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(1) D; ~ 8, D; 8 are simple closed curves for t<<1 and p;,p;
respectively for ¢==1.

(2) Each component of C\D,, O\D; contains exactly one component
of K\p;, E"\p; respectively.
(3) D;, D; are locally tame except possibly ab i, p; respectively.
(4) For i # j there is a number # such that 0 <{<C1 and
¢;nD;~nD;= 0= 0;nD;~Dj.

(8) If 4, §, and ¢ ave as in (4), << s <1 and W, W’ are the closures
of ON\C,, C\C, respectively, then the closures of the components of
WN(D; v Dy) and W\(D;wv Dj) are two tame 3-cells and a tame solid
torus.

Let t,, t,, ... be 2 monotone increasing sequence of positive numbers
with limit 1 such that for m = n and m,n <i-+1,

Cri‘ﬁ_Dmm_Dn=0=O’t"nD.'mmD;,.

The 8,’s, D,’s, S;’s and Dy’s form isomorphic decompositions of C into
tame 3 -cells, tame solid tori, and points of K and K'. Now it is not difficult
to extend the homeomorphism % inductively over elements of the de-
compositions to obtain a homeomorphism of ¢ onto itself. This completes
the outline of the proof of Theorem 5.
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Monotone decompositions of continua into
generalized arcs and simple closed curves

by
Eldon J. Vought (Chico, Calif.)

Abstract. For compact, Haunsdorff continua that are irreducible between two
points, and those that are separated by no subcontinuum, sufficient conditions are
given in order for the continuum to have a monotone, upper semi-continuous
decomposition onto a generalized arc and generalized simple closed eurve, respectively.
The conditions involve the use of saturated and bi-saturated collections of continua.
TFor metric continua the conditions are both necessary and sufficient. It is alsp shown
that the elements @ in the decomposition with void interiors are of the form
T(T(x)), z€Q, where T is the aposyndetic set function. The structure of the elements
with mon-void interiors is described and two open questions relating to the paper
are discussed.

1. Introduction. A compact, Hausdorff continnum M that is irredueible
between a pair of its points is fype A [4] if M has a monotone, upper
semi-continnous decomposition whose quotient space is a generalized arc
(a continuum with exactly two non-separating points). If M is separated
by no subeontinuum let us say M is also type A if there exists a monotone,
upper semi-continuous decomposition whose quotient space is & genera-
lized simple closed curve (a continuum in which every set of two distinet
points separates). The primary theorems of this paper establish sufficient
conditions for these two kinds of continua to be type 4. If the continuum
is metric the conditions are both neeessary and sufficient where, of course,
the quotient space is now a simple arc or a simple closed curve. Whether
in the Hausdorff setting these conditions characterize type 4 continna
is not known.

Prior work for non-metric continna has been done by Gordh [4],
and FitzGerald and Swingle [3] in the case where the continumm is
irreducible. Gordh generalizes the work of Thomas on metric continua [7]
to prove that a compact, Hausdorff continuum M is type A with the
elements of the decomposition nowhere dense if and only if M contains
no region-containing indecomposable continuum. FitzGerald and Swingle
give sufficient conditions for the continuum to be type A and give results
concerning the nature of the elements of the minimal decomposition.
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For metric continua separated by no subcontinua, Stratton [6] has
developed enough machinery to characterize the required decompositions
onto simple closed curves provided there exist two points # and y in M
such that L, ~L,=0 (Ly;= T(s) in our definition and notation used
Iater). Our approach makes use of a modification of the notion of
a saturated collection of subsets due to Whyburn [8, p. 45]. A collection {&}
of subsets of a connected topologic: 1 space X is saturated if for each @ ¢ {G}
and p ¢ X— @, there exists G' ¢ {@} such that @' separates p from @ in X,
ie, X—@F =AuBvwhere pe A, GCB and A ~"B=0 = A ~ B. A de-
composition of a topological space X is a collection {Q} of subsets of X
whose union is X and such that if @, Q" < {Q} then @ =@’ or @ ~ Q' = @.
EBach subset in the collection is called an element and a decomposition is
monotone if each element is a closed connected set (continuum). It is
upper semi-continuous provided that if @« {Q} and U is an open set
containing @ there is an open set V containing @ and lying in U such
that if @' € {@} and @' AV 5 @, then @' C U. Finally a subset H of X is
region-confaining if there is an open set U in X such that UC H.

