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Three questions of Borsuk concerning movability
and fundamental retraction
by
C. Cox (Urbana, IIL.)

Abstract. In this paper we provide answers to three problems of Borsuk with the
following results: TeEorREM 1. 4 bl ent of a tm 12 a fundamental

£ dd

retract of that compactum. THEOREM 2. There ewists a decreasing sequence of compacta
oo

{Xal > 1} suchthat X, -is a reiract of Xy for each k> 1 but X = (") Xy is not a funda-
k=1

mental retract of X;. THEOREM 3. There exists a non bl pactum Z =X U ¥
where X and ¥ are movable, Xe=¥ and X n ¥ = {point}.

0. Introduction (*). In [1] and [2] K. Borsuk began the development
of what has come to be known as shape theory. As originated by Borsuk,
the shape, or fundamental type, of a compactum (compact metric gpace)
X is defined as follows. Let X and ¥ be compact subsets of @, the Hilbert
cube. A fundamental sequence, f = {fs, X, Y} from X to ¥, is a sequence
of maps fi: @@, such that for each neighborhood ¥ of ¥ in Q there
exists a neighborhood U of X in @ and an index %, such that for & > &,
Jilo = frgalpin V. The composition of fundamental sequences f = {fe, X, Y}
and g= {gx, ¥, Z} is the fundamental sequence gf = {gifs, X, Z}. For
any space X, the identity fundamental sequence is lx= {IdQ, X, X},
where IdQ is the identity map on ¢. Two fundamental sequences f and g
are said to be homotopic, f = g; if for every neighborhood V of ¥ there is
a neighborhood U of X and index %y, such that for %k >k, we have
Frlv~gxlu in V. A continuous map f: X ¥ is said to generate the funda-
mental sequence f = {fx, X, Y}, if for every index k, fr = f': @ >@, ' being
an extension of_f. Fundamental sequences defined by different extensions
are homotopic (Theorem 4.1 of [1]). X is said to fundamenially dominate
'Y, X % Y, if there exist fundamental sequences f = {fr, X,¥} and

(*) The results in this paper are taken from the author’s doctoral dissertation,
written at the University of Illinois under Professor R. L. Finney. The author wishes
to thank Professor M. E. Hamstrom and the referee for their careful proofreading
and suggestions.
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g = {gr, ¥, X}, such that fg~1y. X is fundamentally equivalent to Y it
in addition, gf ~1x. The Telationship of fundamental equivalence is an
equivalence relation; equivalence classes are called s.hapes. Shape is
a topological invariant; in particular, different embeddings of the same
space have the same shape. A fundamental sequence r = {rx, X’, X} is
called a fundamental retraction if X C X' and ry(@) = & for every ze X,
and index k.

1, In [3] Borsuk asks the following question: Problem (6.1). Is it
true that every movable component of a compactum X' is necessarily
2 fundamental retract of X'% In Theorem 1 and its Corollary we give
an affirmative answer to this question. ‘

Let us begin by recalling the definition of movability. Borsuk gave
the original definition in terms of closed neighborhoods; however this
is clearly equivalent to the following definition. A compactum X, lying
in the Hilbert cube @, is said to be movable if for every open neighbor-
hood U of X (in Q) there exists an open neighborhood U, of X which is
deformable into any neighborhood W of X in U. Movability is known
to be a topological property [3]. If we have a fundamental retraction
{re, X', X}, such that for every neighborhood V of X there is a neighbor-
hood U of X’ and an index kg, such that for & > k; we have

~

rlp 2Tl IV, velX,

then we say that {ry, X', X} is a strong fundamental retraction. (That is,
there iy a homotopy ¢: UxI-V such that ¢(y,0)=rx(x), ¢(x,1)
= rpa(y) and @(x,1) =y for each ye X, tel) We show that if X is
a movable component of X', then X is a strong fundamental retract of X'.

