneous operation on @ finite set is
generated (by composition) by the ternary discriminator
' 2 if @y,
if @=y.
Proof. If the set X is finite, then by [2] the algebra U = (X,d)
is quasi-primal, which means that any operation preserving subalgebras
and isomorphisms between subalgebras is a polynomial on U As any

subset of X forms a subalgebra of 9, that means that any quasitrivial
homogeneous operation on X is & polynomial on A

d(z,y,2) =
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Addition and correction to the paper *‘Diagonal algebras”,
Fund. Math. 58 (1966), pp. 309-321

by
Jerzy Plonka (Wroclaw)

In the paper quoted in the title the second part of Theorem 2 was
formulated wrongly. That was observed by Dawid Kelly (Ludwigshafen).
In this note we correet this mistake, namely the following is true:

Let Dy, ag, .y ity = (Alx e X Agy @(T1y eeny :c,,)) be an n-dimensional
diagonal algebra. Then the minimal cardinal number of seis of generators
0f gy as, ..., 4, 18 €qual 10 MAX(ay, Gay .., an), where ap = [dg| (p =1, ..., n).

Proof. If G is a set of generators, it must contain at least one element
of each coset in each direction (see [1]). Hence,

|G] > max (g, tsy ey @) «

‘We can assume without loss of generality that if a; < o7, then 4; C 4;.
Let us fix gped n Ay~ ...~ 4y, For any acd;vd,v..vd, we
define the n-tuple [q,, ¢sy -5 ¢u] a8 follows: gg=a if acd; and =g
if @ ¢ A;. Let G, be the set of all possible n-tuples [g, ¢, -, gu]. Then,
by (i) from [1], G, is the set of generators of D4, 4, ., 4, a0d

|G| = max (o, y, ...y an) . Q.e.d.

Additionally we show an interesting example of a diagonal algebra.
We say that an algebra %, = (4; F) is a reduct of algebra %, = (4; F,)
it F, C A(3;). We have :

THEOREM. For each n = 2 there exists an n- dimensional proper diagonal
algebra which is a reduct of some abelian group.

Proof. Let py, Py, ..., Pn be a sequence of different prime integers.
Let = (G -, ™) be an abelian group with the exponent m = p,Ps ... P,
ie. ® satisfies 2™ =1 and does not satisfy any equality 2" = 1, where
k< m.
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Let 75= PPy e DiyPipn o Pn (E=1,2, ;1) Mf)r(?over, let s; De
the smallest integer such that s = 1(modp;). Then it is easy to check
that the reduct (G5 im-af. .. -z™) is an n-dimensional proper
diagonal algebra. Q.e.d.

References

.

[1] J. Plonks, Diagonal algebras, Fund. Math. 58 (1966), pp. 309-321.

Regu par la Rédaction le 12. 6. 1972

icm

A simpler set of axioms for polyadic algebras (%)
by
Charles Pinter (Lewisburg, Penns.)

Abstract. A new set. of axioms for polyadic algebras is given. The new axioms are
simple algebraic equations, having a clear algebraic content. From them are obtained
some fresh insights into the structure of polyadic algebras.

1. Introduction. The purpose of this paper is to present a new, simpler
set of axioms for polyadic algebras.

Polyadic algebras occupy a distinctive position in the scheme of
algebraic logic, for they enjoy important properties which fail to hold
for eylindric algebras, or even for polyadic algebras with equality. Notably,
every polyadic algebra of infinite degree i3 representable in a very strong
sense (see Daigneault and Monk [2]), and the class of all polyadic algebras
has the amalgamation property (see J. Johnson [5]). Furthermore, polyadic
algebras are, in a sense, richer structures than cylindric algebras, for
they admit arbitrary cylindrifications as well as operations S(z) for
arbitrary transformations z.

It is unfortunate that, in one respect, polyadic algebras are less
attractive to the mathematician than cylindric algebras: while the axioms
for cylindric algebras are simple algebraic equations of a familiar kind,
the axioms for polyadic algebras are more difficult to understand; two
of them, in particular, fail to have a clear algebraic content. In our main
result, we will show that these axioms may be replaced by simpler, more
conventional algebraic equations. The new equations will then be used
to obtain some fresh insights into the structure of polyadic agebras.

‘We assume the reader is acquainted with the basic papers, [3] and [4],
of Halmos. In addition to the work of Halmos, we shall use an important
result by P.-F. Jurie [6], which will be stated at the end of the next
section. : '

2. Preliminaries. We shall use common set-theoretical notation and
terminology. Small Greek letters will be used to denote transformations,

(*) The work reported in this paper was done while the author held an NSF Science
Faculty Fellowship.
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