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Homotopy sequences of fibrations
by
Kenneth C. Millett (Santa Barbara, Cal.)

Abstract. The homotopy sequence of a fibration is generalized to include pairs,
triads and squares of fibrations. In accomplishing this the (three dimensional) homotopy
lattice of a cube is described and is used to define an associated lattice for a fibration.
The standard exact sequences are briefly deseribed. Finally, a potpourri of examples
is presented, including some calculations concerning the effect of Lundell's non-stable
Bott map on the non-stable homotopy of U(n), with the intention of indicating the
breadth of relevance and the usefulness of this method.

Introduction. A map of pairs i: (F, F)—~(E, E')>(B, B'): p i3 said
to be a fibration if both i: F—»E—B: p and i F'->F'->B': p are (Serre)
fibrations. Hilton [3] has described a homotopy sequence for such fibrations.
We recover this sequence from the homotopy sequence of a triad [1].
This approach is then extended, via the homotopy sequences of triads,
squares and cubes to provide a functorial lattice which is commutative,
up to sign, and which relates the various homotopy sequences of a square
of fibrations.

Tn the firgt section the basic properties of squares of fibrations are
described, while, in the second, the homotopy of cubes is described and
employed in defining the homotopy laftice of the fibration. We note that
objects described here are special cases of a very general phenomenon.
Tn the third section we present several examples, as well as results con-
cerning the effect of the Bott map b.,, [6], on the non-stable homotopy
of U(n).

FIBRATIONS. By a fibration, i: F—+H-B: p, we mean a fiber space
in the sense of Serre, i.e., F = p~(b,) and for any CW complex, K, and
commutative diagram, :

"H: KExo~+E
I J,P

¥
F: EXI-+>B

there is an extension of H to K x I so that the diagram is commutative.
The natural extension of this property to pairs, triads and squares provides
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an equivalent definition of fibration to that requiring that each restriction
is a fibration. A square (triad) is a quadruple (B; B;, By; B;) such that'

B, CB,
N N
B,CB
(and B: = B1 o} Bﬁ)'
PrOPOSITION 1. i: (B3 Fy, Fy; Fy)— (B; By, By By)— (B; By, Byj By): p
is.a fibration if and only if for any CW space, (K; K, K,; K;) and commu-
tative diagram,

H: (K; Ky, Ky; Ky) X 0~ (B; By By; )

| I»

F: (K; Ky, Ky; K) x I-(B; B,, By; By)

there is an extension of H to (K; Ky, K,; K3)x I so that the diagram is
commautative. '

Proof. The covering homotopy for the square implies, by restriction,
that each is a fibration.

Conversely, if each is a fibration, the covering homotopy property
for the square is regained by first covering the homotopy into By, next
using the OW structure to extend this to K, from K, in the fibration
i: F,— B, B,: p, then, similarly, from K, ~ K, to K, via the fibration
i1 F,—>E,—~B,: p, and finally from K,v K, to K using the fibration
i: —>E->B: p. .

Thus basgic definitions and propositions given for fibrations extend
easily to this situation. For example, two elementary fibrations are the
product fibration i: (F;F,, Fy; Fa)—> (B X F; By X Fy, By X Fy; By X Fy) ~
-(B; By, By; B;): p and the restriction of a fibration ¢: F—H->B: p to
the square (B; By, By; By), i: (F; F, F; F)"’(Bi PN (By), pHBy); Z’HI(BS))'>
—(B; By, By; By): p. In the third section we shall consider several more
interesting examples of this phenomena.