Conceptually, the idea of the proof is to observe that if X C X' C4¢,
and X (3 X') is a component of X', then there is an appropriate open
neighborhood system {Wi| k> 1} of X’ in @ and an open neighborhood
system {Ug| k> 1} of X, satisfying the condition that for some sub-
sequence of indices {n(k)}, Wi~ [Upa\Upposn] = 9. (By a system of
neighborhoods for X we mean a sequence of neighborhoods eventualy
inside any neighborhood of X.) It is then possible to use the movability
of X to deform W\U,; toward X, keeping Uppo+1 pointwise fixed ab
each level. In so doing, the set f"(k,\UMk) +1 will probably get pushed
around quite a bit, for it certainly need not be possible to deform an

entire neighborhood of X toward X, rel X, Thus we must be careful,-

at the end of successive deformations, to avoid coming to rest on any
set Upay\Upys:- This necessitates actually working with a subsequence
of the {U.y} We use a result from infinite dimensional topology to
construct the desived deformations. The sequence of inductively defined
deformations may then be composed at the t= 1 level to define a strong

- deformation f by

=W
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fundamental retraction. The resvlt then holds whether or not X is con-
nected, provided only that neighborhood systems like those desecribed
above exist, and this depends on X', not X. We preceed the proof with

two easy lemmas. Considering @ = [] [0, 1], let R =[] (0,1);CQ.
i=1 =1

Leava 1. Let X C B be a compact subset of Q. Suppose that WO UD X
are open neighborhoods of X in Q, A is a compact subset of W, and ¢: AxI
—W is a deformation of A into U in W. Then there exisis a deformation
f: AXI->W, of Ainte T in W, such that f(4,1) n X = O.

Proof. Since every compact subset of R is a Z-set in @ [6], by Lemma
4.1 of [6] there exists a deformation F: Q X I @ such that F(Q, 1) n X = O
for every te (0, 1]. This deformation also has the property that for every
neighborhood ¥V of X there exists a f, ¢ (0, 1) such that F(V,t)C T for
0 <t<t,. In particular, there exists such a ¢, for 7= T, Define the

x, 2t
fay = 7020 for 0
F(‘F('Z’a 1), 2(t— %f)tl) for }

Then f: 4 X I—+W is the required deformation.

The second lemma is easy to prove by standard arguments.

Levua 2. Let (Y, d) be a metric space and X' a compact subset of ¥
which is not connected. Suppose X is a component of X'. Then there exists
a closure contained system of open neighborhoods {Ux| k =1} of X in ¥
(that is, a system satisfying Uy, C Ux for every k = 1), and a closure con-
tained system of open neighborhoods {Wi| k= 1} of X' in Y, such that
Wi [Ty \Usl = O for every k= 1.

We are now ready to attack the problem itself.

THEOREM 1. Let X C R C @ be a connected, movable compactum. Let X'
be a compact subset of Q@ such that X is a component of X'. Then X is
a strong fundamental retract of X'. : )

Proof. We must dispense with some preliminaries before beginning
the construction of the strong fundamental retraction. First, if X = X’
then the identity fundamental sequence, 1x = {Id@Q, X', X}, is a strong
fundamental retraction. We therefore assume that X"\ X # O. Since
X C X' CQ is a component of X', we may apply Lemma 2 to obtain the
neighborhood systems {U;} and {W}. Since X is movable, given Ug
there exists an open neighborhood ¥, of X, such that ¥y is deformable’
into any neighborhood of X in Uj. Choose an open neighborhood T7x of X
such that V,CVyn Up,,. Let {n(k)] k=>1} be an increasing sub-
sequence of odd indices, such that U, C¥,. If we now relabel W
n(k)+1

0

, we obtain a closure contained open neighborhood system
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{W|k =1} for X, satistying W, o [Unp\Unpya] = @ for every k> 1.
As a final step in preparation let Uy =V, = @, so that W,CV,, and 7,
may certainly be deformed into any neighborhood of X in U,, say by
linear contraction to a point of X.

