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exists and equa;ls 0 at each point a in [0, 1]. This limit is equivalent to

lim w—_-l_?(ﬁ'(m) G(a)—F(2) &) —F (a)g(a)+

1 @€
+;:;(F(m)~F(a)G(a)— ff(t)G(t)dt)
which, since F is continuous and G’'(a) = g(a), is equal to

1 &
’im——((F(w)—F(a))G(a)— ff(t)G(t)dt).

o B— O

Since F' is absolutely continuous and thus F(x)—I(a) = f F(?)dt, the
limit, provided it exists, is equal to ‘
-1 F
lim —— —
i e, (f()GO)—F(t)G(a))dt .

Since &'(a) = g(a), it follows that G(t)— G(a)= (g(a)+&(t))(t—a) where
e(t)—=0 as t—>a. Consequently

l;“l_‘; ff(t) G(t)“f(t)G(a)dtl — l&é‘& uf”f(t)(g(a)—{-g(t)) (t— u)dt‘

9@+ (@) fw)(t_a)[dt

jo—al
<(lg@|+le@)) [ 17)a.

. . . N »
Since f(t) is Lebesgue integrable, so is [f(t)| and [1f®)|dt—~0 as 2—a.
Th. R P Tt . o

us the original limit exists and equals 0 and the theorem is proved.
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Regular maps and products
of p-quotient maps

by

Louis Friedler (Austin, Texas)

Abstract. It is shown that the finite produet of proximity quotient maps between
geparated proximity spaces is a proximity quotient map. A theorem on products of
topological quotient maps follows from this result. Also, the regular maps of Poljakov
are shown to preserve the semi-metrizability of proximity spaces.

1. Introduction. Much current research in general topology has been
concerned with generalizations of topologieal quotient maps. Two of
these generalizations are hereditarily quotient maps, which have been
considered by Archangel’skil [2] and Michael [8], and the bi-quotient
maps of Michael [8] and Héjek [6]. These two mappings have analogues
in proximity spaces which, in general, preserve more structure than
their topological counterparts.

Our notation will follow [3] and [15]. In particular, 4 € B will mean
A nond (X — B) and proximity maps and proximity guotient maps will be
called p-maps and p-quotient maps respectively. If 6 and ¢’ are two
proximities on a set X, 8’ is sid to be finer than §iff A 6'Bimplies A 6 B
Tor all subsets A and B of X. If f: (X, 8)~ Y is a function from a prox-
imity space (X, 8) onto a set ¥, the guotient proximity is the finest prox-
imity on Y for which f is a p-map.

2. Regular maps. Poljakov in [13] introduced regular maps and asked
if the regular image of a metrizable proximity space is metrizable. In [14]
he showed that a proximity space can be “determined by sequences”
iff it is the regular image of the disjoint union of metrizable proximity
spaces. However, since the disjoint union of metrizable proximity spaces
might not be a metrizable proximity space (although the induced topology
is, of course, metrizable), this did not answer the original question. The
purpose of this section is to show that the image of a semi-metrizable
proximity space under a regular map is semi-metrizable, thus giving
a partial solution to the problem. We begin with the definition . and
% characterization due to Poljakov [13].
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2.1. DEFINITION. A p-map f: (X, 8)—=(Y,d") is regular iff A44'p
implies f~Y(4) 8 f~(B).

2.2. TaroREM. Let f: (X, 8)~> (Y, d') be a p-map. Then the Sollowing
are equivalent:

1) f is regular,

(2) fHA)E U= AEF(T), :

(3) fliug: FTH8) =8 is p-quotient for all SC Y.

2.3. REMARES. (a) The equivalence of (2) and (3) above is similar
to Archangel’skif’s result in [2] which states that a map is hereditarily
quotient iff whenever U is a neighborhood of f~(#), f(U) is a neighbor-
hood of =.

(b) Theorem 3.5 of [3] implies that every p-open map is regular
and (3) above shows that regular maps are p-quotient. Poljakov [13]
gives examples to show that the reverse implications are not true in
general.

2.4. DEFINITION, A semi-metric on a set X is a real-valued funection d

on X x X such that for all » and y in X,
- (2) d(.’l), y)= d(y: m) = 0)' and

(b) dz,y)=0iif z=y.

