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The remainder of the table is computed in much the same faghion -

making use of the lattice 0 relate computations at one stage with those

at another, e.g., the extension question when
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(31
(4]
(51
[63
71
18]
(91
[10]
[11]

12]
[13]

n = Tmod8 above.
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On the scarcity of tame disks in certain wild cells
by
Robert J. Daverman (Knoxville, Tenn.)

Abstract. If K is a k-cell topologically embedded in Euclidean n-space E* and
P is a (k—1)-dimensional polyhedron topologically embedded in K, does there exist
a re-embedding & of P in K such that h(P) is locally tame relative to E" and & is close
to the inclusion map? In ease k < 2 the answer is known to be affirmative. This paper
ajms to provide relatively simplé examples, each cell K being locally tame modulo
a Cantor set, to indicate that the question has a negative answer whenever 3 < E<n.

Introduction. R. F. Bing proved that each disk in Euclidean 3-space
F® contains many tame arcs [5], and using this, Martin showed that the
disk contains tame ares that pass through certain boundary points [7].
‘Seebeck [10] proved a similar theorem for disks in- E® (n = ), after which
Sher established the analogue for disks in E* [11]. Their results are
summarized in the following statement: if D is a disk in E* (n > 3), 4 an
are in D such that 4 ~aD is contained in 24, and ¢ > 0, then there exists
an e-homeomorphism % of D onto itself such that h(4) is a tame are.
Tt also follows from Bing’s work that for each 3-cell 0 in E* and each
disk D in C such that D ~ 8¢ = 8D and D is locally tame ab each point
of IntD, there exist arbitrarily gmall homeomorphisms & of C onto itself
such that k(D) is a tame disk.

Our purpose here iz to indicate, by exhibiting peculiar embeddings
of cells in E", that a generalization of these results is false. For 3 <k<n
and n >4, we find (see Theorems 5.2 and 5.4) a k-cell K in E™ and
a disk D in K such that for any sufficiently small homeomorphism h of K
to itself, (D) is wildly embedded.

The cells constructed to satisfy Theorems 5 2 and 5.4 appear some-
what simple, each being-locally tame modulo a Cantor set. According
to the results of Section 6, such a Cantor set, whether viewed as a subset
of the Euclidean space or of the embedded cell, must be wildly embedded,
and most wild Cantor sets found in the literature lack the complications
required for occurring in these examples.

In a sense the essence of the work here consists of the identification
of the suitable complications, which are implicitly prescribed by the
definition of special defining sequence, found in’ Section 4. The significance
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of this property is exposed by the combination of two results, Lemma 3.1
and Lemms 4.2. The first of these provides a particularly nice homeo-
morphism between two Cantor sets, one in @ k-cell B%, the other in E*,
that have compatible special defining sequences. For any extension of
this homeomorphism to an embedding of B* in E", the second of these
reveals that many of the subeells of B* are embedded with non-simply
connected complements.

1. Definitions and notation. An n-manifold is & separable metric space,
every point of which has a neighborhood homeomorphic to Euclidean
n-space E". Similarly, an - manifold-with-boundary is & separable metric
space, every point of which has a neighborhood whose closure is an n-cell.
The interior of an n-manifold-with-boundary M", denoted Int M", is
defined as the subset of M™ consisting of points having a neighborhood
homeomorphic to B and the boundary of M", denoted 2.M™, is defined
ag M"—TInt M™ ‘

We use B” to denote the set of all points p in E" such that the distance
from p to the origin is no larger than 1. For m <% we congider B™ to be
included naturally in B".

Suppose f and g are maps of a space X into a space Y that has
a metric g. The symbol o(f, g) << ¢ means that g(f(m), g(@)) < & for each
point 2 in X. :

Tor any set A in a metric space Y and any positive number ¢, N, (4)
denotes the set of points in ¥ whose distance from A is less than e.
Tollowing [4] we say that a homeomorphism & of ¥ onto itgelf is an e-push
of (¥, A) iff there exists an isotopy &, (0 <# < 1) of ¥ such that h, = iden-
tity, b)Y — N (4) = identity (0 <t <<1), olhs, B)<e (0 <8 <T 1), and
B, = h. In addition, we say that a map f of ¥ into itgelf is an e-map
iff o(f, identity) < e. ‘

A polyhedron is the underlying set of a finite simplicial complex.
Given a polyhedron P topologically embedded in a PL n-manifold M",
we say that P is famely embedded, or tame, iff theré exist a homeo-
morphism % of M™ onto itself and a homeomorphism f of P onto itself
such that hf is piecewise linear (PL). Similarly, we say that P is locally
tame at a point p of P iff, for some triangulation T' of P, hf is PL with
respect to T on some neighborhood of p.