If (& &, &3 &) and (53 01, g5 ) ave fibrations, a map of fibrations
is a pair of maps, (f,f), such that the.diagram )

f: (B&; BEy, BEy; BE) - (By; By, Bny; Bng)

ot o)

f: (BE; Béy, B&y; B&)~(Bn; By, Bry; Bys)

is commutative. In this way a section to a fibration (; &, &; &) is a map
ot (BE; BEy, Bty; BE)— (BE; BE,, B&,y; BE) such that pé oo = 1.
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Via, the construction of the induced fibration for a single fibration,
the induced fibration for a map of squares,

fr (Bj By, By; By)—>(BE; BE,, B&y; BEy),
is defined by

f*(‘f; £y b5 &) = (f*& (lel)*Eli (fiBz)*fa; (f{Ba)*fs) -

Many other standard constructions carry over to this situation. For
example if we wish to replace a map of squares f: (X; X;, Xy; X;)—>
—-(¥; Y1, Y,; ¥,) by a fibration we merely consider, as usual, the space
of paths in (Y; ¥,, ¥Y,; ¥5) which begin in f(X; X,, X,; X;) and end in
(Y; Y,, Y¥,; ¥5). The projection is, of course, evaluation at the end of
the path. A construction which we shall find useful later associates to
a fibration the fibration of loop spaces. Specifically, consider (£; &, &; &),
with £ # @ and base point * e Fy such that pé& () is the base point of
(B; B,, By; B;). Then

Qi: (QF; QF,, OF,; OF,) - (QF; OF,, QF,; QF,) -
- (OB; OB;, QB,; QBy): Qpé
is a fibration, (Q&; QF, Q&; Q).

Homotory THEORY. Let [JF and [ | E denote the squares (¥; F,,
F,; F,) and (E; B, BE»; B,), respectively. If there is an inclusion,
i: [ F— [ E, we say that the pair ((}1 ¥, []F) is a cube, denoted by (5.
In this section we shall be concerned with various homotopy sequences
arising from a cube.

The homotopy of a triad was defined by Blakers and Massey [1],
while that of the square has been employed by Haefliger [2] and, also,
Rourke and Sanderson [11].

The homotopy set, 7.([]E), of the square, {]E, is the set of arc
components of the space of maps taking (D" *xI,8%v*xI,8"%x1I,
8 8% I, D" 'x {o,1} v 82 *xI) to (E, B, By, By, +), where ¢ H, de-
notes the base point of the square. If » > 3 this set has a group structure
which is commutative for n > 4.

It is possible to view the homotopy group of a square as the relative
homotopy group of a pair of pairs. Similarly, the homotopy group of
a cube may be viewed as the relative homotopy group of a pair of squares.
Thus, consider the cube ([1Z, [1F). The homotopy set of the cube m((g])
is the set of arc components of the space of maps taking (D" 'x I,
82 I, 8" X I, 8% x I, D" x 0, 8% 2% 0, 827% x 0, 857% x 0, D" X
x1u 8 3xI) to (B,B, B, B, F,F,,F,, Ty, ), where »eF; is the
base point of the cube. This set has a group structure for n > 4 which
is commutative for n = 5.
4+
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The homotopy groups associated with a cube fit together to form ] ) . .
a lattice of exact sequences, figure 1, involving the homotopy groups while the seeond, typically, involves two pairs of squares,
of several squares, in addition to []F and [JF. These squares are

¥ ¥ ¥
Oh = (E; 7, By; Fy) > n(Fgy Fs)—> nalF y Fr) > an([ ] F) >
v ¥ v
E;F, By I,
e = 1) s stn(Eay Ba)> 7l B, By) > 7a( (1 B) >
D (Eu F:U Ds: FS) and ¥ ¥ ¥
[y = (By; Fyy Eg; 1y) . = 7ta([h) > —zaltB)) >
v v sa
l The boundary homomorphisms, &;, &, &; and , in these exact sequences
- > nn(l" ) nn(F y) e n(Fyy Fy) — are defined as follows: §; is the restriction to §%7*X I, & is the restriction

to 8*"2x I, &, is the restriction to D*~' X o, and 84 is the restriction 8" *x I.

Each of the squares involving two boundary homomorphisms is anti-
l ' commutative. All others are commutative.