2. Decompositions into generalized arcs.

THEOREM 1. Let M be a compact, Hausdorff continuum that is irreducible
between a pair of its points. A sufficient condition that M have a monotone,
upper semz-continuous decomposition such that the quotient space is a gener-
alized are is that there exisis a saturated collection {G} of subsets of M such
that each G ¢ {G} is a non-region-contwining continuum.

Proof. Let @ be a saturated collection of non-region-containing
continua of M. We first need to establish that no element of {G} separates
two points belonging to any other element of {G} (such a collection is
called non-separating [8, p. 42]). Suppose #,yeGe{@} and @ {6}
separates @ from y, ie., M— @ = A, 4,, a separation, with ze 4,
and y e 4y. The sets 4, and 4, are connected and 4, v @ and Ayo &
are continua. There is an element G e {§} such that G’ separates &
from z. It is clear that @' C 4, and if B, and B’ are the connected open
sets containing « and &, respectively, in the separation of M by G, it is
also clear that ¢'w 4, C B’ and ¢’ v B,C A,. The continuum G must
intersect both 6’ and ' so let us denote by H an irreducible subcontinuum
of G from @ to @". The continuum (B,w @' )vHuU (dyvw @)= M
since M is irreducible between some pr of its points. This means that H
and consequently ¢ have non-empty interiors in M. This eontradiction
establishes that {¢} is a non-separating collection.

It is an immediate consequence of this proof that if G, G' € {G} then
either G~ @ =0 or G=G'. As in [8, p. 128] let @, = {y e Mz and y
cannot be separated by any @ e {G}}. First notice that if » € &  {G} then
Qz=G so that {G}C {Q.w e M}. If Q, N Qy # O then Q= Q, for if
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P €Qy—Qz then p can be separated from « by an element @ e {@). But
@z~ G =1 s0 that G separates @, from p. Because Q; n @y # O, G sepa-
rates two points of @, which is impossible. Also if p ¢Q, then p can be
separated from @, py an element of {G}, which implies that @ is a closed
set. Bo {Q.lx ¢ M} is a closed decomposition of 3.

At this point it is useful to introduce a definition. If X is a topological
space and 4 C X then T(4)= A v { ¢ X| there does not exist an open
set U and continuum H such that e U C H C X— A4}. We denote T(7'(4))
by T%4) and in general T%d4)= T(T"Y4)). If Tl{z)= {z} for every
reX we sry X is semi-locally connected. The function T was first defined
by Jcnes [5]. For more information on T and T7, see [2].

By the definition of {0z z < M} it follows that T(Q;) = @ for all
z e M. For if y¢Q, there is G ¢ {G} such that H—G= 4 v B, a sepa-
ration of I, such that @;C 4, y ¢ B. Then y ¢ BC Buv G, a continuum;
80 ¥ ¢ T{Q.). Let {@;] x « M} be the collection of components of members
of {Qz] # € M}. This collection is a monotone decomposition of 3. Since
Q. is a component of @, and T(Q.) is a continuum [3, p. 353], we have
T(Q.) C T(Qs) = Q- and consequently T(Q.) = Q.. For each xe M we
now have T(Q.) = Q.. From this it is not hird to show that {Q}] z ¢ M}
is an upper semi-continuous decompesition of I [3, p. 45] and that the
quotient space M’ is semi-locally connected [3, p. 37]. Because M is
irreducible between two points so is M’ and consequently, because of
semi-loenl eonnectedness, every point of M’ except for two separates M.
Therefore M’ is a generalized arc.

The hypothesis could be slightly weakened in the theorem in that
the saturated collection {G} could be taken to consist of non-region-
contzining connected sets since the fact that they would be closed is an
immediate consequence of the definition.

3. Decompositions into generalized simple closed curves. The essential
concept needed here is another modification of the notion of a saturated
collection of subsets. A collection {G} of subsets of a connected topological
space X is bi-saturated if for each G ¢ {6} and p ¢ X— @, there exist &,
G ¢ {G} such that @' v G separates p from G in X.