The proof now proceeds in three stages. First we set up a construction
which will define a deformation of @ given certain sefs and neighborhoods
of X. This construction is then used as the basis of an inductive argument
which defines a sequence of deformations, each picking up where the
previous one left off. This sequence is then composed at the ¢ = 1 level
to define a strong fundamental retraction.

Given any index % > 0, leb px: VX IT->Uy deform V into V., in Uy.
Suppose now that we are given an index j(k—1) > k-1 if k> 1, and
j(—1) = 1. Let B be a compact subset of V; such that By ~ ﬁn(m_m =0.
Then by Lemma 1 there is a deformation wg: ByX I->Uy of By into V.,
in Ug, such that y(Bg,1) n X = @. We may therefore conclude that
there is an index j(k) > j(k—1) (so that j (k) > k+ 2) such that wi(Bx, 1) ~
A Uiy = 9. _ _ _

Define fi: [Bi v Upgyp—zy v (Up\Up)IX I>T, by

fulo, ) = [‘” %f @ € Uiy (UNUpya)
vr(z,1) if zeBy.

The deformation fx is well-defined, since By CVxC U, and Brpn
A Upig—ay = @, Consider now the restriction fr: [Bpw 7,,@(,,_1)) v
U (UNUp )1 I-TU; (sinee Uniite—1y C Upya C Uy). Define a partial

homotopy, Fx: U X {0} v [By ¥ Uiy (T\Upyy)] X I U, as follows:

P, 1) @ fti1=0,
x =1,
! fil@,1)  otherwise .

Since Uy is an open subset of @ and therefore an ANR for metric spaces,
the homotopy extension tPeorem [5] applies, and we can assert the
existence of an extension f,: Upx I->Tj of Fr (hence of f;), which is
also a deformation. Now define Ay Qx I - in the obvious way:

fa, ) #taoeuy,

Axlz, t) =
’ x otherwise .

Ar is continuous since we are essentially

, ar matching two continuous
functions on the closed set (U \Ups1) X I. Note that, by construction,

Az, 1) = & for every z ¢ Uniiiz—1y, and for j< k, Ay(U;x I) C Uy;. The
deformation A can be defined for any k>0, given a compact set By
and an index j(k—1), satistying the necessary conditions. Starting with
k= 0and j(—1)= 1, we inductively define a, sequence of indices {j(k—1)}
and compact sets {By;}, and hence a sequence of deformations {Ax| % > 0}.
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Let By= W\Upy = W;\U,. Then B,CV,, B, is compact, and
By~ Uyy= 0. By the previous construction there exist an index
j(0) > 2 and a deformation A,: @ x I->Q, which takes B, into ¥, in Uy,
and satisfies A4y(B,, 1) n ﬁm’(on =0, and Ayw,t) = for every we U,,,
tel. Let

By = Ay(By, 1) © [ W0y A Tty N nion]
= Ao(Bo; 1) © U W0y A Ty Tiiop] -

B, is thus compact, B, CV, and B, n U, = @. Therefore there exist
Ay: @ X I-+@Q, deforming B, into V, in U,, and an index j) = 3, such
that Ay(Byi, 1) N Upyay= @, and Az, 1) = x for every e T iions te 1.

Suppose that for k > 2 compacta By, By, ..., B;_, have been defined,
together with indices 1 = j(—1) < j(0) < ... <j{k—1) (80 that j{k—1)
> k+1) and deformations A,, ..., 4,_,. Suppose too that A4, ,: QX I->Q
deforms By, into V in Uy, 44 y(Bry, 1)~ Upypeny = 9, and
Ap_o(#,1) = 2 for every ze Uy;y oy, t € I. Leb

Bk = Ak-—l(Bk——l9 1) hd [(lek—n ~ Un(i(k—‘_’)))\Un(i(k—l))]
= A3 y(By_y, 1) v [(Wi(k—l) n Un(;'ck-g»)\ﬁw(k—ﬁn] -

Then By is compact, By C Vi since j(k—2) =k, and Bi » Uyjgsy = O.
By the construction there exist a deformation Ax: @ x I+@, taking By
into Vi., in Uy, and an index j(k) >j(k—1), such that Ax(Bg,1) ~
A Uiy = 0 and Ay, 1) = » for every z ¢ U itk-1y» L € I. By induetion
the deformations {Ax| % = 0} are defined. We may now let ry(w) = Aq(x, 1)
for every me@, and if r,_; has been defined for k>1, let r(ax)
= A4(rpy(@),1). We claim that {rg, X’, X} is a strong fundamental
retraction; that is, given any neighborhood T of X in @ there is a neighbor-
hood W of X’ and an index ky such that % > ky implies r,)p =7 lm
in U, relX.