)—- l (B, F) f—f—> In this general context there are several other homotopy sequences

~————->7'En
; which are relevant. The first, which compares the homotopy groups
_,n,, E3,1v %n E:,, b) | of a square and its associated triad is
_— ——»ﬂn —>.7'£n —_— nn(ﬂ ]‘ - ~>an(E; By, By By 0 Ez)iﬁ —o( By~ B, Ea)‘y‘)ﬂ (OB~

Wn (By)) —————— ot By s By) —

—>7n La

This sequence is derived from the lattice of the cube

—>n(Fy, F3 > (F —— ([ F),
((E; By, By E, 0 Es), (B; By, By; Es)} .
— /ey B —— _>W1L(E o B) /=l Consider the exact sequence
—>tn{ By, By) >l F, ;‘72)"——’%(5 B) ¢ > 5 B; By, By By  By) > 7al(8) > 7,1 ( B3 By, By By) >
' ___,ﬂi(ég nigz) iﬂ(@)_—.__,__a From the sequence
| { y | >l B3 B, By By) > 1al(8) > sl By B, By B Bo)
Figure 1. The homotopy lattice of a cube it follows that ma((5) o 7y o(Fa; By, Ty ~ By By) since ma(B; B, By By)

= 0. Furthermore, from the sequence
We note that the lattice is comprised of two simpler types of lattices.

The first of these is the lattice of a square, for example []X, >ty (B By) > (B By, By 0 Fyj By) = o By 0 By B) >
¥ J ¥ we see that m,  (Bs; By, By n By Hy) = 7ol By ~ B,, By), and hence
> 70n(By) (B > mn( By, By)— anl(8)) == 7, o(Eh nEz,Ea) The boundary homomorphism, &, is merely
v v i the restriction to 8% ®x I. The homomorphism, y, is however somewhat

under: d in terms of the construction
() maB)  —>malB, By) > I(Eozieczzgllggi’ied a.nd is best understoo

v v v o Recalling that a pair of pairs is a square and gives rise to a lattice,

= a(Byy By) > 7l B, By) > 7l (1 E) - > a triple of pairs gives & triple of squares and a new homotopy la,ttme.“'

. ¢ 4 o Thus consider the triple of pairs (B, E), (&', B), (B", E;)) and the
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associated squares, [, = (B; By, B'; By), o= (E; By, B"; B') and [,
= (B'; B,, B"'; B). The associated lattice of homotopy groups is

s ¥ ¥
"”Tn(Ei’ Ei’)*”n(Eu E{’)‘")”(Ela E;I) -
s v v
>m (B, By >n,(B, B") »m,(E, B') -
4 ¢ \
N (S I N (R X (D B :

¥ ¢ ¥

where & denotes, essentially, the restriction to 8"%x I.

Finally, for a square, say []F, there is an associated commutative
braid, [2, 11], which relates the exact sequences of the triples, (¥, B, ;)
{8, B,, B;), the exact sequence of the square and a new exact sequence:

>0, 1 [V H) > 70 By y ) © swn( By, By) > rvn( B, Hg) -

which is defined via the braid.

N o N
\ VN
NS ~ N\ 7 /\

%1 1(H, By) 7on( By s By) (B, By)

SN i O\
m((1E) -

7 (O B)—— & ——mu( ¥, By)
» )

NN
' 7n(B

N\ N \ /

AN \/ \\// \\ //

}-1(1‘0: B,) Ton( By y )

"I.‘he homotopy sequence of a fibration 4: F->HE->B: p may be re-
covered from the homotopy sequence of the pair (B, F) bjr proving that
D, ’nn(E,F)-—>nn(B) is an isomorphism. The homotopy sequences and
la,tt%ees for pairs and squares of fibrations are recovered from the homotopy
lattices of squares and cubes in a similar manner.

. PR;);OSITION 2. If i: (F, F)~ (¥, By)~>(B, By): p is a fibration then
D, (B By, F; Fy) > 7a(B, By) is an isomorphism. Furthermore, if 4:

Ej ?DE%-DB: P is & fibration then p,: w((G))->7wu((]B) is an isomorph-

o
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This proposition follows easily from the result for a single fibration,
the various exact sequences, and the five lemma. As & result of this
proposition we have the following exact sequences of pairs and squares
of fibrations, as well as the associated lattices which contain them.