We use the word “tame” in another sense: a Cantor set X in a PL
_n-manifold M is said to be tame iff X is contained in a tame arc in M.

Let A denote a subset of a metric space ¥ and p a limit point of 4.
We say that A is locally simply connected at p, written 1-LC at p, iff for
each £ 0 there is a 6 > 0 such that each map of 8B* into A ~ Ny(p)
can be extended to a map of B® into 4 ~ N (p).. Furthermore, we say
that 4 is wniformly locally simply connected, written 1-ULGC, if for each
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&> 0 there is & 6 > 0 ‘such that each map of 8B into a 8-subset of 4 can
be extended to a map of B® into an z-subset of A.

2. Extension of embeddings of Cantor sets to embeddings of cells. Let Z
denote a wild Cantor set in B”. It is well known that for k < n there exist
embeddings H of B* in B such that H(B¥) contains Z, H(B") is locally
tame modulo Z, and HYZ) is a nice Cantor set in B*. In this section
we indicate how to obtain such an embedding H so that the inverse image
of Z is a preassigned, possibly wild Cantor set X in BY, the only restriction
being that X be a subset of 9B* in case k = n. The aunthor is indebted to
Charles D. Bass, whose valuable comments prompted the approach
used here.

LEnuvA 2.1, Let X denote a Cantor set in B, where X is contained
in OB* in case k= n, and h an embedding of X onto @ tame Cantor set
in 8B (k < n). Then there exists an embedding H of B* in B* such that 1)
H|X = h, (2) H(B*) noB"= H(X), (3) H (B") is locally tame modulo H(X).

Proof. In case k < n—2, the proof is straightforward. Let 9" denote
an embedding of B* into a tame (n— 2)-sphere in 2B". Push 0'(B%) slightly
towards IntB", keeping 6(X) fixed, thereby defining an embedding 6
of B* in B® such that 0|X = 6'|X, 6(B*) ~oB"= 0(X), and 0(B¥) is
locally tame modulo 8(X). Since 8(X) and A(X) are each tame subsets
of B, there exists & homeomorphism p of B" onto itself such that p8|X = k.-
Define the embedding H as y0.

In any case the crux of the proof is the method for locating an
embedding 0 of B* in B" such that 6(B*) ~aB" = §(X), 6(X) is tame
in 2B", and 6(B¥) is locally tame modulo 6(X). One way to obtain this
embedding is first to move B* onto a tame subset of IntB™ and then to
move the image of X onto a tame Cantor set in @B" carefully enough that
the composition extends to an embedding 6 as required. The details are
easy to handle and are left to the reader.

THEOREM 2.2. Let X denote a Cantor set in BF, where X i contained
in 9B® in case k= n, and f an embedding of X onto @ Cantor set in a con-
nected n-manifold M™ (k< n). Then there exists an embedding F of BF
in M™ such that F|X = f and F(BF) is locally tame modulo F(X).

Prootf. Let ¥ denote a tame Cantor set in 2B". By standard techni-
ques, used in [1] and (3, Th. 3F], among other places, and stated formally
in [9], there exists an embedding G of B™ into M™ such that G(¥) = f(X).
By Lemma 2.1 there exists an embedding H of B¥ in B"® such that H|X
= @Y, H(X) noB"= Y,and H (B®) is locally tame modulo Y. Then GH
defines the required embedding F'.

3. A homeomorphism mixing the admissiblev subsets of the Cantor sets.
Tet X denote a Cantor set. A sequence {bif &= 1,2,..} is called an
5 — Fundamenta Mathematicae, T. LXXIX
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abstract defining sequence for X itf (1) each s is a finite set, the elements
of .which are pairwise disjoint, non-void, closed subsets of X, (2) the
union of the elements of AG; equals X, (3) each element of oAby 18 & subget
of some element of My, and (4) if d; denotes the diameter of the largest
eler_m?nt of s, then d;— 0 as {— co. We say that {As} is a special abstract
dffmmg sequence for X iff (iy {6} is an abstract defining sequence for X
(ii) the cardinality of M, is an integer %(0) > 1, and each element of Jﬂ;’
f:ontains exactly %(0) elements of M,, and (iii) for each even positivé
integer » there exists an integer %(n) >1 such that each element of Moy,
contains exactly k(n) elements of Mo,y and each element of A, +1 containg
exactly %(n) elements of AG,.,. : "

.Two special abstract defining sequences {J(;} and {\:} for the same
or different Cantor sets are said to be compatible iff k(n) = k'(n) for
n=0,2,4, .., where k(n) and %'(n) are those integers used to indicate
that {AG;} and {N4}, respectively, satisfy the definition of special abstract
defining sequence.

