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by
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Abstract. This paper deals with the category of closure algebras and continuous
homomorphisms. The latter correspond — unlike those used by most authors — formally
to continuous mappings of General Topology. We present first a rather natural notion
of compactness for closure algebras (due to G. Birkhoff) and then define what com-
pactifications are to be. The existence of such compactifications for any closure algebra
is proved, the eonstruetion being based on a modification of the Stone space of the
algebra under consideratioh. 'We show also that, in general, a given closure algebra
has many non-equivalent compactifieations. A special type of compactification is then
examined in more detail, exhibiting connections to the compactification theory of
General Topology, particularly to the Alexandroff one-point compactification.

INTRODUCTION

Closure algebras have been investigated by several authors, chiefly
by Sikorski (see [4] and the references given there). Quite a number of
topological concepts have been studied with respect to the possibility of
applying them to closure algebras. It seems that not much has been done
to carry over questions of compactness, although a rather obvious defi-
nition of compact closure algebras has been proposed by G. Birkhoff
as early as 1948 in [1]. )

In an earlier unpublished paper the author studied in some detail
the algebraic side of the situation. In this paper the existence problem
for compactifications is solved by the description of a general eonstruction.
The first part sums up the definitions and machinery used, the second
part gives the construction and then treats a speeial case which can be
brought in connection with the compactification theory for topological
spaces.

I wish to put on record my indebtness to P. Wilker who drew my
attention to the subject and supported me constantly with his valuable
suggestions.

3 — Fundamenta Mathematicae, T. LXXIX
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FIRST PART. CLOSURE ALGEBRAS

1.1. Closure algebras, continuous morphisms

1.1.1. In the following, Roman capitals 4, B, C,... with or without |
subscripts will denote Boolean algebras (abbreviated BA), the operations:

of join, meet and complementation will be given by v, A, and ‘, respec-
tively. 0 will stand for the zero and 1 for the unit element of any BA in
question. For the theory of BA’s see [7] and [2]. A closure algebra (ab-
breviated CA) is & pair (4, ¢) congisting of a BA 4 and a map o: A—>4

satisfying the four well-known Kuratowski axioms. Open and cloged
elements are defined as usual. An order relation on the set of all closure
operators definable on a given BA A is introduced by o < o« ow <os

for all z ¢ A.

1.1.2. Let gA, ) be a CA. A filter (filter base) is called proper, if it
does not 'contam 0. A filter is called closed, if it is generated by a filter
base consisting of closed elements. Filters and filter bases will be denoted

by F, @, ...; F(a) will stand for the principal filter generated by a. An

order relation on the set of all filters on a given BA 4 is introduced by
F, K FyoF, D F,.

' Lemua 1. 1° To every proper filter on A there is a smaller minimal
fzolte'r (Remark. A minimal filter is of course the same ag an ultrafilter).
2° To every proper closed filter on (A, o) there is o smaller minimal closed
filter,

In the.sequel, “minimal closed filter” will be abbreviated MCF,
or ¢-MCF, if the closure operator ¢ is to be emphagized.

1.1.:“3. In order to make a category out of the class of closure algebras,
appropriate morphisms must be chosen. This can be done in different
ways: In his papers [4], [5] and [6], Sikorski uses Boolean homomorphisms
fox:ma;lly corresponding to closed mappings of General Topology; i.e. satis-
fying the relation =(fw) < f(ox) for all we A, where f: (4, o) (B, ).
Several fundamental problems, e.g. the introduction of a quotient topology,
or the formation of coproducts, ean be solved only imposing strong addition-
al conditions on the CA’s in question. Wilker [10] succeeded in solving
these problems introducing a generalized notion of clogure operator (the
closure of an element is not another element, but a filter). His morphisms
too, eorrespond formally to closed morphisms of General Topology. ’

We, now make the following definition: Let (4, ) and (B, ¢) De
sto CA’s. A Boolean homomorphism fi (4, 0)>(B, o) is called continuous,
if f(g:)?) < o(fr) holds for all xe A. Accordingly, continuous homo-
morphisms cefrespond - formally fo sontinuous mappings of General
Topology. They allow, in a natural way, the formation of quotient topo-
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logies and of products. However, they don’t seem to be interpretable
in Stone spaces, in contrast to Sikorski’s “closed” morphisms. Naturally,
a continuous homomorphism f: (4, g)—(B, o) is called a homeomorphism,
if 1° f is a Boolean isomorphism from A onto B and 2° f~* is continuous too.
Let us look briefly at the quotient topology: If (4, ) is a CA, B a BA
and f: A— B is a Boolean epimorphism, then the closure operator ¢ on B
defined by the relation o(fr): = f(ox) for all fo e B is easily seen to be
well-defined and to satisfy the Kuratowski axioms. Moreover, ¢ < 7 for
any closure operator z on B making f continuous. In the case B = A/,
where J < 4 is an ideal and A/J the corresponding quotient algebra,
the quotient topology o is given by o[z]= [ez], the brackets denoting
equivalence classes with respect to J.