2.5. DEFINITION. A proximity space (X,d) is semi-metrizable iff
there is a semi-mefric ¢ on X such that 4 6 B iff d(4, B)=0.

We shall need a lemma which may be of some interest in itself. It is
a proximity analogue of a topological semi-metrization theorem due
independently to C. M. Pareek [11] and O. C. Alexander [1]. Gagrat and
Naimpally [4] have also recently considered the semi-metrization of

proximity spaces. The emphasis of their research, however, was to use
proximities to obtain topological results.

2.6. LeMMA. A separated prowimity space (X, 8) is semi-metrizable iff
there is a countable family {V, )2, of symmetric subsets of X x X satisfying:
o0
(2) [\ Vi= 4 (ihe diagonal), and
i=1
(b) for each closed subset A of X, {VIAD, forms a 8-neighborhood
base for A (A€ V[ A] for all i and if AEB, then ACV [A]C B for some N).
Proof. <= Assume V,,, CV, and let

d(z,y) =0 i (2,9) eV for all 7,

Az, y) =1 gt (»,y) ¢V, for any 4,
1 X )

Az, y) = i i (5,9) e Vi~V .

Then d is a semi-metric. Now, let 4 nond B, ie. A€X—B. By our
assumption, 4 € V,[A]C X— B for some N. For each pair (a, b) ¢ A X B,

icm

©

Regular maps and producis of p-quolient maps 297
it must be true that d(a,b) = 1/, since if d{ay; b)) < 1/N for some
(ag, bo) € AX B, then by eVy[A]—a contradiction. Therefore, d(4, B)
= 1/N >0. )
- Conversely, if d(4, B) = ¢ >0, pick a positive integer N such that
1/ < &. Then Vy[A] ~ B=0, so that 4 € V41 CX—B, and 4 nond B.
= Let (X, 6) be semi-metrizable with semi-metric d. Let V; = {z, )
e X x X| d(=,y) < 1[i}. Clearly, {V j7L, has the required properties.

2.7. COROLLARY. A separated prozimity space (X, 8) is semi-metrizable
iff there is a countable family {UJ2, of covers of X such that

(a) Upp<< U, and .

(b) for each closed subset A of X, {St(4, U, forms a &-neighbor-
hood base for A.

9.8. TrmoreM. Let f be a reqular map from a semi-melrizable proa,:—
imity space (X, 8) onto the separated prozimity space (¥, 6'). Then (¥,d")
is semi-metrizable.

Proof. Since (X,d) is semi-metrizable, there is a sequence {V;}7L,
of covers of X such that the star at any closed subset of X fi)lrms
a 8-neighborhood base. Let A be a closed subset of Y. Clearly, I (4)
is a closed subset of X and f‘l(A)@St(f'l(A), V;) for all 4. Since f is
regular, it follows from Theorem 2.2 that

A €F(St(f(A), Vi) = St{4,f(Vy)  for all i.
Also, if A€ B then f'(4) €fYB), and thus j‘l(A)CSt(f-i(A),C Vj;,)
C 7Y(B) for some N. It follows as before that A@_S‘t({_t, f(VN))Y__é’.
Now, if U; = f(Vs), the conditions of Corollary 2.7 are satisfied, so (Y, &)
is semi-metrizable.

‘2.9. ProrosITioN. Let f: (X,a)—>(17,6’). be regu?ar and let f1(y)
be compact for all y € Y. Then f is a (fopological) qu?tzent map.‘

Proof. Since f is continuous, £(8) C a where_ 1az is the quotient ﬁOpg.
logy on Y. Now, let U be a-open; tha‘t is, let f~T) bial open. Ifye 1,:
then y € U iff f{y)€f YT, since fis reg"ul:ar. But f ‘(y) 15,2013,?2;
and is contained in the open seb 7Y T), so it is easy to find a se
which f~Y(y) € W C f(U). The result follows. -

Remark. Poljakov [13] gives an ?xampl_e1 of a regulal," map W‘bhl.(;
is not a quotient map, 8O the condition f~{y) compaci? hean;(éqrﬂe
eliminated, in 2.9. He also states .tha.t a regular, perfee}; map is erir iz;b] ey
quotient. 1f the domain has the elementafl'y proximity orflsf me ,ﬂt (a),
a slightly stronger result is true. We omit the easy;p;;oc; , czz )p( .
Part (b) follows from Theorem 2.3 of [3] and Remark 2.3 (a).

