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Abstract. Let X be a topological space and X" the nth cartesian product. Let G
be a group of permutation of the numbers [1,2, ..., n]. The group & acts on X" as
a group of homeomorphism by defining, for g « ¢ and (x, Za, ..., Tn) e X", gy, Tay ens Tn)
= (@y)> Tgpeys -2 Tgimy)- The orbit space under the action & is denoted by X*G
(C. N. Maxwell, Fixed points of symmeirie product mappings, Proc. Amer. Math. Soc.
8 (1957), pp. 808-815). A point = ¢ X is called a fixed point of the symmetric product
map, f: X~X"{G. if r i3 a coordinate of fix). In this paper Lefschetz number L(f)
of the map f in the case when X is an absolute neighborhood retract is defined and
it is proved that if L(f) = 0 then f has a fixed point. An outline is drawn to extend
the result in the case when X is a polyhedron (not necessarily finite) or a metric absolute
neighborhood retract and f is a compact map. A complete proof of the latter can be
found in the author’s dissertation at Indiana University, Bloomington, Indiana.

1. Introduction. Let G be a group of permutations of the numbers
[1,2,...,n]. Let X be a topological space and X" the nth cartesian
product of X with product topology. The grodp & acts on X™ as a group
of homeomorphisms by defining, for (#, &, ..., %n) e X" and geG,
Gy, Doy ony En) = (Fyryy Zyays -0 Loy)- The orbit space with identification
topology is called the G-product of X and it is denoted by X"/G. Let
7j: X" X™@ be the identification map.

A map f: X—»>X"/@ is called a symmetric product map of X. A point
2 e X is said to be a fized point of the map f, if for (@, &a, ..., Ta) € X"
and 5(@,, 24y ..., Ta) = f(2) implies that » = x;for some i, i=1,2, .., n.

C. N. Maxwell defined the Lefschetz number L(f) of a map
f: X->X"@, when X is a eompact polyhedron, and showed that L(f) # 0
implies that f has a fixed point [5].

In this paper the results of Maxwell [5] are generalized in the case when

(1) X is a compact ANR (Absolute Neighborhood Retract).

(2) X is a polyhedron (not necessarily finite) with Whitehead topology
and f: X—»X"@G is a compact map.

(8) X is a metric ANR and f is a compact map. The proofs are,
however, given only in the case when X is a compact ANR. )
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2. Let X Dbe a metric space with metric d and X" has the usual
Fuclidean metric, denoted by d'. A metric d on X"/@ can be defined as

follows: N
d(n(2), n(2")) = Wi{d'(z, g2)| g <G}

where z,2' ¢ X" There exists a real valued function o on XX X"@q
defined by
oz, 7(2) = Intldle, m(2)| i=1,2, ..., n},

where # € X, # ¢ X" and m;: X"—~X is the projection onto the ith factor.
The funetion o satisfies the fqﬂowing inequality:

o(@,y) <wlz,y)+dy,y)

where & e X and v,y’ « X"/G [5]:

Let J be the category of all topological spaces and homotopy classes
of maps between topological spaces. For a map f: XY, let [f] denote
the homotopy class of f. Let f*: X*->¥" and 7: X*/G—>Y"/G be the maps
induced by f, i.e.,

Ty Loy ey @) = (F(@), fl) sy f(mn)) and  n¥ft= T’?X

for {2, @y, ..., Ta) € X, where 7%, ¥ are identification maps.
Let I, I'g: 313 be defined as follows: for an object X of and a map
f: X%,

X=X If)=0" eand TdX)=X"G, I'd(f])=1[F].

Then I', I'g are covariant functors on the category .

Let H, be the singular homology theory with coefficients in the
rational field. Let #s: H.I'= H,I'¢ and II,: H,'= H, be the natural
transformations defined by the identifieation map and the projections
as follows: for an object X of J,

n n
= Hun%) and II, = ZH*(m) = Z e

i=1 i=1

where #%: X*>X"@ is the identification map and s Xt~ X,
i=1,2, .., n, are the projections.

Let CF be the full subeategory of J whose objects are compacht
polyhedra. Maxwell showed the existence of a natural transformation

#: HyTg= H, on the category CF such that = I1,.
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Let X be a compact polyhedron and f: X—+X"/G a map, then the
Lefschetz number L(f) of the map f is defined by

L(fy = D' (—1)Trace(u3f,)
p=0

where, yf 1 Hp(X"[G)— Hy(X), is defined by the natural transformation x
and f.,: Hp(X)—>Hp(X"/@) is the homology homomorphism induced by
the map f.