1.2. Compact closure algebras

A CA (4,p) will be called compact, if every proper closed filter
on (4, g) has a nontrivial (i.e. different from 0) lower bound. Obviously
this definition is a direct generalization of a compactness postulate used
in General Topology (“every proper closed filter in a compact topo-
logical space is fixed”). The definition was proposed by Birkhoff 1948
in [1], but it doesn’t seem to have been investigated in more detail up
to now. Of course, “filter” may be replaced by “filter base”; most con-
struetions will be carried out by means of filter bases rather than filters.

An element a of a CA (4, p) will be called compact, if the quotient
algebra, 4/J (') provided with the quotient topology is compaet — J (a’)
being the principal ideal generated by a’. We define 0 to be compach
in any CA. These definitions can also be seen to correspond to the usual
definition of a compact subset of a topological space. )

For an example of a compact CA consider an arbitrary BA A = {0, 1}
and let a closure operator g be defined by ox = zva (¢ # 0) and g0 =0,
a being different from zero. Of course, any compact topological space
may be interpreted as a compach CA. The following lemma provides
the basis for the constructions of the second part:

Leama 2. Let (A, o) be a compact CA. Then, for every closed element
x 0, there exists a closed element y # 0 with y < ©, which is minimal
relative to <.

Proof. Let 0 == ¢ = or. Consequently F(z) is a proper cloged filter.
By Lemma 1 there exists a MCF M containing F (). (4, ¢) being compact,
there is y 5= 0 with y < 2 for all ze M. Hence F(py) < M, F(oy) proper
and closed. From the minimality of M, M = F(ey), and from M < F(w),
oy <z If now 0 v= v <oy, ve4, then F(ov) is proper, closed and
contains F(py). This yields F(ov) = F(cy) and ov= gy. Thus gy has
the desired property. ®m
3%
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1.3. Closure spaces

1.3.1. In (8], [9], Stone discusses his fundamental representation
theorem for Boolean algebras: Every Boolean algebra is isomorphic to
a_field of sets, e.g. the field of all open-closed subsets of a compact totally
disconnected Hausdorff space. For topological terminology and general
b.ackgTound, the reader is referred to Kelley [3]. From the many pos-
gibilities to constrnet explicitely the Stone space of a given BA, we
choose for this paper the following one: Let A be the given BA and d;fine
X (A)to be the set of all ultrafilters on A. A map h from A into the power
set‘of X(A) is given by ha:={U e X({A); we U} for every we A. It ig
eagily verified that % is a homomorphism from 4 into the field of all
subsets of X(4). The set X(4) is topologized by taking as a closed sub-
base the set C:={hx; » ¢ A}, the resulting topology is 7T,, compact and
totally disconnected and C consists exactly of the open-closed subsets
of X(4). Restricting the range of & to €, h becomes a isomorphism
betweelil 4 and C. Stone’s representation theory enables us to interpret
al_gebrale Boolean concepts in a topological way. In the following this
will be done constantly, particularly for filters. Filters on 4 and closed
subsets*of X(A) are in one-to-one correspondence: If FC A is a filter
Fhen F*: = {hw; v <F} is a closed subset of X(4) and if F*CX(A;
is closed, then F':={z e 4; F*C ha} is a filter on A. a

1.3.2. It is now our aim to modify the structure of Stone spaces in -

such a way that in the case of a €4 (4, o) the closure operator o also
appears in X(4). First, we need a definition: A CA (4 0) is called
a s.ub-closwe-algebm (abbreviated sub-CA) of a CA (B, o) ,if 1° the BA
fltls a sEbaJlgebrfx of B and 2° oz = ox for all # ¢ A. For the following,
et (4, 0”) be a fixed CA. The BA 4 has the Stone space X (4) denoted’
by X. CI_Ihe pair (X, 7) —with v denoting the Stone topolog,y——ma
now be interpreted as a CA itself. Let G be the field of all open—el’oseg
§ubsets o.f X, C = {0y} for a suitable index set K. The BA’s 4 and C are
momorphw,. which defines a closure operator on C. This latter closure
opt_zrator will also be denoted by o*. C together with o* satisfies all re-
quirements for a partial closure operator for the whole space X; in fact:

a*02 0 for every CeC. 7 -

9, Xe€C and "0 =@, c*X = X.

Let O, and C,eC: then (¢, .0, * *

a*6*0 = ¢*C for every (e (1‘3 Gt G ) = 0 o0
:_)Eh;i ;‘gle formula 0Z: = ({00 C; Z C 6*C} (for Z C X) defines a closure
P r o on X, ¢ coincides with o* on C, and, incidentally, is the coarsest

gl;)::ﬁ ope;ator with this groperty. The family {o*0; O C} is a closed
T ¢, hence ¢ = 7. If 0" is the diserete operator on A, wehave 0 = 7
- o
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if o* is the indiscrete operator, the space (X, o) will also be indiscrete.
Because of ¢ =7, o determines a compact topology on X; in the case
& > 7, this topology is not T, any longer (for any compact T topology

* is simultaneously a finest compact and a eoarsest T, topology).