> 7ea( Py Fy) > 7in( By By) 2> 7ta( B, By) > 7 _o(F, Fi) >
> an(OF) »m((1E) —>aa((1B) >, OF) ~

EXAMPLES AND APPLICATIONS. Pairs of bundles, and hence fibra-
tions, are often encountered via topological groups as described in the
following proposition.

ProposrTioN 3. Let (G; Gy, Gy; Ga) be a iriad of topological groups
with Gy, G and G1Gy= {§10:01 € Gu, Gy € @) closed subgroups of G. If Gy
and @G, admit local cross-sections in @ then, in the commutative lattice.

Gy——> G —> G/

|
| |
Gl —> G,
| i 1

{ ¥ ¥
G Gs—> GGy —> GIG1 Gy

all vertical and horizonial lines are fiber bundles, as well as maps of fibrations.

Proof. Since G, is a closed subgroup of @ which admits local cross-
sections )
Q>G> GGy

is a fiber bundle by the bundle structure theorem [12, p. 30]. This implies,
by restriction, that

Gy Gy GGy
and
Gy Gy~ G465 .

Observe that if ¢,&, is a subgroup of G then G1Go/G; = GofGs and G1Gy]Gs
= @,/G,. Since GG, is a closed subgroup of @ admitting local cross-sections
the bundle structure theorem implies that

@)Gs = G1Gs[G > GG~ @G, G,
and
@,/Gs = GGG~ q/G,—~ GGG,

are also fiber bundles.
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To conclude the proof of the proposition it is sufficient to show that

@, G- GG,

and @, G Gla,

also admit local cross-sections. Consider the first case, the second ],O?ing
thle similar, and let ¥ x W be a product neighborhood o.f @y € @/Gy, with .V
‘(';Ild w ope;1 in G/G,G, and G,/@; and with local cross-sections, oy and oy, in

Gy Gy G/ Gy

and GG, G— GGGy, respectively, given by the previouls bundle strue-
ture. A local cross-section at #y; o: VX WG is defined by o(z,¥)
= op(®) opp(Y)- ' . .
UVES)spm;(cg%ic example of this is the fibrations of the Stlefel mamf(?.lds.

Tet O(n) denote the orthogonal group with a fixed matrl?z re}b)fssentgugn.
Corresponding to the two inclusions 4: R* %> R" and j: R""—R", de-
fined by

$(@1y ey Bpeg) = (Bry ooy Ty 05 o0 0)
and

G(@ry ey Bpg) = (0y iy 05 Bry ey Ln—t) »

there are two subgroups of 0(n) isomorphic to O (n— k). These are denoted
by i0(n—%k) and jO(n—Fk). Thus, if 4 CO0n—k),

I0
iw=[29). iw={g)

where I is the identity matrix. The Stiefel manifold of k-frau‘mes inn- spa(?ia,
V.5 is homeomorphic to both O(n)/ip(n— k) @nd O(n)/jO(n-— k), W}E'e
t];Lé Grassmann manifold of k-planes in n-space, M, ;, is homeomorphic
to both O(n)/i0(k)jO (n—k) and 0 (n)[i0 (n—k)jO (k). _

In the triad (0(n);i0(n—Fk), jO(n—1); @) we mnote that G
= i0(n—k) ~jO(n—1) 18 isomorphic to O(n—k—1). Thus we have
a commutative diagram of fibrations

O (n—E—1)—>i0 (n—k)—>V, 51

b

\70 (%"‘ l) — 0 (’i’b) - Vn,l

.

7
Vn——l.k i Vn,k

where 7 and 7 are inclusions, O(m) = {I} if m <0, and V,,, = 0(m) if
s>m. If k41<n 3 and j are the inclusions of the fiber in a fibration.
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Indeed, if k+41=n, the common base space is M, ;, which is homeo-
morphic to M, ;.

Another simple example is the triad, for =k,
(0(n); 10(n—E), i0(n—1); i0 (n— ),

giving the following lattice of fibrations.