(2.1) TeEOREM [B]. If X is a compact polyhedron and f: X->X"|G
a map such that L(f) # 0, then f has a fized poini.

The above results were proved by Maxwell for simplicial homology
theory, however, it is easy to show that they hold for singular homology
theory with rational coefficients.

3. Fixed point theorem of symmetric product mappings of compact ANR’s.
Let C4 be the full subcategory of J whose objects are compact ANR’s.
The category CF is a full subeategory of C:t.

(8.1) TaeorEM. Lei C be a subcategory of 3 and B be a fullsubcategory
of 3 such that BCC. If every object of C s homotopically dominated by
some object of B, then every natural transformation, ’

p: HTg=H_, such that puy, = II,

*
defined on B, has an extension to the category C, i.e., there exists a natural
transformation u: H I'e= H_ on C which coincides with the given y on B.
Proof. Let X be an object of C. Let ¥ be an object of B and p: X ¥,
q: Y—X be the maps such that ¢gp ~ 1x. Define
p= H (X)) H (X)
as the composition of

ol ¥
H,(X"6)—>H,(Y"G)—H,(Y) —>H,(X).
We claim that p¥ defined above is independent of the choice of ¥ and
the maps ¢ and p and that it defines a natural transformation on C.
Let X’ be another object of € and f: X > X' be a map such that [f]
is a morphism in €. Let ¥’ be an object of $ and p": X', ¢': ¥’ > X’
be the maps such that ¢'p’ ~ ly.. Consider the following diagram

H(Y6) 2 B (X@) — > H (X76) > H,(T™6) -
oo I Ve
H(Y) — H(X) —> H(X) ——H(Y)

where, u* = g, u¥p, and p* = ¢'ip¥'p,.
Since p'fg: ¥—Y' is a map of objects of $ and B is a full subeategory

of J, it follows from the naturality of u on % that x¥'5,7,¢, = p.f,q,4%-
11+
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Since gp ~ 1y and ¢'p’ = 1x it follows that §9 ~(lgsg and gp
~ 1X”'IG“ Hence q;p;z (1X.’)* and q*p*z (lX"/G)*' It follows that

i BT 0P, = €0 F 0 7P,
w5, = i~
Tt follows from the above equation that w=is independent of the

choice of ¥ and defines a natural transformation on C.
To show that un, = II, holds on C, we consider the following diagram.

ie.,

X

H(X"G) ———> H,(X)
N

sl @x) e
1
| . |
B (T —— ()
N /
|
VS
H *(Y")

It is clear from the naturality of u and the definitions of p™ and P

that all sides of the above diagram commute except possibly the fop
triangle. The commutativity of the top triangle follows from the com-
mutativity of the other faces and the fact that p, is a monomorphism.
Hence g*nF = II¥. Q.E.D.

(3.2) CororLLARY. The natural transformation w of section two defined
on the category CT has an extension y: H I'g=> H,_ to the category Csk such
that py, = IT. .

Prootf. Follows from Lemma (3.3) and the fact that every ANR is
homotopically dominated by a compact polyhedron [1].

Since the homology of a compact ANR is of finite type, it is possible
to define the Lefschetz number of a map f: X+ X"/G, when X is a compact
ANR, as in section two.

(3.3) LmyMMA. Let X be a compact ANR and f: X—X"G be a given
map. Let Y be a compact polyhedron and ¢: Y—+X, p: XY be maps such
that qp ~ 1x. If f=1pfq: Y->XY"G, then L(f)= L(}).

Proof. Consider the following diagram

e P
H(X)~—>H,(X6)—H,(X)
ip. LD Dy

H(Y)—-H,(T"6) —>H,(Y)
©

*

e ©
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Clearly the above diagram commutes. It follows by property of
Trace funetion that

Trace (g fom) = Trace (s Dam frmlen)
= Trace (p*mll'gf*MQ*m)
= Trace (#ﬁ *m%‘mp*m)v

= Trace(ufrm) (2,=1)-

Hence L(f) = L(f).

(3.4) DErFINITION [1]. Let X and Y be metric space. A homotopy
h: XxI-Y is said to be an e-homolopy, ¢ >0, if d(h(z,1),1) < ¢ for
all ® e X and tel.