THEOREM 2. A compact, Hausdorff continuum M that is separated by no
subcontinuum has a moncione, upper semi-continuous decomposition whose
quotient space is a generalized simple closed curve if there exists a bi-saturated
collection {G} of subsets of 3 such that each G « {G} is a non-region-containing
continuum. )

Proof. Let {G} be as in the hypothesis. We need to show first that
for any two elements G, Gy e {G}, Gy v G, does not separate two points
belonging to any other element of {@} (this is 2 modification of the notion
of a non-separating collection used earlier). Suppose z,y ¢ G and there
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exist @, Gy € {6} such that G, v @, separates » from y, e, M— (G v @)
= Az v Ay, a separation, with © ¢ 4, and y ¢ 4. Since no subcontinuum
separates I, A, and Ay are connected open sets and Az, A, are each
irreducible ﬂom @, to G,. Clearly the continuum @ must intersect G
or @, but not both. Let & ~ Gy  @. Because {G} is bi-saturated there
exist H,, Hye{G} such that M-—(H;v H,) = Bz By, a separation,
with @ € B and @, C B,. Bither H, C 4, or H,C A, (say H; C 4;) or else
H, v H, would not separate » from G; in G, v Ay G, let alone in M.
Let us consider the two cases: Hy,n Gy # @ and Hy~ G=0. If H,~
~ Gy # O then H, must separate Gy from H,w G, in Ay or else H, v H,
does not separate M. So A,— H, = C v D, a separation, with A, nGCC
and Az ~ (H, « 6,) CD. In order for H, v H, to separate & from @ in M,
we must have z e D. Let @ be an irreducible subcontinuum of @ from H,
to Gy(@ ~ H, # @). Since C is irreducible from H, to G; and & C C then
@ = C. Thus ¢ C @ C @ and since C contains an open set of M so does G,
a contradiction. If H, ~ G, =@ and H,C A, then a similar argument
leads to a contradiction. Finally suppose H, ~G,=@ and H,C A4,.
Then B, and B, are irreducible continua from H; to H,. Since G, C B,
and G, v Ay v G, is a continuum lying in M—(H,v H,) then it lies
in B,. So B;w H, v II,C 4; and, because By is a non-empty open set,
By Hyu H, separates Gy n A, from @, ~ Az in 4. If ¢’ is an irreducible
subeontinuum of G from @ to Bs;w H,v H, then again ¢’ must have
a non-empty interior. But then so must & and this is impossible. Both
cases H,n G, # 9 and H,~ G =0 have led to contradictions so if
2,9 € G ¢ {G} then they cannot be separated from each other in M by
the union of any two elements of {G}.

It is evident that if &, G «{G@} and G ~ G’ # O then G = G. Now
let Q= {y e M| # and y cannot be separated by any G,wv G,, where
Gy, Gy e {G}). If we @ e{G} then it is clear that Q.= G s0 {Qz] v e M}
3 {@}. As in Theorem 1 the elements of {Q,} are closed sets and if @z~
nQy # O then Q.= Qy so {@;] e M} is a closed decomposition of M.
Again it follows that T(Qz) = @, for all z ¢ M. For if y ¢ @, there exist
Gy, G, € {G} such that M—(G; v @)= A v B, a separation of M, such
that @; C A and y ¢ B. But @, v Bu @, is 2 continuum and B is an open
set; thus ¥ ¢ T(Qs). Let {Q,} # « I} be the collection of components of
members of {Q] x ¢ M}. By the same argument as before we have T(Q,)
= @, for all z ¢« M. By a similar argument to the one in [3, p. 45] it follows
that {Q.] = e M} is upper semi-continuous. As before by [3, p. 37] M’ is
gemi-locally connected. Because M is separated by no subcontinuum,
neither is M’ and hence M’ is loc Ily connected [1, Th. 2]. Therefore every
pair of distinet points of M’ separates M’ and so M’ is a generalized
simple closed curve.
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4. Decompositions into simple arcs and simple closed curves. In this
section M will be a metric continuum and here the conditions in Theorems 1
and 2 characterize type A continua for irreducible continua and those
in which no subcontinuum separates, respectively. Since Theorems 1
and 2 prove the sufficiency, only the necessity needs to be established
and, because the proofs are similar, the argument will be given only for
simple closed curves.

TEEOREM 1°. Let M be a compact, meiric coniinuum that is irreducible
between a pair of its poinis. A necessary and sufficient condition that M have
a monotone, upper semi-continuous decomposiltion such that the gquolient
space is an arc is that there exist a saturaled collection {G} of subseis of M
such that each @ e {G} is a non-region-coniaining continuum.