In fact we show that for i > 5, given U;C U, we have for & > i,

Te—1lwits A?’; Telwiy 10 Ui,

the homotopy A:x being rel X. Recall that the deformation Ax was con-
structed so that Ax(U;x I)C U; for every % >i. Thus to establish the
above assertion we need only show that 731 W) C Uy for every % = i,
and this reduces again to proving that r;_,(W;,) C Us. Sinee for I <i—1,
Ay, 1) = & for every @ e Upyyiny and tel, and since Uyyy_o,C Us, it
remains to show that r; (Wi \Upyii—ay) C Uy: To see this let W= W,
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and write
Wio\Unggii—any = W\Uniiii-an
= WUty ¥ LW A Ty \gion] ¥ U 2 Tngiaon) \Ungsan] -
o 9 W A Upgga—an)\ Ungiciay] -
Note that W\U,yC B, and, in general,
UW A Uniicon\Untizpsin] C Bipye - for 3 <p <i+1.

{Note that i >i—p+2 for all such p, so that W C Wy,_p.q.) By the
way in which the sets {By} were defined, Aj_,(By,, 1) C By for every
k>1, and we also have by construction that Ax(w,?) =« for every
@ € Upjyponys t€ L. To define r;_; we compose A;_y, ..., A, at the t=1
level. Since

WNUpny C By
Ay = A WNUlpiiyr 1)
C By v (W~ Upigop\Taggapl ¥ 2 LW » Unggimap)\Uniga—en] -

Using the above information again we have

A, = A4,(4,,1)C B,

U A U \Tngr] © o [ A Ui \Tagisan] -
The composition continues until we arrive at a set
A g= A (A 1, 1) CB; v (W A Upgimayg) \Ungsicap] -
Then ’
A;o=A4; (4; 5,1)CB;_,, and Ai o4y 5, )C B, CV, C Uyyy -

Therefore,
P WNUpgiiiop) C Usn C Uy

and the proof is complete.

CoroLLARY. If X C @ is a connected, movable compactum, and X' is
a compact subset of Q which has X' as a component, then X is a strong funda-
mental retract of X' in Q.

Proof. We may certainly embed X' o~ ¥’ C R by a homeomorphism
h: X'->Q. By Theorem 1, h(X)= Y is a strong fundamental retract
of ¥’. By a theorem whose proof is essentially identical to Theorem 2.10
of [2], X is a strong fundamental retract of X'.
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2. We turn now to a second question of Borsuk. In [2] Borsuk poses
the following problem (9.7): Let {Xi| k> 1} be a decreasing sequence

of fundamental retracts of a compactum X,. Is it true that the set
o0

X = [ Xy is a fundamental retract of X;? We remark that already in
k=1

the plane there are non-locally connected sets which are the intersection

of disks, for example the “comb space”, X = {(x, ¥) CElx=0 or 1/n

for neZ® 0<y<i}v{@y) 0<r<1, y=0}. Hence if X is

o0

a retract of X, for every ¥ = 1, it need not be the case that X = ) X;
k=1

is a retract of X;. The following result provides a negative answer to

Borsuk's question.