(3:5) THEOREM. If X is a compact ANR and f: X > X"6G a map such
that L(f) # 0, then f has a fized point.

Proof. Suppose f has no fixed point. Then wlz, flz)) # 0 for all
#eX. Since X is compact, there exists a number 6 >0 such that
wlz, flx)) > 6 for all ze X. :

There exists a compact polyhedron ¥ and maps ¢: ¥+ X, p: X>¥
such that gp ~ 1x through a 8/ n-homotopy [3]. It follows that WP = 1zne
through a &-homotopy. Let f= ?fq. By Lemma (3.3) it follows that
L(f) = L(J). By Thecrem (2.1) L{f) # 0 implies that f has a fixed point.
Let ye Y be a fixed point of f. Let z = (%,2, ..., 2n) € X".such that
n¥(z) = F (), then it follows that y = 2 for some i, 1 < i << n. Since =
= gn¥ and ¢(y) = g(z:), it follows that

olg(y), 75¢"(2) = 0.

Sinee 175¢"(2) = ¥ ()= §f (y) = 4pfa(y) and ¢P ~1xn through a 6-homo-
topy, it follows that

wlg(y), fa) < olgw), Wwfaw)+adBfaw), fa®)
<045.

YWhich is a contradiction. Hence f has a fixed point. Q.E.D.

(3.6) CorortARY. If X is an acyclic compact ANR, then every map
f: X>X"@ has a fized point.

Proof. It is easy to see that ugfe = n and YT ap =0, for all p # 0.
Hence L(f)=n # 0. It follows that f has a fixed point.

(3.7) TerorEM. If X is a compact connected absolute retract, then
every map f: X—>X"|@ has a fized point. ’

Proof. Follows from the fact that a compact connected AR is a con-
tractible ANR [1].
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4. Let X be a compact connected ANR and #, be an arbitrary point
of X. For an integer k, 1 < k< n, let dz: X—2X" be define as follows

”ixdk:lx: 1<i<k,
afdy=1my, forallzeX and k<i<n.

Let dp= n%dx: X>X"G.

By the fact that a compact connected ANR is path connected, it
follows that the homotopy class of the map d, is independent of the choice
of the point .

(4.1) TEEOREM. Let X be a compact connected ANR. Let x(X) be the
Euler chamctezistics of X. If x(X) # (k—n)[n, then every map f: X - X"|G
homotopic to d has a fized point.

The proof of this theorem iy analogous to the corresponding theorem
for eompact polyhedron [5].

5. Fixed point of symmetric prodact mappings of polyhedron and mefric
ANR’s.

(6.1) DEFINITION. A subcategory C of 7 is said to be admissible if

(i) €9 is a full subeategory of C.

(i) The natural transformation u: H «J¢=H,_ defined on CT has
an extension to C such that un, = IT,.

Let X = |K] be a polyhedron (not necessarily finite) with Whitehead
topology. Let {K,},.r be the collection of all finite subpolyhedra of K.
Let.s i,: B,—~XK and K,—~Kg, where K,C Kg, be the inclusion maps.
It is easy to see that {H,(|K,]), &} and {H (E7/@), 72} are direct systems
and H (X)= L_LmH*(]Ka|).

It is easy to show that the map 7 X"~ X"@ is proper and every
compact subset of X"/ is contained in a set of the form | K, |™G. Tt follows
that H (X"/@¢) = Lim H, (E%G).

Let #*: E7—>K;/G be the identification map and a3 K%—>K,, the

ith projection. Then it is easy to show {n® 5o b defi i
et {n3}, {m%} define maps of direct

Lims® = X T
iyl =72, Limaf. = ok .
— —

For each ael, let ™ H (K MG)>H (1K, i i
) T H (K, o) 18 the homomorphism
defined by the natural transformation ) Wh’;ch is defined on the cmigory

Cf. By naturality of u, it follows that {4} define a map of direct

X __ T3 a
systems. Let y* = I;uny : H (X"@)~H,(X). Then it is easy to see that
X 2 _ X
poni=II}.
Let Y = |L| be another polyhedron. Let )

o e 1e1 be the cor i
direct system of finite subpolyhedron of L. Let ’ © comespondng

fi: XY be a map. For
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each ael, f(K,) is contained in a finite subpolyhedron of L. Let L, be
the smallest subpolyhedron of L containing f(K,). Let f: K,~L, be
the map define by f. Then it is easy to see that {f,.} and {7..} are maps
of direct systems and f, = Limf,., J, = Lim f..