0n—1)—i0(n—k)—V, 4,
! | !
¢ \ v
i0(n—l)— O(n) —V,,
| | |
4 v v
* —_— Vn,lc —> I;Tn’k .

Thus, applying the homotopy theory of the previous sections, we see
that (0 (n); i0(n—k), i0 (n—1); i0 (n— 1)) is isomorphic to 7, (V,z) and,
for k+1=m, = (0(n);i0(n—k),i0(n—1); O{n—k—1)} is isomorphie to
7 (M, ;). Furthermore, the homotopy lattices may be employed to relate
the various homotopy sequences of these fibrations.

An extremely elementary question one might ask concerns the notion
of a section to a pair of fibrations. Whatever the definition, the existence
of a section would imply the splitting of the homotopy sequence of the
pair. One might ask if the existence of sections to the respective fibrations
of the pair implies the splitting. The answer is, of course, no as may be
seen by the triad, (0(4);i0(3),jO(2); O(1)), in which both fibrations
admit sections but the sequence of the pair does not split at =,.

Another application is the recovery of the results of James in Sus-
pension of fransgression [4]. Briefly, let i: ¥ E->B: p be a fiber space,
&, 4: 8F - XE~ B: p’ be its Whitney join, X%, with the trivial §° fibration,
and i.: 8F,-B: p) be the restriction to the “northern and southern
hemispheres” of the suspension, X&,, having sections o, determined by
the north and south poles, respectively. From the homotopy lattice of
the square of the fibration (X%; Zf,, ¢ ;&) we see that 1, Bd(a)
= (0;),(a)—(0_),(a) where E is a suspension homomorphism and & is
the boundary homomorphism in the homotopy sequence of £ This follows
by simply recognizing the suspension homomorphism in the homotopy
of the square (ZF; ZF,, XF_; F) and making use of the various iso-
morphisms resulting from the fact that all fibrations are over B. The
corollaries of this result, [4], provide assistance in the following de-
termination of the effect of the Bott map on the nonstable homotopy -
of U(n).

Let b,: U(n)->2*U(n+1) denote the Bott map constructed by
Lundell [6]. As he remarks this map respects the inclusions of U(n— k)
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in U(n), ie., the diagram
b, _: U(n—k) — U (n—Lk+1)

] o

b, U(n) — 2U(n+1)

i5 commutative. By direct calculation, using Lundell’s definition, it can
shown that b), is actually an embedding. Thus we have a pair of fibrations

1: (QQU(’VI/——;C—{—].), U(’Vb—' k))*(QZU(W’*"l); U(""))%'(‘Q2Wn+1,k’ Wn,lc): V4

and hence a lattice relating the homotopy sequences of the fibrations
and the Bott homomorphism induced by the Bott map.

By employing specific knowledge of the nonstable homotopy of U(n),
{5, 7, 8, 9, 10], Lundell’s previous calculation [6], and the homotopy
lattice, with %k =.1, we are able to determine the homomorphism.

(ba),¢ 7 U (n) > i 22T (n+1))

for i < 2n+ 6. In order to present this information we include Table 1,
compiled by Lundell from Matsunaga’s papers. Complete responsibility
for its accuracy, however, rests with the author. Note that the groups
are cyclic except when = 2 or 6, where there is often a Z, summand.
We let o denote the generator of this summand, when it occurs, and B
the generator of the other summand. .

Since 7, (22U (n+1)) is isomorphic t0 @y, AT (n41)), (by), is
4 homomorphism from the group corresponding to # modulo 24 to the
one corresponding to n--1 modulo 24, with  fixed. Table 2 gives the
images of the generators under (b,),. »

Given the Bott isomorphism, ¢ < 2n—1, and Lundell’s calculation
for i = 2n, we use two basic facts. First, that the homomorphism induced
on the homotopy of the spheres is (n-1)E?, where E is the suspension
homomorphism. Second, the results of Kervaire [5] and James on the
transgression, i.e., boundary homomorphism, and Toda’s table [13] of
the generators of the stable homotopy of spheres. The technique of caleu-
Jlation is quite simple. We begin from Lundell’s case, r = 0, and work
inductively using essentially ad hoc arguments concerning the possible
image. :

The case r = 1 is trivial gince, by Table 1, one of the groups is al-
Ways zero.