In the sequel we shall consider exclusively the space (X, 0); it will
be called the closure space of the CA (4, ¢*). Interpreted as a CA, the
space (X, o) contains the sub-CA (@, %) which is homeomorphic to
(4, ¢%). Certain concepts, such as “closed filter”, may now be studied
topologically in (X, o) instead of algebraically in (4, ¢*). Let F be
a closed filter in (4, ¢*) and F its homeomorphie image in (C, &%). Consider
the set Z: =) {CCX; CeF}CX. Cleaxly, Z is o-closed, for it is equal
to the meet of all sets belonging to the closed filter base. I F is a MCF
in (4,c*), then Z is a minimal (with respect to C) o-closed subset of
X: (X, o) being compact, Z is not empty, and if there were a o-closed
nonempty Z* properly contained in Z, the filter base F* defined by
F*:—{0*C e C; Z*C ¢"C} would generate a proper closed filter on the
CA (G, %) containing F properly. Conversely, the construction just
above assigns to every minimal o-closed subset of X a MCF on (G, ¢™)-
In general these minimal closed sets are not singletons. This is the case
e.g. if ¢ is the diserete operator (since then ¢ = 7).

Tt is not clear if and how a continuous homomorphism f: (4, 7) (B, #)
might be brought into connection with a particular point seb mapping
between the corresponding closure spaces. The question under what con-
ditions the relation between o-closed subsets of X and o*-closed filters
on € becomes one-to-one (as it is the case for BA’s in the Stone theory)
remains also open. Nevertheless, we need only the relations given above.

SECOND PART. COMPACTIFICATIONS

2.1. Definition and general construction

A CA (B, o) will be called & compactification of a CA (4, ¢), if the
following three conditions are satisfied:

1° (B, o) is compact,

2° (4, o) is a sub-CA of (B, o), ‘

3° if (O, ) is another CA satisfying 1° and 2° and if (C, 7) is a sub-CA
of (B, o), then (C, 7) is homeomorphic to (B, o).

The meaning of 1° and 2° is clear. 3° replaces — compared with the
compactification theory in General Topology — the postulate that the
space considered should be dense in its compactification.

In the following, let (4, ¢*) be the CA to be compactified and (X, o)
its closure space. As shown above, (X, o) contains the sub-CA (€, o)
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homeomorphic to (4, ¢"). (X, o) satisfies postulates 1° and 2° above,
but — in general — not 3°. We are now going to construct a suitable
subalgebra of X which will be “small” enough to fulfill 3° too, provided
with an appropriate topology.

2.1.1. The family D, By Lemma 2 the compact CA (X, ¢) containg
minimal (with respect to <) closed elements — or, equivalently, the
topological space (X, o) containsg minimal o-closed subsets. Let J&' denote
the family of all such sets and define X to he '—C. We write
8= {Hn; me M}, with a suitable index set M. For every H, <, we
choose an arbitrary nonempty subset Dy C Hy (of course, Dy = H,, is
also possible). Let @ be the set of all possible choices of this kind. From
now on we shall consider a fixed choice « ¢ @, denoting by D, the et of
all Dy, (m e M) chosen by a. We list some properties of the members of D,z
— Dy ¢C for all me M. .

Reason. Suppose Dy eC for some m e M. This implies oD, e C,
sinee o coincides with o* on C. But we have (see 2.1.3) oDy, = Hpy, and
Hy, ¢ C by definition.

— DinDpy=@ for i,ke M, 7. % k.

Reason. We have D; C Hy, Dy C Hy and H; n Hy = @, for otherwise,
sinee H; ~ Hy is closed and contained both in H; and H &y Hin Hy= H,
= Hy, the H’s being minimal closed sets.

— DinDy,=D; for i, ke M, ik

Follows from the above assertion.
— Z closed, ZnD; #0—>%ZD D;.

Reason. ZnD; #0>Z ~H; #@. Z ~ H; is closed and contained
in Hj, thus Z ~ H;= H;, the H’s being minimal closed. Consequently
Z2H;DD;.

— Equations of type 0= D, v ...u Dy, O« C, are not possible.

Reason. Assume C=D,u..uD,. The corresponding H; are
disjoint o-closed sets (see above). So there exists *0, satisfying, say,
H,Co"Cyand Hino*Co=0, i =2, ..., n. Thus € ~ c*0y = Dy, a contra-
diction, since € ~ o*C, € C. .
— HoliuDyu..uD,=06C,uDyu..u Dyg, then o0, = 00, r=s,
and apart from order, the same D’s occur on both sides.

Reason. 60, = o0, follows from the two preceding assertions, the
rest from the disjointness of the D’.