THEOREM 2. There exists a decreasing sequence of compacia {Xz| k = 1}
such that X ., is a retract (hence fundamental retract) of Xy, for every k = 1,

oo
but X =) Xy is not a fundamental retract of (or even fundamentally

k=1
dominated by) X,.
Proof. For i > 1 let §} denote a copy of §', which we regard as the

set of all complex numbers of absolute value one. Let X; = J] 8%. A point
1=1

Z e X, can be written coordinatewise as Z = (2, 2,, ...), where |2;j = 1 for
every ¢ > 1. Define a retraction r;: X; —r(X;) as follows: 7,(3) = 7y(2;, 2 --.)
== (23, %, %, ...). Note that the map r, leaves every coordinate of z after
the first unchanged. Then let X,= r(X;)= {fe¢ X, 2 = 2}. Similarly,
if X has been defined for k = 2, define ry: Xp—ri(Xy) = Xy, by 74(2)
= (#%y Boly vy 2oty Zrsts Zpray o), TOT €Very Z e Xy. The map r¢ modifies
only the first % coordinates of 2. We have then X, ,= {ZeX,] z
=2%,1,1 <i <k} Observe too that X,., C Xy and each map ry: Xy
- X, is a retraction.
oS
Now X = X; is homeomorphic to the 2-adic solenoid, defined
k=1

as the inverse limit of the spaces {8} k > 1}, with bonding maps he: Sky,
— 8%, given by hi(z)= 2. That is, X = {Ze X;| 2x=2},, for every
% = 1}. In [3] Borsuk proves that the solenoid X is not movable. Borsuk
establishes in the same paper that any (compact) ANR is movable, and
that the product of a countable number of movable compacta is movable.
Thus the compactum X, is movable. He also proves the following result
which establishes our theorem: If X, is movable and X is a fundamental
retract of X (in fact if X is only fundamentally dominated by X;) then
X is movable.

3. For our third problem we turn to the question of an addition
theorem for movable compacta. The general problem is to find conditions
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under which X = X, v X, is movable, given that X;, X,, and X, = X, ~
~ X, are movable, the result being false in general [4]. Borsuk has defined
in [4] the notion of shape for pointed compacta (X, 2,) C (@, m9)7 the
definitions being the same with the exception that all homotopies are
understood to be relative to the basepoint x,. Thus a poinied compactum
(X, %) C(Q, x,) is said to be movable if for every neighborhood U of X
in @ there exists a neighborhood U, of X, such that for every neighbor-
hood ¥ of X there exists a deformation ¢: Uyx I->U of U, into V in U,
such that g(a, ) = &, for every teI. The main results of [3] hold true
for this notion, and Borsuk is also able to prove (Theorem 2.8 of [4])
that if (X, @), {(Xz, %) C(Q, ) are movable and X; n X, = {x,} then
(X, v X,, ,) is movable. He then asks whether the union of two movable
compacta having only one point in common is movable. Our goal is to
answer this question in the negative, with another counterexample.

THEOREM 3. Let X C @ be a movable compactum and x, € X,, a point
of a component of X. Sl?ppose for every meighborhood U’ of X there ewists
a neighborhood U, of X which is deformable into any neighborhood W' of X
by a deformation g: Uy x I->U', satisfying o(zy, 1) € W, where W is the
component of W' containing X,. Then X, is movable.

Proof. We must show that given any neighborhood U of X, (in @)
there is a neighborhood U, of X,*which is deformable in U into any
neighborhood W of X;,. We may assume that U is connected, and that
BdoU ~ X = @, sinece X, has arbitrarily small neighborhoods in @ with
these properties. Let U’ be a neighborhood of X in @ which has U as
a component. By assumption there exists a neighborhood U, of X, which
is deformable into any neighborhood W’ of X in U’, by a deformation
satisfying the hypothesized condition. Let U, be the component of U
containing . X,, so that U,C U. Let W be any connected neighborhood
of X,, where we again assume Bd,W ~ X = @, so that there is a neighbor-
hood W’ of X, such that W is a component of W’. By hypothesis there
is a deformation ¢: Uyx I—-U’ of U,-into W', such that ¢(w,, 1) ¢ W.
This implies ¢{U,,1)C W and ¢(U,, I)C U, since W is a component
of W', U is a component of U’, and U, is connected. The restriction of @
to Uyx I is the desired deformation.