THEOBEM 2'. A compacl, metric continuum M that is separated by no
subcontinuum has a monoione, upper semi-continuous decomposition whose
quotient space is a simple closed curve if and only {f there exists a bi-saturated
collection {G} of subseis of M such that each G e {G} is a non-region-con-
taining continuwm.

Proof of necessity. Assuming that there exists the decomposition
of the hypothesis, let 3" be the quotient space, f the associated map of
the decomposition, and {G} the collection of point inverses f~'(x), z e M’,
that have void interiors. Since 3 has a countable basis and {f~z)] 2 ¢ M ’}
is a decomposition of 3, at most a countable number of these elements
have non-void interiors. Thus {G} is clearly uncountable and is a collection
of non-region-containing continua. It remains to show that {@} is bi-
satarated. Let G e{G} and p e M—@. There exist elements x,ye M’
such that f(G) = « and f(p)=y. Since M’ is a simple closed curve there
exist u,ve M’ such that M'—{u,v}= Azu Ay, a separation of A,
with zed;, yedy. Then M—(fu)v ™ v)=[ 4w (A,,)
a separation of M. Clearly u and v can be chosen so that f~*(u), f~(r)
have void interiors. Thus f~%u), F™v)e{G}. But G=f"(z) j‘ NAz)
and p ef " y) CFYLy), 5o FHu)wfNr) separates ¢ from p in I

Hence {@} is a bi-saturated collection.

5, Structure of the elements in the decompositions of type A Hausdorff
continua. The next theorem tells something about the structure of the
elements that have void interiors in the decompositions.

TaEoREM 3. Let M be a compact, Hausdorff continuum that is either
irreducible between two points or is separated by no subcontinuum. Further-
more let M be type A and let {D} be a monotone, upper semi-continuous
decomposition whose quotient space is a generalized arc or generalized simple
closed curve, respectively. If De{D} and D°=0, then D= T*z) for
every weD.
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Proof. The argument will be presented only for the case Whe:}'e M is
separsted by no subeontinuum. Let De {D} where D°*=@. Z?‘mst we
will show that if z ¢ D then D C T%u). Suppose y ¢ T*x). There is & con-
tinnam H such that ye H*CHC M—T(z). For each z e H there is
a continuum H, such that ¢ e H; C H, C M— {s}. The set ZE{THS, containg H

2nd, by compzctness, the unjon cf a finite number of the H’s contains H,
This union is a continuum K with H C K% We have the inclusions:
ye H'C HC E°C E C M— {z}. Because K does not separate M, M—K is
an open, connected set whose closure is a continuum L with the property
that L ~H=@. Also M—(H v L)=Awv B, a separation of M, since
otherwise M — (H v L) is a continuum separating A. Moreover A and B
are irreducible continua from H to L. Now weL so DL #@. But
D~ H = @ for otherwise an irreducible subcontinuum of -D from T to L
must be A or B each of which conteins an open set of M. However D
contains no such open set, 50 D "H =@ and y ¢ D which shows that
DC T¥=).

Next assume 4 ¢ D and let f be the natural map from M onto the
quotient space M’. There are points &’,y" ¢ M’ such that f(D)=4" and
fly)=1y’. Since M' is a generalized simple closed curve, M'—{x',y'}
= PwQ, a separation of M’, where {#'}w Pu{y’} and {#}v Qv {y}
are generalized ares. In the order of both arcs from «’ to g’ there are
points @, o/, b, b’ such that o’ < a< @'<y' in the first arc and o' <d
< b < g’ in the second We have M'—{a, bt = A’ v B’ and M'—{a, i}
= A U B, both separations of M’ with o'c A’, '« B’ and #'< 4, y' ¢ B,
respectively. The following inclusions are valid:

¥ e B C{atuB L {p}CBC{a}wBu{d}C M —{}.

Consequently

Ty CFYB)CFHB)Cf(B)CfHB) CH—f().

But y efYy’), D= f~*') and f~}(B’) and f~}B) are continua. Therefore
for z € D, y ¢ T%=), so T%z)C D, and hence T?%x) = D.