Suppose {4t} is a special abstract defining sequence for a Cantor
set X. A subset O of X is said to be admissible with respect to {My} iff O is
non-void and compact and whenever (a) 4 is an odd positive integer
(b) M is an element of J; such that M ~ ¢ # @, and (¢) M’ is an elemen‘é
‘_)fdﬂm such that M’ C M, then M’ ~ C # @. Usually the context supplies
Just one special abstract defining sequence for X, and we simply- call
such a set C an admissible subset of X.

The purpose of this section is to show that the admissible subsets
of two Cantor sets can be thoroughly intermixed by a homeomorphism
between the Cantor sets.

Levwma 8.1, Suppose X and Z are Cantor sets, and {Mog} and {N;} are
compatible special abstract defining sequences for X and Z, respectively.
’ljhen there emists a homeomorphism h of X onto Z such that for each admis.
szblg subset C of X and each admissible subset O of Z, h(C) n (¢’ +# @-

Proof. We shall construct
morphisms of X onto Z satisfyi?n,:equence patiite i

a) h1(M1,1) n Nlc,1 #* 0,

b) hyyo M ip0) = h(Mir1) € Nyys,

R N,i-)_,_:fﬁlgkﬁz C Myupn and N, Chy(M, ), then Pipo( My 50.5) O

In the conditions above M; (N, ;) represents an arbitrary element of
Moi( Ng).
To begin, let k(0) denote the cardinalit i i i
L, | y of M. Since {0} is a special
a}ostract Qeﬁnmg sequence, the cardinality of G, is (k(0))%, and each
element of ‘M,l con'ta}ns exactly %(0) elements of A,. Since {M} and {N:}
are compatlblg, similar properties hold for N, and its elements. Index
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the elements of M, a8 m,,, where 1 <7 <<k(0) and 1< s <<k(0) (bhis
indexing differs from the notation of the preceding paragraph, which
requires s to equal 2), such that each my, is contained in M, e My, and
index the elements of N, as n,,; such that each n,s is contained in N,; € Ny,
Define a homeomorphism h, of X onto Z such that hy(mes) = e
(1<7r<k0) and 1< s<k(0)). This homeomorphism satisfies Condi-
tion a, and hy(M,;z) € Ny for each M, € M.

The homeomorphism &, is defined in similar fashion. The hypothesis
that {46} and {N;} are compatible implies that there exists an integer
%(2) >1 such that each element of Aty(N,) contains k(2) elements of
Mog(Np) and each element of Jx(N) contains k(2) elements of Mog(Ny).
For each element M, € M, use the procedure above to define a homeo-
morphism hy of M;, onto hy(M;,) such that

h;(-Mg‘,s) n -Nk,s #9,

for each M, e My that is contained in M;, and each NyqeN; that is
contained in h(M,,), and such that

f
h5 (M) € N

for each M, e A, that is contained in M;,. By combining guch homeo-
morphisms we obtain the required homeomorphism ;.

'We continue this process in defining hy, Ry, ...

Next we shall prove that the limit of the ks, which we call b, is
2 homeomorphism of X onto Z. Condition 4 in the definition of abstract
defining sequence and Condition b above together imply that {f} is & uni-
formly convergent sequence. As a result, & is continuous and onto. To
see that % is 1-1, consider two points z, and z, of X (#; # ,): there exists
an 0dd positive integer ¢ such that

oy e My, e Moy and  wod My,

and Condition b implies that h(my) € ho(My,) and h(z) ¢ B M;)-

Finally, we shall show that h satisties the eonclusion of this lemma.
Consider two admissible subsets C of X and 0" of Z. We prove indnetivel.y
that for each odd positive integer ¢ there exist indices »(3) and s({)

such that

1) B Mo s) Noai g,
(2) My, 0 C#9, .
) Nypin O #0.

To do this, note first that Condition 2 makes this obvious for the case
i=1. Assume this holds for the (odd) integer %, and let M,y ;€ Mox

5%
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and N4y e N'x denote the sets satisfying Conditions 1, 2, and 3. Use
Condition b to find indices 7(k+1) and s(k+1) such that

(4) bl M g4y 541) = Voo, iors € Nnprs

.where Mygis i1 C Moyre 804 Noginy 41 C Ny o Now the crucial step:
it follows from the admissibility of ¢ and €' that € M,y ., # O
and ¢’ ~ Nygyn a7 9. Accordingly, choose indices r(k+2) and s(k-+2)
such that :

2 CnMpropie 79 and Mr(l;:+2),k+2 c Mr(k-'l-l),lc+1 ;
(3) A Nogpamgorr 9 804 Nogro o C Nogyay gear -
Then Condition ¢ implies '

(19 Proyo Mpgorayora) ™ Nopiore = 9 -

The induction argument is complete.