2.1.2. The BA M, We define M, to be the BA generated by the
family G v D, in the power set of X. Applying the properties of the D,
derivgd above to the general expression of an element built up from
generators, one obtaing the following characterization of the elements of M

- ©
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Bvery Z ¢ M, is representable — not uniquely in general — as a finite

join of terms of -the following five basic types:

a) CeC,

b) D € ﬂ)a?

¢) Di~...nDy, DieD,, nel,

d) 0D, CeC, DeD,,

e) C~D{n..nDy, CcC DyeDy; neN.

All meets occurring may be assumed to be nonfampty‘ We shall
assume further that elements of type e) are minimal with respect to the
number of D’s involved. 7

2.1.3. We now investigate how ¢ operates on elements of .M,,. C}early
it suff.i(;e; to know the o-closures of the five basic *types. Thils.e'ausesfnc:
ditficulty for types a), b) and d): We have ¢C = ¢ C by defm‘ltmn' 0 (;:,l
oDy = Hm (for Dy C Hyp implies 6D C 6Hm = Hy and Hp is mmgp
elosmed)' o(0 ~ D) = Hn (for O DnCDn, and then the preceding

b

argument applies).

Type c): Consider D e iDa.’ .
Let ¢*CD D.. Certainly ¢*C # D;, for otherwise D,
quently ¢*C D, # @ and ¢*0D D, by 2.1.1. Together,

— X. We conclude oD; = X.
We proceed by induction. Clearly, we have

We have oD.=(){c"0; D;Cd"C}.
= (6*0)’ ¢ C. Conse-
0D Dy D;

Din..aD)oD,=Din..nDy,y.

Applying o, ’
o(Dir .. D) voD,=0c(Din..n D,_)=X
by induetion, or )
e(Din..aD)yuH,=X.
This implies : ’ )
o(D}~...nDy) 2 Hy
1 ’ ’ ’
. ADiA D) =0lDye 0 D oH, =X,

3 X
the last equality being justified by the fact that the H’s are special D’s.

Thus ¢(D| ... n D)= X.
Type e): Consider € ~ D;. We have .
a(OnD{):ﬂ{a*G; ¢nD;Ca0}. ,
Let 6*C, D C ~ D;. We may assume ¢ ~ D, # @, for othgrxglsle) C ;}gé&g’
contradic_ting the minimality convention. Thus 30% 1)1' ”thlll.s ,
we have ¢*(; D D;: If not, 0, D=0 and ¢ G; C Dy,

CmDi:GnD;r\o‘*Cl_—_Cr\o’*CleC,
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contradicting agaiﬁ the minimality convention. We conclude
G, D(0AD)uD =0uD.
Applying o we get

oo*C, = 0D o(Cu D) = o€ u oD, = cC U H, = ¢(.

Of eourse ¢0D ¢ ~D,. So ¢C is the minimal set participating in the
formation of ¢(0 ~ Dj), thus ¢(C A D)) = (.
We proceed by induction again. Clearly, we have
(0nDin..aD)uD,=(CnD,~..AD,) v D,.
Applying o,
o(0nDin..nD)wH,=00UH,
by inductioh, or :
00—o(0nD{~..~nD,)CH,.
Similarly, B
00—o(0nD;~...~nD))CH,,
say. Thus -
00—0o(0nD; ... ~"D)CH NnH,=0
or equivalently
00Co(0nD;n..AD).
The reverse inclusion follows from the monotony of ¢, so equality holds.
Summing up, we have for the five basic types:
a) o€ = ¢*C,
b) 6Dy = Hy,
¢) o(Din..nD;)=X, neN,
d) 6(C ~ Dp)= Hy,
&) o(CnDin..~D;)=00, neN.
2.1.4. The closure operator 0Oa
0.-closure of an element Z ¢ M,

placed by the corresponding D,.
as follows:

for M,. Roughly Speaking, we define the
to be its ¢-closure with all the Hy, re-
This may be formulated more exactly

For any Z ¢ M, we have Z — Lan.; where the Z; are b
For these we define: '

a) 0,0: =00,

b) g.D:= D,

¢ e(Dyn..aDy):i=2X, n eN,

agic types.
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d) 0,(C nD):= D,
e) (0D n..nD):=0C, neN

n
and then o, Z:= {J 0, Zi.

1
0, is well defined: Suppose Z;, = Z,; then ¢Z, = ¢Z,. For 1=1, 2,
0Zi=0oCiv Hyw ..w Hyy. From 211 we know that of; = oG,
n(l) =n(2) and Hy, = H,, after suitable renumbering (the H’s are
special D’s).  But then p,Z, = g,Z, trivially. The argument shows
0ulZy © Zs) = 0,7y v p,Zy; the other Kuratowski axioms are evidently
satisfied.