The case r = 2 is more complicated since the groups depend upon
nmod2 and the calculation for # = 1mod?2 is related to the case r=3
where the groups depend upon nmod8, by Table 1. The case n = Omod2
is easily determined via the following commutative diagram which occurs
in the lattice of .the:fibration.

Homotopy sequmccs of fibrations 59

-0

e D e D

i

(A1) 2 = 7y o U () —> 5 o[ Q2T (n4-1)) = (n+2)1[2

. |

(1) = mpp [T (A1) ——> 70, (2T (n+2)) = (n+2)!

(n+2)

0—

S 4 b e

Table 1. m,,,,{U(n))

|8 =
Sv| v
k=0 | 8l E|l o~ r=2 ) r=4 ) =0
Pvih vyt I }
LRl =~ = = =
n=1 0| oo |00 0 0 0 0 0
n=2 0| oo |21]2 12 2 2 3 15
n==3 0| oo {810 4172 3 514 4 60
n=4 0 oo (412 51+2 4 61/12 4 1680+ 2
n=24(k+1) 0| oo (0! 2 (m+1)1+2124) (n+2)l/2 2| (n+3)/6+2
n=24(k+1)+ 0 | oo |mn!| 0] (n+1)1/2 21 {(n+2)!/6 2| (n+3)124+2
m=24(k-+1) 0 | oo jn!| 2| (n+IN1+2] 2 n+2)1/24 | 3| (n+3)I4
n = 24(k+1) 0} oo jnl] 0] (n+1)l/2 3| (n+2)l/4 4| (n43)1/12
n=24(k+1) 01 oo (nl| 2| (n+I1+2 4] m+2)/12 | 4| (n+3)1/3+2
| n=24k+35 0| co {n!l 0] (n+1)1/2 41 (n+2)!/3 6| (n--3)1/8+2
1 m=24k+6 0] oo |ml|2]| (n+D)!+2] 6 (n+2)}/8 0] (n+3)1/12
n = 24k4+7 0 oo inli0] (n+1)y2 0] (n+2)1/12 | 8| (n+3)1/6
1 n=24k48 0] oo (0!l 2] (n+1)!1+21 8] (n+2)l/6 6| n+3)12+2 |
n=24k+9 0 | oo falj 0 (n+1)})2 6| (n+-2)42 2| (n+3)1j241+2 |
1 n= 24+ 10 0 oo (a2 (n+D)I42 ) 2| (n42)}24 | O] (n43)1/12
n == 24k + 11 0} oo (0l 0| (n+1)}2 0, m+2)1/12 |12 | (n+3)!I/4
n = 24k 412 0 | co |n!ll 2 (n+1)1+21]12) (n-2)l/4 4| (n+3)1/3+2
n =24k -+ 13 0| oo In!) 0] (n+1)Y/2 4. (n+2)Y3 21 (n+3)1/24+2
n = 24k 4 14 0 | co |mi2! (m+I)i4+2) 2 (n4+2)424 | 3| (n+3)l/4
n =24k + 15 0 | co |m! 0] (n+=1)12 |8 (n+2)4 8 (n+3)l/6
n == 24k 4 16 0 co (n!} 2 (n+1)1+2 8, (n+2)l/6 21 (n+38)}j6+2
n = 24k + 17 0 oo in!l 0] (n+1)42 21 (n+2)!/6 6! (n+3)1/8+2
n = 245418 0 oo (n!| 21 (m4+0)1-2 ] 6] (n+2)Y8 0 (n+3)Y12
| n=24+19 0| oc jnli 0] (n+1)Y2 01 (n+2)412 | 4| (n+3)Y12
n = 24k 4 20 0 { oo iml 2| (n+I)14+21 4] (m2)1/12 (12} (n+3)14+2
n = 24k -+ 21 0 | oo (n!y 0} (m+1)2 12| (n4+2)! 2| (n4-3)1/244+-2
n = 24k + 22 1 co (! 2| (m+D)!1+2| 2] (n+2)1/24 | 0 (n43)}12
n = 24k + 23 0} s (a0 (n+1)12 0 (n+2)1/12 (24| (n+3)Y2
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The case 1 = 1mod2 gives the following diagram

0

|

v
02
|

| 4

(n+1)!2 = 7y, (U () — o 42| 2T (41)) = (n+2)!1+2
|

2 |

(1) = qgyyo( U (n41)) = —>nm+n(.0 U(n+2)) = (n+2)!