As a consequence of the proof of Theorem 3 we have

COROLLARY 1. Suppose (X, x,) C(Q, x) is a movable potnted com-
pactum and x, ¢ X, where X, is a component of X. Then (X,, u,) is a movable
pointed compactum.

This result is false for movable compacta (see for example the space
on p. 140 of [3], which is used below).

We do not work with Theorem 3 but its negation: Suppose X C@is
movable and X, is a non-movable component of X. Then for some
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neighborhood U’ of X, if U, is a neighborhood of X deformable in T into any
neighborhood of X, there exists a neighborheod W’ of X (depending on Ty),
such that if g: Uyx I»T" deforms U into W', then ¢(X,,1) ~n W = @,
where W is the component of W’ containing X,. This statement may
now be strengthened by noting that we may replace W’ by any
neighborhood contained in it, and T’ by any neighborhood contained in it.

COROLLARY 2. Let X CQ be movable and X, a non-movable component
of X. There ewisls a neighborhood U’ of X, such that, if U*C U’ and U} is
any neighborhood deformable in U™ into any neighborhood of X, then there
exists a neighborhood W' (depending on Uy), such that if W*C W, and
@: Ugx I>U* deforms Ty into W* in U*, then ¢(X,, 1) ~ W = @, where
W is the component of W* containing X,.

DEFINITION. A compactum X is said to be morable in a compactum ¥
containing it if for every neighborhood U of X in ¥ there is a neighbor-
hood U, of X in ¥ which is deformable into any neighborhood of X in ¥.

TrEEOREM 4. Let X be a compactum. Then in order that X be movable
it is necessary that X be movable in every ANR Y containing it, and it is
sufficient that X be movable in some ANR containing it.

Proof of necessity. Assume X movable and contained in an
ANR Y, which we consider embedded in @. Let ¥ be a neighborhood
of ¥ in ¢ which retracts to ¥, and r: ¥+ a retraction. Given a neighbor-
hood U of X in ¥ let U’ = »"YT). Then U’ is 2 neighborhcod of X in @,
and by definition of movability there exists a neighborhood U} of X in ¢
which is deformable into any neighborhood W” of X in Q. Let U, = Usn Y.
Then U, is a neighborhood of X in ¥ which we elaim is deformable into
any neighborhood W of X in Y. Given W let W' = »~(W). Then W’ is
a neighborhood of X in @, and there is a deformation ¢: U;x I-U’ of U,
into W’. rp: UyxI->U then deforms U, into W in U.

Proof of sufficiency. We assume that X is movable in an ANR ¥
which is again embedded in Q. Let U be any neighborhood of X in Q.
By a standard theorem (Corollary 3.5, p. 104 of [5]) there exists a neighbor-
hood K of ¥ and a strong deformation retraction 4: K xI->Q of K to ¥
in . Now U’ = U ~ Y is a neighborhood of X in ¥, and there exists by
hypothesis a neighborhood U, of X in Y which is deformable into. any
neighbhorhood W’ of X in ¥. Cleatrly there exists 2 neighborhood U, of X
in @, such that A(U,,I)C U and A(U,,1)C U;. Given any neighbor-
hood W of X in @, let W' = W ~ ¥. Then there exists a deformation
@: UyxI-U’ of U into W and we may deform U, into W in T by

Az, 2) it oo<t<i,
pld(z,1),2t—1) i i<i<l.
Therefore X, is- movable.

Iz, )=

<t
<t
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Sinee no particular properties of @ were used to prove Theorem 3,
this theorem and its second corollary remain true if ¢ is replaced by an
ANR Y, and movability by movability in Y. We call the corresponding
vergion of Corollary 2 the ANR version of Corollary 2.