2.15. (M, o,) is compact. The closed elements of (M, p,) are exactly
those of the form ¢C;w D, U ... U Dy, n e N. By 2.1.1, the representation
of closed elements by (’s and D’s is unique. We may thus speak of
“C-free” closed elements without ambiquity, meaning those with ¢C = 0.
Let F be a proper closed filter base in (M,, g,). We put ¥ = {4,; r <« R}
with a suitable index set R. All A, are g,-closed sets.

First case. No A, is C-free. Consider A, ..., ApeF; 4;= oCiv
Dy v Dy 1< i < m. Some computation yields

Ain.odp=(cCn..nolp)u | Dy

where 1< i< m and 1< k< max(n(l),..,n(m)), the Dy being
a selection among the D’s of the A;. Now there exists A,e¢F with
A, CA ~n...nAp. This implies, since 4, is not C-free, oC, ..~
o0y # . Thus the family {oC,; r ¢ R} has the finite intersection
property and we may form the system F* of all finite intersections
of the ¢C,. F* is evidently a proper closed filter base in (M, o,),
but in (X, ¢) as well. The latter CA being compact, we find a minimal
o-closed set @ # ZC X satisfying Z C o0, for all r e R. According to
the construction of M,, either Z belongs to M, itself or there exists
D, eD, with D,C Z. In any case, F* and thus P has a nontrivial lower
bound.

Second case. 4,eF is C-free; thus A,= Dy, v ..v Dy, with
seN. Let F*= {4, As; 4, eF}. Clearly, F* is a closed proper filter
base. The members of F* are by 2.1.1 joins of some of the sets Dy1y ey Dogs
consequently, F* has only a finite number of members. Hence the meet
M F* is nonempty and belongs itself to F*. Thus we may find D,
(1 < k< s) satisfying D, C A* for all A* ¢ F*. D, , is a nontrivial lower
bound for F* and, a forteriori, for F.

2.1.6. (M,, g,) satisfies postulate 3° for compactifications. Let (B, 1)
be any compact CA, (G, ¢*) a sub-CA of (B,7) and (B, 1) a sub-CA
of (M,, g,). For every member Dy e D, we consider the filter base Fp,
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defined by Fp:={c"C; DnCo*C} in (G,q"). All Fy, are proper and
closed. From the sub-CA properties we infer that the ', are also proper
and closed filter bases in (B, 7) and in (M,, g,). Let Up(Fn) denote the
set of all nontrivial closed lower bounds of Fyp, in (B, 7), and Un(Fn) the
corresponding set in (M, g,). Both sets are nonempty, since both CA’s
are compact. The definition of ), implies that Upu(Fm)= {Dn}, and the
sub-CA properties entail Up(Fyn) C Un(Frn). Thus we have Up(Fm) = {Du},
Du (B, ) and ©Dp = g, D = Dy for every Dy, m e M. Consequently,
every Boolean polynomial in Dy ¢ D, and Ok e C belongs to the BA B,
and M, being generated by Cu D,, M, and B are isomorphic. Finally,
the sub-CA properties guarantee g, = v, 50 (B, z) and (M,, ¢ ) are homeo-
morphie.

2.2. Special types of compactifications, uniqueness

2.2.1, The full compactification (M, p). A natural choice of the Dy
consists in putting Dpy = Hy, for all m ¢ M. We call the compactification
obtained in this way full; by means of the relations proved in 2.1.3 it
is easy to see that (M, p) is even a sub-CA of (X, ¢), which is not the
case for any other choice.

2.2.2. Point compactifications. The structure of the elements of (M, o,)
will be quite easy to describe if we pick a single point out of every Hy,
ie. if we put Dp = {pm} for an arbitrary pm ¢ Hpn and for every m e M.
The basic types b) and d) coincide in this case and it is easily verified
Ehat the elements of the M, in question may be represented in the following

orm:

Z = Oz {py; .-y Pﬁ(Z)}“ {Pomizyrtr -1 Prizynizy} -

Thus the elements of M, differ from those of C by a finite number
of the points p,, chosen, which may be added or omitted. We call a com-
pactification obtained in this way a poini compactification. To simplify
the notation when dealing with such compactifications, we introduce
a variable P (with or without subscripts) which rung over all finite sets
of p’s; for any Z e M, we then have Z = [0, P,y)— Py, where we
shall omit the brackets if there is no danger of confusion. )

22.3. Uniqueness. All compactifications (M,, ¢,) coincide — and
represent a point compactification —if all sets H, are singlétons.
Translated into algebraic language this means that every free (i.e. bounded
on'ly by 0) MCF in (G, ¢¥) is an ultrafilter in the BA G, This in the case —
trivially — for discrete. CA’s. It is not clear how other possibly existing
CA_’s of this type could be characterized. The conjecture that éuch CA’s
exist at all is justified by the fact that the “small” closed elements are
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responsible for the property under discussion. It is also not clear under
what conditions different — i.e. obtained by a different choise of the
points p, — point compactifications are homeomorphic. However we have

PropostrioN 1. If (X, 6) contains o minimal o-closed sei with at
least two points, then there ewist at least two non - homeomorphic compactifi-
cations of (C, ™).