-0

2
|
0

Trom this it iy easy to see that the (n4-2)! component of the image
is generated by 2(n-2). It is more difficult to find the two component
of the image. A typical case is » = Tmod8 where we have the following
commutative diagram relating the two primary components. For simplicity
o number will indicate the two primary component of the cyclic group
of that order. The symbol a?b denotes an extension of b and a.

0 0
f i
2 = ﬂ2n+1(U(%—~1)) - n2n+1(‘Q2 U(”’)) = 0 —>2
Lo ] T
8 = o) o gy ST = 8- -0
AR = M U )) 25> 7 T (1)) =

[2) (n+2)1+2>2(n42)12—0
i f
| ;
2(n+z) epic
(M DYB = gy U(n—1)) T3 70, o 2T (0)) = (4+-2)Y4 >2(n+2)22—>2
|
f ! f
0 0 0
If the two component of (b,), is zero the cokernel is 2(n+2)4 2.
Thus 4, must not have a two component, by exactness of the bottom
horlzontal sequence. This is impossible since the cokernel of ¢, must have

order 8. Thus (b,), takes § to a®2(n+2)8 as indicated in Table 2 if
n = Tmod8. :
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Table 2. (b,),: Mans| U(B)) > Ty Ul +-1))
Siga !
VSV o |~ r=2 o] r=6
k>0 ERE LT ior=4 gy
&j :{y = ES ai B = | ﬂl B
i [ |
n=1 ol1 o0 |0 0! 0 0! 0 010 0
|n=2 0(1, 3 [0)0! 2 0 0 0o 48
n=3 0/1 4 0]0] a+lop |0 3 110 18
n=4 0/ 1 5 |00 3 r1l oo 3|a 3p
on+2
n=24(k+1) 0|1 ns1{0 0] ”: 1me3ys 1 0]a ”:4,9
n=24(k+1)+1 0 1 in+1lo0 0 a@2n+2p 0 (m+3ys (0|0 6n+ap |
| 2 14
n=24k+1)+2 0. 1 |n+1]0|0 ";‘ B 0|6m+3) |00 “;’ B
n=24(k+1)+3 0| 1 n+l]| 0|0 |[a®2(n+2)8 0 (n+3)3 |10 4(n+4)p
2 (n+4
—24k+1)+4/ 0! 1 nt1]0]0 ’% %1 4n+3) |3 a 3(n;)
| ‘ 2(n+4
n=24k+5 0]1]n4+1]0]0 c@2@+218 3 3@m=-3)8| 0|0 ("; )
ni2 | |
n=24k+6 0l 1|n+1{0]o0 T 0l2m+3)3{0 0| 2m+dp |
n=24k+7 ol1in+1llolo0 aoq(n—rfl)ﬂ; 0 2(n+3) 3|0 |a@3n+4)f
9 4 |
n=24%+8 0/1|n+l 0lo0! n; B 13 |3m+3) |0a ”’; B |
i I & |
n=24k+9 01 n+ll Olo‘ia@ﬁ(n—{—E)ﬁz 0 (+3)121 0] 0| 2nt)p
P i Cme2 f
n=24k+10 |0 1 n+1§0 0! "é B 0|2m+3) jolo 3(n+4)8 1
‘ ? dntd), |
n=24k+11 01 n+1/0]0a@2@+2F 0|3@+3) |10} ——F |
+2 ¢
n=24k+12 |0|1llnt1|0]0 ”j}' 1 4me3)31 ) a ";r B |
n=24%+13 0/1in+10|0a@2@+2)8 1| n+3)8 | 0|0 6(n+4)p
n+2 2(n-+4)
n=24k+14 0|1 |n+1/0]0 . 0/6(m+3) |00 3
n=24k+15 0l1|n+1i0!0a@2@+2)p 0 2+3)3| 1|0 a@n+4)8
n+2 3(n+4)
n=24%+ 16 0 1lm+1/0/0] ——p |1| n+3 |0|a .
| 2n+4
n= 24k 17 0/1 a+110]0 a®2m+2)B 0|3(n+3)4]0/0 (”; )5 |
n+2 :’
n=24k+ 18 0! 1;.n+1‘ 00— lol2m-3)ys 0|0 (n+4)8
t | |
n=24k-+ 19 0/ 1{n+l 0|0 |a®2( n—r2)ﬁ 0|n+3 310 12(n+4)8
! o2 [ n+4
0 = 24k + 20 0 1|n+1l0j0| —=B [3‘19(%3 (1 oyaill
n =24k +21 01 nﬁ—llo‘o\aov(nT )ﬁ 1 (+3)241 00| 2m+4)8 |
i
n=24k+22 |[0!1 n+1{0]|0 E—T—fﬁ L 2(n+3) ;0.0 6n+4)8 |
. (-
n =24k + 23 01 in+l 0(0 la@2(n+2)8 5 6(n+3) \1|0 a@—n——-ﬂ\
i |
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The remainder of the table is computed in much the same faghion -