In general the structure of the elements with non-void interior is
much more complicated. However, if the decomposition is minimal (our
construction in Theorems 1 and 2 does not necessarily produce the minimal
one) in the sense of refinement and having the same properties, then some
information about the elements with non-void interior can be obtained.
The next theorem coneerns this. It should be remarked that if a continuum
is type A thereby having a monotone, upper semi-continuous decompo-
sition whose quotient space is a generalized arc or generalized simple
closed eurve it does have a unique minimal such decomposition [3, p. 37].
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TaEoREM 4. Let M be a compact, Hausdorff continuum that is either
irreducible between two points or is separaled by no subcontinuum. Further-
more let M be type A and {H} be the unique minimal monotone upper semi-
continuous decomposition whose quotient space is a generalized arc or gener-
alized simple closed curve, respectively. If H e {H} and H® O, then H® is
a subset of the union of a collection of region-containing indecomposable sub-
continua or a subset of the closure of such a union.

Proof. Let H ¢ {H} and suppose H® # @. Then every subcontinnum
K of H containing an open set in M coniains a region-containing inde-
composable subcontinuum. For if K is a subeontinnum of H with a non-
void interior in M and K contains no region-containing indecomposable
subeontinunm of M, then because we can assnme without loss of generality
that K is irreducible between a pair of its points, K has a monotone,
upper semi-continuous decomposition each element of which has void
interior and whose quotient space is a generalized are [4, Th. 2.7]. But
this deccmposition of K will result in a refinement cf {H} since X is a sub-
set of a single element of {H}. This is impossible because {H} is minimal.
Therefore K contains a region-containing indecomposable subcontinuum.
Using this together with the f:ct that M is irredueible between two points
or is separated by no subcontinuum, the conclusion of the theorem follows
readily.

For a method that generates the elements of the minimal decompo-
sition by an iterated chaining technique the reader is referred to [3]

6. Final remarks. Two open questions relating to this paper are inter.
esting and worth mentioning. First, what are necessary and sufficien-
conditions for a Hausdorff continuum to be type A for either the
irreducible continuum or the one that is separated by no subcontinuum?
Theorems 1’ and 2’ answer this when the continua are metric but the
Hausdorff case is not known.

The second question pertains only to metric continua. After Thomas
[7], define an irreducible continuum or one that is separated by no sub-
continunm to be fype A’ if it has a monotone, upper semi-continuous
decomposition whose quotient space is a simple are or simple closed
curve, respectively, and if the elements of the decomposition have void
interior. For a continuum M that is irreducible between two points,
Thomas obtained a necessary and sufficient condition that M be type A’.
His condition is simply that M contain no region-containing indecompos-
able subeontinuum. Theorems 1’ and 2’ characterize type 4 continua
for both the simple are and simple closed curve where, of course, the
elements of the decomposition do not necessarily have void interior.
But the type A’ characterization for simple closed curves is not yet satis-
factorily solved. Specifically: If M is a compact, metric continuum that
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is separated by no subcontinuum, what is a necessary and sufficien‘t
condition (or conditions) in order that M have 2 monotone, upper semi-

continuous decomposition, each element of which has yoid interior and
such that the quotient space is a simple closed curve?
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The Whitehead Theorem in the theory of shapes
by
M. Moszyinska (Warszawa)

Abstract. The purpose of this paper is to establish in the theory of shapes a theorem,
which is an analogue of the Whitehead Theorem. We start with proving some statements
concerning eategory theory (Section 1); they counld not be found by the author in the li-
terature. These statements enable us to prove the exactness property for homotopy
systems (§ 1 of Section 2). Next, we establish some propositions on inverse systems
of polyhedra (§ 2 of Section 2); they are needed in a proof of Theorem 3.5, which is
referred to as the Whitehead Theorem for inverse sequences of polyhedra (§ 3 of Sec-
tion 2). At last, applying the Freudental Theorem, the Holsztyiiski theorem on the
fundamental dimension and the results of {6] and [10]-[13], we obtain the main
theorem (Th.4.3).
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Introduction. As proved by J. H. C. Whitehead in [16] {see also [15]),
if two spaces X and ¥ are homotopically dominated by some connected
CW-complexes of dimension <, (of infinite dimension), then for a map
f: X=Y to be a homotopy equivalence it is sufficient that f induces
isomorphisms of homotopy groups, fa: mn(X)—>mn(¥), for n=1,..,n,
(for n=1,2,..).

Thus, for spaces with nice local properties (e.g. ANR’s) the homotopy
groups are the most important homotopy invariants. However, for arbi-
trary compaet metric spaces, the homotopy groups lose their validity.
For this reason K. Borsuk introduced the notion of fundamental groups.
As proved in [1], p. 253, the fundamental groups are shape invariants;
for ANR’s they are isomorphic to the homotopy groups.
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