We now construct the counterexample which will answer Borsuk’s
question. Let X be any of the uncountably many examples described
on p. 140 of [3]. That is, we first define the non-movable solenoid S (g &4
as the intersection of an appropriately nested sequence of solid -tori

{T¢ =1} in E*. Then we let X= 8u |JBd Ty, where BAT; denotes

i=1
the boundary of T; in E° (As part of the definition we require that
T:CIntT, , for every i > 2.) That X is movable may be seen directly

n
or as a consequence of Theorem 5.3 of [3] (deforming | JBAZT,w T,,,
n+1 i=1

n
into (JBAdTywT,., in T,,,v JBAT, in the obvious way). Let I®

i=1 i=1
=10,1}1x[0,1]x[0,1]C E® and embed X CIntI’. Let h: I®*—[2,3]x
X {2,81x[2,3] = J°® be the linear homeomorphism. Attach I®* to J® by
identifying x, with h(z,) for some 2, ¢ 8. Let P: I*4+J3>P(I*4+-J%) = Z
be the identification. Then P|I® and P|J® are homeomorphisms, the
spaces P(X) and Ph(X) are movable subsets of Z (homeomorphie to X),
and Z itself is an ANR. We may now establish '

=

TEEOREM 5. The subspace ¥ = P(X)u Ph(X) of Z is am example

of a union of two movable compacta, having one point in common, which s
not movable. ‘

Proof. Suppose Y is movable. For convenience we no longer write
the projection P. Note that while § is contractible in I3, there exists
a “toroidal” neighborhood ¥V of X in I® such that § is not contractible
inV.Let U=V hk(V), so that U is a neighborhood of Y in Z. Let V'
be a 1/n neighborhood of Y in Z, where » is chosen large enough that V" is
not connected. Then V' has exactly one component which intersects
both I* and J° namely the one containing the connected set S w L(8).
The same is true of any neighborhood of ¥ contained in V’. Note too
that S v A(S) is non-movable, since it retracts to & and movability is
preserved by fundamental domination, of which retraction is a special
case [3]. We apply the ANR version of Corollary 2 to the pair (Y, Sv h(AS'))
to obtain the neighborhood U’. Tet U* = I ~ U’. Since Y is movable,
by Theorem 4 there exists a neighborhood Uj of ¥ in Z which is deform-
able in U* into any neighborhood of ¥ in U*. We conclude, by the ANR
version of Corollary 2 and the movability of ¥, that there exists a neighbor-
hood W’ of ¥, such that for W* = W' ~ V', there is a deformation ¢: U x
X I.—>U* of U3 into W* in U*, satisfying o(S U h(8),1) A W= 0 Whuere
W is the component of W* containing § v (8). Therefore o(8 v ;L(S), 1)
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is entirely contained in either I® or J%, we assume J°. Let r: Z—I® be the
retraction which sends J*® to x,. Then the deformation rg{Sx IV
contracts § to a point in ¥, a contradiction. We conclude that Y is non-
movable.

By an isolated subset of a compactum X, we mean any compact
subset whose compliment in X is compact.

THEOREM 7. An isolated subset of a movable compactum is movable.

Proof. Let X, C X be an isolated subset of a movable compactum X,
and consider X as embedded in . Let U be a neighborhood of X, in ¢
such that U~ X\X,= @. Then there is a neighborhood U’ of X\X,
whose closure is disjoint from the closure of U. Given U v U, a neighbor-
hood of X, there is a neighborhood U, of X which is deformable into any
neighborhood W of X in U v U’. Then U,= U, ~ U is a neighborhood
of X, which can be deformed into any neighborhood of X, in U.

CoROLLARY. If X, is an isolated subset of a movable compactum X and
(Xo, @) s a movable pointed compactum, then (X, x,) is a movable pointed
compactum.

From the above corollary it is easy to see, since every pointed ANR
(X, @) is movable for every z,¢ X, that the previous example X = §u

v | Bd T has the property that (X, #) is a movable pointed compactum
i=1 -]
for any & belonging to the dense subset | BdT; of X. However (X, x)

i=1
is not movable for any = ¢ 8. Thus we have another example of a com-
pactum X such that Sh(X, ) depends on the choice of ze X (see
Section 5 of [4]).
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