making use of the lattice 0 relate computations at one stage with those

at another, e.g., the extension question when

(1]
(21
(31
(4]
(51
[63
71
18]
(91
[10]
[11]

12]
[13]

n = Tmod8 above.
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On the scarcity of tame disks in certain wild cells
by
Robert J. Daverman (Knoxville, Tenn.)

Abstract. If K is a k-cell topologically embedded in Euclidean n-space E* and
P is a (k—1)-dimensional polyhedron topologically embedded in K, does there exist
a re-embedding & of P in K such that h(P) is locally tame relative to E" and & is close
to the inclusion map? In ease k < 2 the answer is known to be affirmative. This paper
ajms to provide relatively simplé examples, each cell K being locally tame modulo
a Cantor set, to indicate that the question has a negative answer whenever 3 < E<n.

Introduction. R. F. Bing proved that each disk in Euclidean 3-space
F® contains many tame arcs [5], and using this, Martin showed that the
disk contains tame ares that pass through certain boundary points [7].
‘Seebeck [10] proved a similar theorem for disks in- E® (n = ), after which
Sher established the analogue for disks in E* [11]. Their results are
summarized in the following statement: if D is a disk in E* (n > 3), 4 an
are in D such that 4 ~aD is contained in 24, and ¢ > 0, then there exists
an e-homeomorphism % of D onto itself such that h(4) is a tame are.
Tt also follows from Bing’s work that for each 3-cell 0 in E* and each
disk D in C such that D ~ 8¢ = 8D and D is locally tame ab each point
of IntD, there exist arbitrarily gmall homeomorphisms & of C onto itself
such that k(D) is a tame disk.

Our purpose here iz to indicate, by exhibiting peculiar embeddings
of cells in E", that a generalization of these results is false. For 3 <k<n
and n >4, we find (see Theorems 5.2 and 5.4) a k-cell K in E™ and
a disk D in K such that for any sufficiently small homeomorphism h of K
to itself, (D) is wildly embedded.

The cells constructed to satisfy Theorems 5 2 and 5.4 appear some-
what simple, each being-locally tame modulo a Cantor set. According
to the results of Section 6, such a Cantor set, whether viewed as a subset
of the Euclidean space or of the embedded cell, must be wildly embedded,
and most wild Cantor sets found in the literature lack the complications
required for occurring in these examples.

In a sense the essence of the work here consists of the identification
of the suitable complications, which are implicitly prescribed by the
definition of special defining sequence, found in’ Section 4. The significance
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