Translating the property established in the preceding paragraph
into epsilonties, one can show quite easily that for each £ > 0 there exists
an odd positive integer & such that g(hk((f), O") < &. Using the definition
of h, one can show then that o(k(C), 0') =0, or, equivalently, since ¢
and ¢’ are compact, h(0) n 0’ # @.

4. Special defining sequences for' Cantor sets. Given a Cantor set X
embedded in an #-manifold @, we want to consider defining sequences
for X that reflect properties of this embedding rather than the abstract
defining sequences discussed in the preceding section. Let {46} denote
a sequence such that each b is a finite set of compact, connected mani-
folds-with-boundary contained in @, no two of which intersect, and
let |Mx| denote | J{M| M e A} Such a sequence is called a defining
sequence for X iff each element of .G; contains a point of X, [AMoyy4]
C Int|4o|, and ) [M] = X. Associated with any defining sequence {AG;}
for X is an abstract defining sequence {#;} for X given by

A= {M A X| Medo}.

A defining sequence {Au} for X is called a special defiming sequence
for X i#f (1) for each positive integer ¢ and each element M of Mg, M is
homeomorphic to the Cartesian product of B? and some (n— 2) - manifold
and (2) the abstract defining sequence {#;} for X agsociated with {63}
is special. Two special defining sequences for Cantor sets X and Z em-
bedded in manifolds are said to be compaiible if and only if the associated
abstract defining sequences for X and Z are compatible.

Given two Qantor sets X, and Z, embedded in manifolds and defining
‘sequences for each, we shall indicate how one can construct related Cantor
sets: X, and Z, that have compatible defining sequences. The methods
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employed in proving this fact are as important as the result itself, for
later we shall be concerned with some properties of the original pair of
Cantor sets and shall need to know that each of the ones constructed
shares these properties. ' :

Levwma 4.1. Suppose X, and Z; are Cantor sets embedded in a k-mani-
fold @F and an n-manifold Q", respectively, {Aos} a defining sequence for X,
such that for each index i and element M of M there exists o (k—2)-mani-
fold 8 such that M is homeomorphic to B®X 8, and {N;} a defining sequence
for Z, such that for each index © ond element N of N°; there exists an (n—2)-
manifold T such that N is homeomorphic to B®x T. Then there exist Cantor
sets X, amd Z, in Int| M| and Int|Ny|, respectively, that have compatible
spectal defining sequences.

Proof. Step 1. First we modify the Cantor sets X; and Z; and their
defining sequences so that for 1= 0,1, 2, ... there exists an integer %(7)
such that A6, and N, each contain exactly %(0) elements and for 4 >0
each element of Auy(N;) contains exactly k(i) elements of G, ,(N;,,).

To do this, it suffices to describe how to add exactly one element
of M, inside a preassigned element M’ of .M Without changing Aty
(j < 4). Choose some element M of ;. ; such that M C M'. By hypo-
thesis M can be topologically identified with B%x S, where S is a compact
(k— 2)-manifold. Select two disjoint disks B; and B, in B% and define

Moy = {M* € Soyyq] M* = M} O (B, X S}u {Byx 8} .

Let h,: B*x S—+B,x 8 (¢ = 1,2) be a homeomorphism that preserves the
gsecond coordinates. Then for j >4-+1 define

Mo = (M* € My] M* ~ M =@} o {h(M*)] M* e Moy, M*C M,
and e=1,2},

and for j < 4 define Mo = ;. It is easy to show that {467} is & defining
sequence for a Cantor set X* = () |At}]. Using this device we can obtain
defining sequences {AG;} and {N';} for Cantor sets in Inb|M| and Int Ny,
respectively, for which there exist integers k(%) (4= 0,1, 2, ...) satisfying
the property stated above. . : :

Step 2. Suppose now that {A}} is the defining sequence for a Cantor
get X* in Q% and {k(i)} the sequence of integers constructed in Step 1.
'We shall construct a special defining sequence {®R;} for a Cantor set X, -
in Int|AG}|, controlling this operation with the sequence {k(4)} so that
the analogous construction in " produces a special defining sequence {8;}
compatible with {R}. o ‘

First, define R, = . For each M ¢ ALy there exists a compact
(k—2)-manifold S such that M can be topologically identified with
B?x 8. As before, select %(0) pairwise disjoint disks B, ..., By in B
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and let {B,x 8| e=1, .., %(0)} be the elements of R, that are contained
in M. Thus, K, consists of %(0) elements, each of which 'contain_s exactly
%(0) elements of R,. Note that if B’ ¢ R, and Re R, with B’ C R, then
R—1IntR’ is homeomorphic to R x B,

Define the elements of R; that are contained in B,x S, where B,x 8
is associated with M e My = Ry, to look exactly like the elements of A,
that are subsets of M. Consequently, each element of R, containg
exactly k(1) elements of ®;. The method used in the preceding paragraph
can be repeated in defining X, so that each element of R, contains exactly
k(1) elements of Ry, and if B'eR, and R ¢ R, with R'C R, R—IntR’
is homeomorphic to R X B

Continuing this process we obtain a defining sequence {R;} for
a Cantor set X, such that, for each positive integer 4, each element of R,;
contains exactly %(i) elements of Ry;.q, each element of R, contains
exactly (i) elements of Rg,,, and, if R € Ryzpp aDA Boe Rypyy with B’ C R,
R-IntR’ it homeomorphic to oF X B

As a result, the sequence {Rq} satisfies Condition 2 in the definition
of special defining sequence. Because of the way the elements of the R¢'s
are defined, the sequence satisfies Condition 1 as well. Obviously, appli-
cation of the same procedure to the defining sequence {N7} in Q" yields
a special defining sequence {8;} compatible with {Ra}.

Remark. Ultimately the modifications introduced in Step 1 serve
mostly for notational convenience, but those introduced in Step 2 have
much more value, because they interject complications in the original
Cantor sets and thereby produce examples that are the unions of un-
countably many Cantor sets. In fact, assuming X, to be wild, we can
prove X, to be homeomorphic with X, x X, in such a way that, for each ¢
in X,, {g}x X, corresponds to a wild subset of @*. The necessity for
interjecting such complications is explained further in Section 6.

ADDENDUM To Lmma 4.1, Suppose each element M of Mo, (i=1,2,...)
has the following property: the (inclusion induced) homomorphism

Gyi @)~ (@ — [fopa])

is an injection. Then the special defining sequence {R¢} for X, constructed
in TLemma 4.1 satisfies the following conditions:

(1) for each element R of Ry (1=1,2,..) the homomorphism j,: m(0R)
- m(QF — |Rpql) i8 an injection,
(2)  for each odd positive integer i, each B e Ry, and each R' e Ry, such

that R’ C R,. the homomorphisms j,: m(0R)->m(R— R') and gut
7 (0R")—>m(R-TutR') are injections.
Proof. The modifications introdnced in Step 1 preserve the property
. of {4}, because for each element M* of b}, there exist an element M
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of i, a subset A* of |} (4% is a union of some, but not necessarily
all, elements of b},,), and a homeomorphism of Q% — | A, onto @*— A*
that carries 9M onto 3M*.

That the modifications introduced in Step 2 also preserve this

" property follows by the same argument (except that when ¢ is odd A*is

a union of elements of R,,,), and this is equivalent to Condition 1. Con-
dition 2 is an obvious consequence of the construction.

LeMMA 4.2. Suppose X is a Cantor set in a k-manifold QF, {R}
a special defining sequence for X that satisfies the conclusions of the Ad-
dendum to Lemma 4.1, and J a simple closed curve contwined in QF— |R,|
such that J is contractible in Q* but not in QF—|R,|. Then for each map f
of B into Q" that sends 8B homeomorphically onto J, f(B®) contains an
admissible (with respect to {R:}) subset of X.

Proof. Using general position techniques we approximate f by
a map g such that g|f~*X) v 8B% = f|fX) v 2B* and for each i g*(9|R4)
is a finite collection of pairwise disjoint simple closed curves. If for any
such curve J the map g|J: J—>8|Rs| is null homotopic, we use this fact
to redefine g on the disk D in B2 bounded by J so that g(D) Co|R| and
then adjust slightly so that g(D) ~8|R:| = @. Of course, we perform this
operation in stages, first for ¢ — 1, then for {= 2, and so on, and the
resulting sequence of maps converges to a map h because the diameter
of the largest element of R; goes to zero as ¢ goes to infinity.

Note that h(B2) ~XCg(B?)~XCf(B)~X. We complete the
argument by proving that h(B? ~ X contains an admissible subset of X.

Let C, denote the union of all those disks D in B* such that k(D)
C |R,| and k(D) C8|R,|. Let C, denote the union of all those disks D in Bt
such that D C 0y, h{D) C |Ry, and 7 (8D) C 8|R,|. After O; has been defined,
let C,,, denote the union of all those disks .D in B2 such that DC 0y,
(D) C Ry, and h(2D) C2|Ryy4l ' .

Now we show that € = k([ Oy) is an admissible subset of X. First
we claim that for i=1,2, ..., C; is non-void and each component Dy
of O; contains a component D,,, of ;. Since J is not contractible in
Q—|R,|, there exists a simple closed curve J; in h™(8|R,]) such that
h(IntD,) ~8|R;| = &, where D, denotes the disk in B* bounded by J;.
By our construction of h, k|J; defines a nontrivial loop in A(9|R,|) and
the Addendum to Lemma 4.1 implies that (Dy)C [R].

Consequently €, is non-void. Assume inductively that €; is non-void,
and let D; denote a component of O;. Then, since h|dD; defines a non-
trivial loop in &|Rs|, Condition 1 of the Addendum implies that &(D:)
intersects |R,.,|. Let J,,, be a simple closed curve in D; such that J;,,
C WY (@|R44]) and h(IntDyyy) A 8|Ryp,| = @, Where D, denotes the sub-
disk of D; bounded by J;,,, and the Addendum again implies that h(D;,,)
C|R;4al- Thus, D,,, is a component of C;,,, and the claim is established.
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Next we claim that if ¢ is an odd positive integer, B an element of R,
such that h(Ci) " R # @, and R’ an element of R,, such that R'CR,
then 2 (Cyyy) N R % @, This claim follows almost immmediately from Con-
dition 2 of the Addendum, which implies' that 7(Ci) ~ R’ £ @. The
argument, of the previous paragraph can be applied to obtain a component
Dy, of Oy, such that k(D,,,)C R

Since {C;} is a nested sequence of compact, non-void sets, C is com-

pact and non-void, and the two claims above imply that ¢ is an admis-
sible subset of X.

5. The main results.

Levma 5.1. Suppose Z is a Cantor set in E™ (n = 4) such that for some
loop L in E*—Z, the intersection of Z with the image of each contraction
of L contains an admissible subset of Z, X a Cantor set in B* (3 <k < n),
and e an embedding of B* in B" such that for each admissible subset O of X
and each admissible subset C' of Z, e(C) ~ 0" = @. Then, for any comples P
in B* that coniains an admissible subset of X, e(P) is wildly embedded.

Proof. This is trivial, for if ¢(P) were tame, then ¢(P ~ X) would
be tame, and this, in turn, means that Z ~e(P ~ X) would be tame.
By hypothesis, however, the image of each contraction of I meets
Z ne(P ~X); therefore, B"—(Z ~¢(P ~ X)) fails to be simply con-
nected, and Z .~ ¢(P ~ X) must be wild. '

Now the various parts of this paper are ready to be assembled.

THEOREM 5.2. Suppose k and n are positive integers such that 3 < k < n.
There exist an embedding e of B* in B™ and o positive number § such that
(1) e(B¥) is locally tame modulo & Cantor set and (2) for any 5-push 0 of B*
onto itself, the disk ¢0(B%) is wildly embedded (in fact, B"— e 6(B?) fails to
be simply connected).

"Proof. Antoine’s construction [2] (for the case k = 3) or Blanken-
ship’s construction [3] (for the case k > 3) produces an example of a wild
Cantor set X; in IntB* and a defining sequence {AM} for X, such that

for i=1,2,... and each element M of Mg, the inclugion induced homo-
morphism

j*: m(OM)-> %(Bk — [ Mogys])

ig injective. There exist a wild Cantor set Z;, in E" and a defining se-
quence {N;} for Z, with the analogous property. Either of these con-
structions requires each Me Ay (¢=1,2,..) to be homeomorphic to
the Cartesian product of B? with k-— 2 circles, and each N e Ny (4= 1,2, ...)
to the Cartesian product of B® with n—2 circles.

By extending some disk of the form BZx (a point of each circle),
~we can produce a tame disk D in IntB* such that oD ~ |y = @ and
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3D is not contractible in B*—|4,] (hence, not in B*— X,), and without
loss of generality we can assume that D C B® Similarly, tl}ere exists
a simple closed curve L in E"—|JN,| that is not contractible in E*—2Z,.

Using Lemma 4.1 we find Cantor sets X and Z in IgtB’“ and E®,
respectively, and compatible special defining sequences {4} and {83
for X and Z, respectively, that satisfy the conclusions of the Addendum
to Lemma 4.1. Furthermore, |R;| C |46;] and [§,] C Aoy

Applying Lemma 3.1 we obtain a homeomorphism h of X onto Z
sich that for each admissible subset ¢ of X and each admissible subset ¢
of Z, h(0) » 0" # ©. According to Theorem 2.2 there exists an embedd-

ing ¢ of B in B such that e¢|X = h and ¢(B") is locally tame modulo Z.
We shall prove that this embedding satisfies the conclusion of Theo-
rem 5.2.

Tet 5 denote the distance in B* from 2D to X. For any 6-push 8 of
B®, 6(D) contains an admissible subset of X for the follo@g Teason:
one can easily define a construction. of 8D in 0(D) plus t'he. upa,ge of 2D
under the push; by Lemma 4.2 this set contains an adm1s§1ble subset
of X, and since the choice of § keeps X from intersecting the image of 8D
under the push, (D) contains an admissible subset of X. .

Note that Lemma 4.2 also implies that Z intersects th.e image of
any contraction of L in an admissible subset _of Z. Invo!m?g our as-
sumption that D C B?, we find that 6(B?) eont;?,ms an adm1§slble subset
of X. Thus, we appeal to Lemma 5.1, considering the complex P to be
6(B%, to determine that ¢0(B% is wild. )

In fact, e(B?) cannot have simply connected complement. Sn}ee
n > 4, the curve L can be deformed slightly in B*—Z sohtha.t the resu_'ltixg
loop I/ misses ¢6(B%). Then L' cannot be shrunk to a pom}: in E"—e G(Bl),
for the image of any such contraction of r :nust contain an admissible
subset ¢/ of Z, and O’ must intersect ¢6(B). ,

COROLIARY 5.3. Suppose k and n are integers suchkthft.t BLk<n.
There exists an embedding ¢ of B in B such that (1) ¢'(B") is loeatlly tame
mod & Cantor set Z, (2) €(0B%) nZ =0, and (3) for any embedding 8 of
B® in B* such that 0(0B%) = 8B, ¢'6(B%) is wildly embedded.

Proof. Let K be a k-cell in IntB* such that there exists a homfao];
morphism & of B¥ onto K such that h(B?* = D, where D denotes thee:i gjls
mentioned in the proof of Theorem 5.2, and let e denofse the emb dd.ng
of B* in " promised by Theorem 5.2. Then ¢'= ¢h is the embe 1;3)%
required by Corollary 5.3, and the result follows as Eefore Eeeal?sedi -
each homeomorphism 6 of B® in B* such thaty 0(2B%) =f{B ,bt Aed B
h6(B?) is contained in K and has h0(2B%) = .h(é_)B“) =0D as fltih (t);mé& iItZ;
which implies that % 6(B?) contains an admissible subset of tha
set X for which ¢(BY) is locally tame modulo e(X).
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THEOREM 5.4. For n = 4 there exist an embedding e of B™ in B™ and
a positive number & such that (1) e(B") is locally tame modulo a Cantor set
and (2) for any 5-push 6 of B* onto itself, ¢0(0B®%) is wildly embedded.

Proof. The argument parallels that of Theorem 5.2, except that
X,, X, and D are chosen in B", and D is assumed to be contained in dB?,

6. Conditions implying a disk in an embedded cell can be approximated by
tame disks. In this section we explain why for certain Cantor sets X in B*
and certain others Z in E® there is no embedding % of B* in E™ satisfying
Theorem 5.2. We make use of some additional terminology: a 0-di-
mensional I, subset F of a PL manifold (without boundary) M is said
to be tame iff I can be expressed as a countable union of closed, tame
subsets of M; similarly, a 0-dimensional F'_-subset F of a PL manifold-
with-boundary N is said to be tame iff F' ~ &N and F ~Int N are tam
subsets of 6N and IntN, respectively. )

TaeorEM 6.1. If & is an embedding of B* (or any other COMPact
k-manifold) in B" (3 < k < n—2), then there exists a 0-dimensional F - sub-
set F of B® such that h{F) is a tame subset of B and E"— h(B*— F) is 1YULO.

Proof. Refer to the proof of Theorem 3 in [10]', which c¢ontains
almost the entire argument required for Theorem 6.1. The set h(F) is
contained in the union of the 2-skeletons of a sequence of curvilinear
triangulations of E", which forces A(F) to be tame.

If, instead of h(F) being a tame subset of A", F itself iz tame relative
to B¥, then any %k—1 dimensional polyhedron in IntB* can be pushed
a little so that its image under % is tame.

THEOREM 6.2. Suppose that h is an embedding of B* in B" (3. <. & < n—2)
and F o 0-dimensional F, subset of B* such that F is a tame subset of Bk
and B*—h(B*—F) is 1-ULC, P a polyhedron of dimension less than %
in B* such that P ~2B* has dimension less than k—1, and &> 0. Then
there ewists an e-push 6 of B* onto itself such that ho(P) is tame.

Proof. Use the tameness of F' to obtain an }e-push 6, of B* that
puehqs P ~0B* off F ~noB" Then obtain another 4¢-push that moves
0,(P) ~IntB* off F ~IntB* and keeps 9B fixed. The composition of
these two pushes is an s-push 6 such that E"—h6(P) is 1-ULC. Then
Theorem 1 of [4] implies that h6(P) is tame. ‘

COROLLARY 6.3. Suppose Z is a Cantor set in ", C a countable dense
subset of zZ such_ that (B"—Z)w C is 1-ULC, and h an embedding of B*
g:ulg Z S\Ta;,: 2} in E" such that 1{B*) contwins Z and is locally tame mo-