9.10. PROPOSITION. Let f: (X,8)~(X,0) be a regular map onto
o separated prowimity Space. If either
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(a) f~(y) 4s compact for all ye Y and (X, 0) is metrizable,
or
(b) & is the elementary prowimity and the quotient topology is com-
pletely regular,
then f is hereditarily quotient.

3. Products of p-quotient maps. Michael [8], Hajek [6], and others
have recently considered products of quotient maps on topological spaces.
It is well-known that the product of quotient maps is not, in general,
a quotient map. In this section it will be shown that produects of p - quotient
maps behave better than products of (topological) quotient maps and we
will use our result on proximities to obtain a theorem about topological
quotients.

Throughout, X* will denote the Smirnov Compactification of a prox-
imity space (X, d) and #*: X" Y* the unique extension of a p-map %
which maps X to Y. For any space Z, i, will denote the identity map on Z.
We will need to make use of the following characterization of the quotient
proximity:

3.1. TerorREM [3]. Let f: (X,0)>Y be a function from a prowimity
space (X, 08) onto ¢ set X. The quotient prowimity 6’ on Y dis given by:
A nond’ B iff there is some function g: ¥ 1 such that g(4) =0, ¢(B)=
and gof is a p-map.

3.2. DEFINITION. A map (p-map) f of X onto Y is bi-quotient
(p-bi-quotient) iff for every topological space (separated proximity space)
Z,fxi; XX Z—-YXZ is a quotient (p-quotient) map.

Before proving the main result of this section, we shall need two
lemmas.

3.3. LEMMA. Let {f.} be a collection of p-maps such that f,: X,~ Y,
for all a. Then f: IIX,—IIY, defined by [f(®)],= f2,) is a p-map.

Proof. It is sufficient to show =, o f is a p-map for all a. But (m,° f)(#)
= f(&,) = f, o w,(%), and the result follows. )

3.4. Levma. Let fi: X, - Y, and f,: X,—~Y, be a p-quotient maps
and let Y, X Y, have the quotient prowimity induced by F = f, X fo. Then
if &eX;, and ®eX,, Pl xieyt XX {2} X, % {fil@y)} and Flgxz
{1} X Xo-> {fi(1)} X X, are p-quotient maps.

Proof. Let &' be the quotient proximity on ¥, x ¥,, 6, the restriction
of 6" to 8 = YaX {fo(#)} = ¥, X {9}, and &, the quotient proximity on
induced by F[Xlxm} Then since the restriction of a p-map is a p-map,
8, < 8. To show 8, < §,, let Anons, B, where 4, B C 8. We must prove
that A noné, B. By the definition of the quotient prox1m1ty 5, on 8, there

is some g,: 81 such that g,(4) =0, g,(B) =1 and & = g, o (Fx, i)
is & p-map.
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Extend G; to X;x X, as follows: G(z,y)= Gz, x;). Further, let

g: Yy xX Yy~ I be defined by g(u, 2) = g,(u, 3,). Now (g - F)(z, y) = Gz, y)
since

(g o )@, )= g(F (@, 9))= g(fu(2), ) = gs( (), %)
= gs(FiXxx{zg] (7, 1) = s(m; ry) = G(m7 y).

Sinece X, is p-isomorphic to X, X {&}, say by y(x) = (x,2), @ is equal
to G5 oy o my,, and thus is a p-map. Therefore, g(4) = 0, g(B)=1 and
goF = (@is ap-map, so by the definition of the quotient proximity on
Y, X Y;, Anonéd’B. But since §, is the restriction of 6’ to 8, Anond, B.
Hence, §, = ;.

The corresponding result with #; ¢ X; follows similarly.

Note that this result implies that ¥,X {y,} as a subspace of
(¥ % ¥Y,, ¢’) is p-isomorphic to Y.

3.5. TEROREM. Let fi: X; =Y, and fo: X~ Y, be p-quotient maps
between separated prowimity spaces. Then fiXfa: X X XY, x ¥, is
a p-quotient map.

Proof. Let 6 and P be the product proximities on X,x X, and
Y, x ¥, respectively and let ¢’ be the quotient proximity on ¥,% ¥,
induced by F = f; X f,. By Lemma 3.3 and the definition of the quotient
proximity, P<<é'. If P # ