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Scott sentences and a problem of Vaught
for mono-unary algebras

by
Stanley Burris (Waterloo, Ont.)

Abstract. First we show that there is a countable ordinal a such that if <4, { h
is a mono-unary algebra then one can find a Scott sentence (which describes <4, {f}>
up to isomorphism) whose rank is less than «. Combining this result with Morley’s we
see that if a sentence of 8, , for mono-unary algebras has more than denumerably many
isomorphism types of countable models then it must have continwum many of these
isomorphism types.

We wish to show that for a given countable mono-unary algebra 9%
we can construct a reasonably simple Secoti Sentence py in Lo 1.€. for
any countable mono-unary algebra B, B k gy iff B is isomorphic to 9.
Then we apply the methods of Morley [1] to determine the possible

number of isomorphism types which can be realized among the count-
able models of a £, sentence for mono-unary algebras.

1. The Scott Sentence. In what follows we will always assume €,
involves one non-logical symbol, a unary operation symbol. Let £ be
a subset of £, ,. Define Cy(L) to be the closure of £ under Ay VvV, T E
and V; define C,(£) to be £ union the set of formulas formed by taking
the countable conjunction (or disjunction) of a set F of formulas in £,
where the set of variables which oceur free in members of & is finite.

Define a transfinite sequence £, C £, C ... by the following inductive
procedure:

£y is the usual first-order predicate calculus with one unary oper-
ation symbol,

Le= Uy<el, for limit ordinals ¢, £< o,, and Lerr = Gy Cy(L,) for
&< w,.

Then £,, = Uscmle-

wyw
THEOREM 1. The isomorphism type of a couniable mono-unary algebra
W= A4, {f}> can be defined by a single sentence gy in €, e
Proof. In the following we will introduce the notations which will
be used to construct gy, and following each definition we will state its
meaning as well as an £; to which it belongs. In much of what fo]lows’
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it will be helpful to visualize a mono-unary algebra A = (4, {f} as
a directed graph {{a,f(a)y: a ¢ A} (see Fig. 1). We will freely draw upon
graph-theoretical terminology such as predecessor, immediate predecessor,
successor, component and loop. Note that in the directed graph of a mono-
unary algebra each component contains at most one loop.

Fig. 1

(1) D@y -y @) = Nocicien®s # 37) .

(This formula is in £, and expresses the predicate: @, ..., ¥, are
pairwise distinet.) .
(2) P(wy, ) = D (@, @) A (fy = @y) .

(This formula is in £, and says: @, is an immediate predecessor of w,.)

(3) If 8(w) is any formula in £,, and o< o, let

w0
[ 1828 (@), if a=0;
| @, ... @o, (D (@0, o, 5 ) NS @) A o AS ()]
ﬂazos(%): { .
l ATTE S .. T LD (@gy ooy BIAS (@) A oo AS(2)], 1 1< a< w;
[ Ao Ty .. Bg[D(y, .., ) A S(@) A wo. A B(z)], ifa=w-
If 8(w,) contains free variables other than %y, then a suitable change of
variables is employed to prevent them from becoming bound.

(This is in €5, if S(w,) is in £5 and says: There are exactly o @,'s such
that S(x,).)

(4) : L(m) = /\1<n<m (" = a,).
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{This is in £; and says: @, generates a loop.)
(5) PH(wy, @) = P (g, 2;) A T1L(5)
(P*(@, @) is in £, and expresses: immediately precedes x, amd does

not generate a loop.)
(6) TFor k< w, p e w}+1% define

P¥a,) = TEO[PX(wy, ) NHEILP (@3, @) A .. AHEEDP (2, 2 _1)] .

(P¥(w) is in £, and says: There are exactly ¢ (0) immediate predecessors
af @, which do not generate a loop, each of which has ezactly w(1) immediate

predecessors, each of which ... each of which has exactly p(k—1) immediate
predecessors.)

{7)  Returning to our algebra A= {4, {f}., and focusing our attention
on an element @ in A, let ‘
Pyme) = )\ {P¥w): P%a) holds, where p € w-+1%, k< w}.

(Polm) is in £, and tells the structure of all predecessors of a which
are not in a loop.)

{8)  Let 8,(z,) be whichever of the following formulas is true of a:

("2 = f™H 2 A N\ { Wi = fiHimg): i <m, j<n, i+j<m+n},
where n,j>1, or ]
AT w0 = f20): My n< 0, m # n}.
(Salm) € £, and describes the structure of the successors of a.)

We remark that if B = <B, {f}> is a countable mono-unary algebra
and b e B, then P,(b) implies b has the same predecessor structure as a,
disearding those points which generate a loop. Likewise §,(b) implies a
and b have the same successor structure.

(9) Ka(mo) = Sa(”-’"o) A /\n<w {ijn(a‘)(fnmo)} M
(K o(mo) € £, and tells the structure of the component of a in 9U.)
(10) DE (o, %) = Ampneco W™= f"5,) .

(DK (#y, ;) e L; and says: @, and o, belong to distinct components.)
(11) Let I, be whichever of the following is true of a:
s, ... Ema[(/\igcha(wi))A(/\o<i<a‘<aDK($i: 5”1))}/\
A —]‘Emo E’["Ea+1[(/\1’<a+1Ku.("l7’5))/\(/\0<i<7‘<a:+11)<K(“"i’ 971))] ’
where o << w or

/\a<wﬂw0 Emu[(/\isaKa(mi))A(/\0<i<:l'<aDK($i7 a;,))] .
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(I, €Lyps. From I, we can determine the number of components iso-
morphic to the component of a, as well as the structure of the component of a.)

Finally, to describe the Scott Sentence, let {a;: ie A} be a subset
of A such that it contains exactly one element from each component
of Y. Then the sentence:

(12) Pg = ( /\zeAIa,;) AV a8, [ TIDE (24, 1) A \/AEAKa;_(ml)]

is readily seen to completely describe the isomorphism type of U, and
isin £,4,.

2. The number of isomorphism types. The remainder of the paper is
an adaptation of Morley [1]. Let £ be a subset of £, ,. Suppose £ is closed
under C,, substitution of one variable for another (with a suitable
renaming of bound variables to prevent a clash), and contains all sub-
formulas of its members. Then if L is countable we will say that it is
regular. If T is a theory of mono-unary algebras econsisting of a sentence
from £, ., and K is the class of models of T which are countable, then
we will say T' is scattered if, for every regular £ C L, , and n < w, Su(f, K)

is countable, where Su(f, K) denotes the set of n-types in £ realized by -

models in K. -

Assume that T is a scattered theory of mono-unary algebras, and K
its class of countable models. Let £5 be a regular langnage containing
L0,y £(2), DE (%, @), PH(my, 1), P¥(w,) for all p e w+1% k< w, and all
possible S,(z,) as described in (8).

Let A= <4, {f}> and B = (B, {f}) be two algebras in K, and let
ae A, beB. Returning to (7) one sees that either P, (x,) is identical to
Py(amy)y or Py(me) A Py(m,) is always false. Since P,(w,) is a conjunction of
formulas in €7, it follows that for some.y e 8y(ty, K), A\ p—>Py(x,), and
if P,w) is not identical to Py(w,), then —( /\w»P,,(wo)). Since T is
scattered it follows that there are only countably many formulas of the
form P(%), where U= <A4,{f}> <K and aeA. Let £F be a regular
language containing £; and formulas of the form P,(w,).

By an argument of the above style we can also conclude that there
are ouly countably many formulas of the form K (w,). Let us denote them
by En(w), n < a, for a suitable ¢ < w. Referring to (11) it is immediate
that there are only countably many sentences of the form I,. Let us
introduce the notation I,,, i< g, j < e, where i refers to the isomorphism
type described by Ki(a,), and j tells the number of components of this
type. Let £; be a regular language containing ¥ and the I;;.

Let 0,pew-+1% If 6 +#y it is easy to verify that A\, I and
Ni<oligy are contradictory. Since Su(fs, K) is countable, it will follow
that there are only countably many 6 e w-1% such that /\i<a1,;,5(i, is true
of some model of T. Since the sentence Ni<alips completely describes
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the isomorphism type of a model in X which satisfies it, X has only count-
ably many different isomorphism types.

THEOREM 2. The number of isomorphism types of countable MORO-UNATY
algebras which satisfy a sentence of Lo 18 either countable or 2. (This
answers a problem of Vaught — in the case of mono-unary algebras (see [3]).)

Proof. In [1] Morley proved everything stated except he allowed
the possibility of w; isomorphism types in a scattered theory, and we
have just finished excluding this.

In conclusion we remark that all of the possible numbers of iso-
morphism types can be realized by a suitable theory of mono-unary
algebras. Also, by some obvious modifications Theorem 2 is still true
if we add a finite number of constants to our language (which already
involves one unary operation).
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