0 Z. Then, for each ¢ >0, there ewists an e-push 0 of B* ;
that the disk hO(B%) is mm;. ? o B onto dtsalf such

Proof. This follows immediately fr

. y from Theorem 6.2 -
vation that (E"—h(B¥)u O is 1-ULC. i the obser
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1f k is an embedding of B* in B* (3 < k << n— 2) satisfying Theorem 5.2
and h(B*) is locally tame modulo a Cantor set Z, then Corollary 6.3
provides information about this Cantor set. The following result provides
similar information about the corresponding Cantor set in B

THEOREM 6.4. Suppose X is a Cantor set in B* (k=3 or k> 35),
C a countable subset of X such that (B*—X) o C is 1-ULC, and h an em-
bedding of B* in B™ (3 <k < n—2) such that h(BF) is locally tame modulo
1(X). Then, for each & >0, there exists an e-push 0 of (B¥, X) such that
the disk h6(B%) is tame.

Proof. It is relatively easy to show that for any compact subset ¥
of X—(, B*—Y is 1-ULC. Thus, either Theorem 5.1 of [6] or, generally,
the main result of [8] implies that ¥ is tame relative to B*.

We assume that the 0-dimensional F, subset F of B* that satisfies
the conclusions of Theorem 6.1 is contained in X— C, for the proof allows
us to obtain such an ¥ missing any preassigned countable subset of B%,
By the preceding paragraph, F ~ IntB* is a tame subset of Int BX, (Note:
we do not claim F ~ 8B* to be tame relative to 2B*). The desired ¢-push
§ is obtained by first pushing BdB® off F ~ BdB* and then pushing
the resulting image of B® off F' ~ Int B*. Then E"—h8(B is 1-ULC, and,
again by [4, Th. 1], h6(B*) is tame.

W. T. Eaton first mentioned to the author that for any countable
dense C of Antoine’s necklace X in E® [2], (B*~X)v C is 1-ULC. In
verifying this remark one is led to a more general version such as the
following.

LEwA 6.5. Suppose {Mg} is a special defining sequence for a Cantor
set X in B® (n > 3) such that for each positive integer i, each element M
of Moi, and each element M’ of Moy, satisfying M’ C M, every loop in OM
that is null homotopic in M is also null homolopic in (M — | Moyl o M.
Then, for each countable dense subset C of X, (B"— X)u O is 1-ULC.

Proof. Let ¢ denote a countable dense subset of X. Suppose fis
a map of B® into E™ such that f(8B% C B"— X. We shall indicate how to
find another map f* close to f such that f¥B*)~XCC.

Tet ¢ denote a positive number. Choose an integer i such that the
diameter of each element of JG; is less than ¢ and f(AB®) misses |, and
choose a finite subset C* of ¢ such that C* contains a point of each
element of ;.

Write f as f;. We find a map g;,, close to f; such that

(1) fdp) = gua(p) for each p in B—f7 (|4,
(2) each component of B>— g7}, (||} is a disk. »

All that needs to be done here is to put fi(B?) in general position with
respect to spines of the elements of ;. and then to blow up appropriately
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chosen regular neighborhoods of these spines to the elements themselves.
Tor each K e My such that g;,,(B* ~ K # 0, choose K’ e Moy, such that
K'CK and C* ~K' s 0. Then, using the algebraic hypothesis of this
lemma, we find a map f;,, of B* into E" such that

(A)  fia(p) =fdp) for each p in BP—fr(|by)),
(B) iK' e oy, such that fi ,(B%) ~ K’ # @, then ¢* ~ K’ # 0.

By continuing the process we obtain a sequence {fi| & >4} of maps
of B? into E™ such that

(Ar)  fulp) = froa(p) for each p in B*—fily([Mp]),
(Br) it K’ e Ay such that fi(B%) ~ K’ # @, then 0"~ K’ 0.

Once fi is obtained, then for each K in Aty such that fi(B?) ~ K @,
the key step is to choose K’ in ., such that C*~ K’ @ and to
modify fz, by applying the hypothesis of this lemma, so that

Fera(BY) ~ (K A Moy, ) CE

It follows that f* = limfy is a continuous function of B* into E",
f*|6B? = f|aB?, f*(B%) ~ X C 0%, and o(f,f*) < e. This essentially proves
that (B"—X) v € is 1-ULC. .

COROLLARY 6.6 (Baton). If X denotes Antoine’s necklace in B and C
a countable dense subset of X, then (B*—X)ou C is 1-ULC.

COROLLARY 6.7. If X denotes a wild Cantor set in E™ (n = 4) described
by Blankenship [3] and C a countable dense subset of X, then (B"—X) o €
48 1-ULC.

To prove either of the corollaries above we observe that the defining
gsequences given in [2] and [3] to describe the Cantor sets satisfy the
hypotheses of Lemma 6.5.

Addendum. In another paper we expand these techniques to
embed B* in B™ (3 < k< n) so that no disk in the image is tame.
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