Proof. Let H, be the required closed set and p,, 9, € H;. Define
Dy: = {p} and D}:= {p,, p.}; let the balance of the D’s and D®s be
pairwise identical singletons, i.e. Dy = D}, = {pn} for m 7= 1. We denote
by (M, ¢;) the compactification based on the sets Dm (m e M) and by
(A7, o¥) the compactification based on the sets D}, (me M). Suppose
there is a homeomorphism h: (MF, of) (M, ¢,)- Now consider the filter
generated in (M7, of) by F(D}):={c"C; D; Co"C}, it is obviously a MCF.
The image under % of this filter is a MCF in (M, ¢,). The unique non-
trivial lower bound of the first filter is D], that of the second one a cer-
tain Dy which is a singleton in any case. h being a homeomorphism,
hD! = Dy must hold. Furthermore, the well-known properties of the
Stone topology 7 quarantee the existence of G, € € with py e C, and p, ¢ C,.
This implies @ # Df ~ C,C D} and Dfn C, # Di. Apply h to geb
B(D* ~ C,) C kDY = Dy and (D ~ Cy) # D7, since his a monomorphism.
This in turn implies h(D} ~ C,) = @, Dy being a singleton. This is & contra-
diction sinee % is a monomorphism. M

2.3. Special properties of point compactifications

In this section a simplified notation is used: "A always denotes
2 closure algebra and M (A4) a compactification of A constructed as in 2.1.
a(A) denotes the set of all atoms of the BA 4, we may have a(4) =@.
X (A) stands for the Stone space of A.

LeMMA 3. An atom of M(A) is a singleton subset of X(4).

Proof. Let Zea(M(A4)) and p, geZ, p # ¢ There exists GoeC
with pe C, and q¢ C,. C, belongs to M(4) and so does Z n C,, but
ZnC %0, ZnC #%Z and Zn C,CZ, a contradiction. ]

ProposITIoN 2. Let M(A) be a point compactification. Then the
atomicity of A implies that of M(4).

Proof. For Ze¢ M(A) there is a representation Z= Cv P;—P,.
Suppose first P, = @. Then every singleton {p;} with pie P, is an atom
of M(4) contained in Z. If P,=@, then 0 0 (otherwise the case is
trivial) so there is ¢ e 0. For every pair (¢, p:) with p; ¢ P, there exists
O e Cwith ¢ e O, pi ¢ Ci. P, being finite, define Cy: =0 n GOy Cy.
Obviously C, €@ and G, C C—P,. A being atomic there exists an atom
contained in O, and thus in Z. W
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I the D, are not singletons, M (A) will not be atomic in general.
Of course, elements of the form ¢ ~ D may turn out to be singletons
for a suitably chosen € even if D a multipoint set; but for a given D such
a meet may fail to exist. The following counterexample llustrates the
situation.

CoUNTEREXAMPLE 1. Let A be the power set of NV together with the
obvious operations. Introduce the closure operator o* given by o*F
:=[n, o0) where F C N, n = minF. The CA (4, ¢*) has exactly one MCF:
the filter generated by the family of all ¢*-closed sets. Consequently
there exists exactly one minimal o-closed set H,C X(4). We show that

a) card Hy > ;.

Proof. Following the construction exhibited in 1.3.1, H, consists
exactly of those ultrafilters on N which contain all sets A, = [#n, co).
This holds for all free ultrafilters on N (a free ultrafilters contains the
complement of any finite set), thus surely cardH, = ¥,.

b) H, doesn’t contain any atom.

Proof. Suppose there is an atom {g} C H,. This implies the existence
of CyeC with C,~ H,= {q}, for the elements of the form C ~ H, are
the only ones of M(A) which are contained properly in H,. C, is the
image of some set Z, C N under the Stone isomorphism, and 0, H,
= {g} means that there is exactly one ultrafilter on N which contains Z,
and every 4,. Clearly, then, card Z, > ¥,.

First case. Z, contains only even natural numbers. Let %, = min Z,
and define
Q:={n} o {all odd neN}, @Q,:=/{all even neN, n > ny}.

Olearly @~ Q,=0, Qi #0, AnnQi#0; Z,~nQi#O for i=1,2
and n e N. Thus at least two ultrafilters containing Z, and all 4, may
be generated, a contradiction.

Second case. Z, contains both even and odd numbers. Define
Qf:={all even neN}, @F:={all odd n N}
and apply the above argument,

. Prorosirion 3. Let M(A) be o point compactification. Suppose the

index set M (for the D’s) is finite. Then if A is complete, so is M (A).
PJf'oof. The elements of M(A) are of the form Z; = (5w P,,—P,,.

If suffices to show that inf{Zs; s'e 8} exists in M (4) for any index set S.

We shall verify that
Zyi=intyZy = 6(() O < {Bm; o €[\ O}—{om; pm ¢ O}
& 8

M being finite, the brackets contain at mogst finitely many p’s.
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Z,C Z; for all s e 8 and Z, ¢ M(4) is obvious (X (A4) being extremally
disconnected).

Let Z*CZ, for all se8, Z*= C*v {p], -, Di}— {Prs1s vy Dhynt
This implies 0* C C; for all s ¢ 8: For if ¢* & C,, for s, ¢ 8, then t e C*—C,,
and = p; for some p;e Py,. P, being finite p; could — by means of
finitely many meets with suitably chosen Cje<C— be represented as
an element of G, a contradiction. Thus we have c* C inf,0s = int({} Cs).

For any pje Z*, p;e Z, holds anyhow, consequently z2*C%Z, m

If card M > &,, even a point compactification of a eomplete CA A my
fail to be complete. This is illustrated by the following

CoUNTEREXAMPLE 2. Let A be the power set of N together with the
discrete closure operator. Every ultrafilter on N is then a MCF, so their
number is infinite. The sets Hp,—and consequently the Dp—are
singletons, Dy = {pm}. Now consider sup{pm; m e M} =:8. If §eM(4),
an equation § = ¢u P,— P, holds. ¢ +# @, for M is not finite and P; is
finite. ¢ is the image of some set Z C N under the Stone isomorphism
and Z = @. Consequently C contains at least one principal ultrafilter,
e.g. q:=F(n) for neZ. {g} M(A), for {g}«C as the Stone image of
{n} C N. Clearly then X (A4)—{g}D {pm; me M}, for {q} €C implies ¢ # Pm.
Thus '

€ Pi—PyD (0w Pi—Py)—{g} C {pm; me M}, S¢M(4). =

A complete atomic CA is a topologieal space. From Propositions 2
and 3 we have

PROPOSITION 4. Let A be a topological space with only finitely many
minimal closed filters. Then an arbitrary point compactification M(A) is
again a topological space.

PROPOSITION 5. With the above assumptions M(A) is even a com-
pactification in the topological sense.

Proof. We have to show that A4 is a subspace of M (4) and that A is
dense in M (4). A and M(A4) are — considered as BA’s — isomorphic
to the power sets of their respective sets of atoms if we provide the latter
with the natural operations. The isomorphisms are given by assigning
to every element of A (of M(4)) the set of all atoms of 4 (of M(4))
contained in it. Providing the isomorphic images of 4 and M (4) with
the corresponding closure operators, we obtain homeomorphic images 4*
of A and M(A)* of M(A). Observing that a(M(4)) = a(4) v {p1, ey P}
and that the closed elements of A are exactly the sets oC, those of M(A)
exactly the sets 00w {Pryy -y Ppmp 1618 obvious that the closed ele-
ments of A* are exactly the meets of A* with the closed elements of M (4)*.
Moreover, the only closed set of M(4) containing all atoms of A4 is X,
so the closure of A* in M(A)* equals M(4)". ®


Artur


46 J. Schmid

Examrir. Consider again the CA of Counterexample 1. Since there
exists only one MCF, an arbitrary point compactification M (4) is a topo-
logical space. If the added point is denoted by p, the BA M(A4) is iso-
morphic to the power set of Nu {p} (cf. above). The closed elements
of M(A) are exactly the sets of type ¢ or C'v {p} with €« C closed. But
{p} C C for all closed C, for p ¢ X(4) is an ultrafilter on N which contains
all (closed) A, = [n, o0) C N. Consequently the closed elements — in the
homeomorphic image M (A) of M (A)— are the sets A, v {p}: In other
words, M(4) is homeomorphic to the Alexandroff ]—poi.nt-aompaotifi-
cation of A. The next proposition generalizes this situation:

ProrosITION 6. If a topological space A has a unique minimal closed
filier, then an arbitrary point compactification of A is homeomorphic to the
Alexandroff 1-point-compactification of A.

Proof. The closed subsets ¢ C X (4) with {p} Q C correspond exactly
to the compact closed subsets of 4 (which are cloged in the 1-point-com-
pactification), and the balance of the closed (’s together with the sets
of type Cu {p} (with closed C) correspond to the closed subsets of A
joined by p (which are the remaining closed sets in the 1-point - compactifi-
cation), m .

PropoSITION 7. Let A be any CA and M(A) o point compactification
of A. Then the BA A is a quotient algebra of the BA M(A) and the closure
operator on A coincides with the quotient operator coinduced by M (A) on A.

Proof. Consider the family J of all finite sets {py, ..., »}. J is an
ideal in M(A). We shall prove. that the BA's M(A4)/J and A are iso-
morphic. Let h: A—M(A)}J be defined by hC: = [(] for C ¢ C, where [(]
denotes the equivalence class of € in M (4)/J. Clearly, % is. a homo-
morphism. Now let Z e M(4), thus - Z= Cu P,—P,. One sees easily
that 0—Z= 0~ P,C Pyed and Z— CCP, e¢J, consequently [Z]=[C]
and [Z] = hC for CeC. Thus % is onto. Now suppose O, % €, but [0;]
= [C,]. The last equation means that ¢,— C, and (,— 0, belong to J;
since C; # Oy, at least one of the difference sets is nonempty. This implies
{P1s .., Px} € C, & contradiction (see 2.1.1). Thus h is one-to-one and we
are through. We now compare the closed elements: Those of M (A4)/J
are the equivalence classes [Z], where Z is closed in M (4) (see 1.1.3).
Z e M(A) is closed if and only if it is of the form Z = aOuP,,, where
Pyed. Clearly

00—2Z2=0ed, Z—0C=Py—0c0CPed.

This means [Z] = [cC], which proves the assertion. m

Now let 4: A—M(A) be the canonical injection, p: M (A)—M (A)J
the canonical projection and »~': M(4)J—+A the inverse of the iso-
morphism used in the preceding proof. ¢ is a monomorphism, %™ p is an
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epimorphism and (k™' = p) o i is the identity on A. All mappings involved
are continuous. Thus we have

PrOPOSITION 8. Every CA A is a retract of an arbilrary poini com-
pactification M(4) of A.

An immediate consequence is

PROPOSITION 9. Let M(A) be a point compactification of the CA 4
and f: A->B a continuous homomorphism into an arbitrary CA B. Then
there ewists a continuous homomorphism f*: M(A4)->B which is an ex-
tension of f.

Proof. From Proposition 8, there is a continuous monomorphism
i+ A->M(A) and a continuous epimorphism ¢: M (A)-> A such that goiis
the identity on A. The diagram

A—> M(4
NG M (4)

NG

commutes because of (f o g oi)(z)=fo(goil@)=flz
fogq is continuous, so we may put f*=Fcq. ®

) for # e A, Clearly,

APPENDIX

Here we sketch some problems which remain to be solved:

Closure spaces are a suitable tool to investigate the internal algebraic
and topological structure of a CA. However, continuous homomorphisms
between two CA’s lack a satisfying interpretation.

It is not clear whether every compactification of a given CA can be
obtained by the method described in this paper.

Under what conditions are two different point compactifications
homeomorphic?

The solution of several problems concerning compactifications of
CA’s could possibly become easier if the compactifications discussed
above could be constructed in a purely algebraic way, without the use
of the Stone theory.

Is there a characterization of a) the CA’s in Whleh every free MCF
is an ultrafilter and b) of the topological spaces which possess only a finite
number of MCE’s?

Added in proof. One of the problems mentioned above has been solved by the
author in the meantime: Without the use of the Stone representation theory, one
may obtain the compactifications described in this paper by nonstandard methods.
Given any OA (4, ), a compactification (B, ) in constructed as a subalgebra of *4
(endowed with a suitable closure operator), where *4 denotes an appropriately chosen.
nonstandard model of A4, particularly, an enlargement.
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Homotopy sequences of fibrations
by
Kenneth C. Millett (Santa Barbara, Cal.)

Abstract. The homotopy sequence of a fibration is generalized to include pairs,
triads and squares of fibrations. In accomplishing this the (three dimensional) homotopy
lattice of a cube is described and is used to define an associated lattice for a fibration.
The standard exact sequences are briefly deseribed. Finally, a potpourri of examples
is presented, including some calculations concerning the effect of Lundell's non-stable
Bott map on the non-stable homotopy of U(n), with the intention of indicating the
breadth of relevance and the usefulness of this method.

Introduction. A map of pairs i: (F, F)—~(E, E')>(B, B'): p i3 said
to be a fibration if both i: F—»E—B: p and i F'->F'->B': p are (Serre)
fibrations. Hilton [3] has described a homotopy sequence for such fibrations.
We recover this sequence from the homotopy sequence of a triad [1].
This approach is then extended, via the homotopy sequences of triads,
squares and cubes to provide a functorial lattice which is commutative,
up to sign, and which relates the various homotopy sequences of a square
of fibrations.

Tn the firgt section the basic properties of squares of fibrations are
described, while, in the second, the homotopy of cubes is described and
employed in defining the homotopy laftice of the fibration. We note that
objects described here are special cases of a very general phenomenon.
Tn the third section we present several examples, as well as results con-
cerning the effect of the Bott map b.,, [6], on the non-stable homotopy
of U(n).

FIBRATIONS. By a fibration, i: F—+H-B: p, we mean a fiber space
in the sense of Serre, i.e., F = p~(b,) and for any CW complex, K, and
commutative diagram, :

"H: KExo~+E
I J,P

¥
F: EXI-+>B

there is an extension of H to K x I so that the diagram is commutative.
The natural extension of this property to pairs, triads and squares provides

4 — Fundamenta Mathematicae, T. LXXIX
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