(5.2) Lemma. If X and Y are polyhedra as in above discussion and
f: XY is a map then fu= = u¥f?, where p* and p¥ are defined by
using dirvect limits as above.

Proof. Sinece u is a natural transformation on the category Cf, it
follows that the following diagram commutes

H,(| KM@~ H (K,))
Fre i ; Fax
H,(L/6) —>H,(L)
s

Hence it follows that
Lim{,. Lim 4* = Lim p* Limf,.
ie.,
fu® = uF, -

(5.3) TEEOREM. The category § of all polyhedra is admissible.

Proof. For each polyhedron X, let, uX be defined as above. Then it
follows from Lemma (5.2) that u is a natural transformation and u= 18
independent of the choice of the triangulation K of X. Q.E.D.

Let G be an admissible category and X be an object of C. Let
f: X X"@ be a map such that the homomorphism x%f,: H (X)—H(X)
of graded vector space H, (X) is of finite type ie., luf_f*p: 0, for all,
except for a finite number of p and uXfs, is of finite type for all p [4].
In the case when x%f, is of finite type, the Lefschetz number L(f) of
the map f is defined by

L(f)= > (—1)"Trace(upfsy) -
p=0

(5.4) DeFINITIoN. Let X be an object of an admissible category C.
A map £: X->X™@ is said to be a pA-map if L(f) is defined and L(f) # 0
implies that f has a fixed point (in particular #%f, is of finite type).

(5.3) DEFINITION. An object X of an admissible category is said
to be a ud-space if every compact map f: X—X"@G is a ud-map.

The above definitions are analogous to the corresponding definitions
of A-map and A-space [4]. The following theorem is analoguous to the
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corresponding theorem on A-spaces. The proof is on similar lines hence
it is omitted. .

(5.6) THEOREM. Hoery polyhedron (not necessarily finite) with Whitehead
topology is a pAd-space.

Let §4 be the full subcategory of 3 whose objects are metric ANR’s
and polyhedra (with Whitehead topology).

(5.7) TamorEM. The category T4 is admissible.

Proof. Sinece every metric ANR is homotopically dominated by
a polyhedron (an object of 7), it follows from Theorem (5.3) and Theorem
(3.1) that ¥+ is admissible.

In the light of the result of A-spaces [4], a similar theorem on
pd-spaces is as follows.

(5.8) THEOREM. Euvery metric ANR is a ud-space.
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On the insertion of Darboux, Baire-one functions
by
A.M. Bruckner{), J.G. Ceder and T.L. Pearson(?) (Santa Barbara, Cal.)

Abstract. If f and g possess the Darboux property and are in the first class of Baire
on an interval I and if f(x)> g(z) for all z < I, there exists another Darboux function &,
also in the first class of Baire, such that f(z)> h{z) > g{x) for all z. Certain related
statements are also valid.

1. Introduction. Let f and g be two real functions defined on a real
interval I, each with the Darboux (i.e., intermediate value) property.
If g(a)< f(z) for all # in I one can ask whether there exists another
Darboux function h such that g(x) < h(z) < f(x) for all # in I. This
question was answered negatively by Ceder and Weiss in [6]; they found,
howerver, a useful sufficient condition in terms of the way in which f
and ¢ are separated by constant funetions (see Section 4, below). They
showed that this sufficient condition is satisfied when both f and g are
in the first class of Baire. They also posed the problem of whether or nob
there exists a Darboux, Baire-one funetion between two comparable
Darboux, Baire-one funetions.

The purpose of this article is to show that the question has an af-
firmative answer (see Theorem 1). We also show that it is not possible
in general to insert a Darboux function between comparable Darboux
functions even if one is in the first class of Baire and the other in the
second class of Baire. If, however, the first of these functions meets any
of a number of additional “regularizing” conditions, such an insertion is
always possible. We mention in passing that some extensions of results
found in [6] are found in [5].

2. Notation and terminology. The set of real numbers will be denoted
by R and I will be a fixed real interval. For a set ACR, 4 and A° will
denote the closure and interior of 4. We will regard a real function as
identical with its graph. If f is a funetion C R?, B(f) will denote the set
of Dilateral condensation points of f (see [4], Lemma 1), and C(f) will
denote the set of # « R at which f is continuous. Moreover, K*(f,a) and
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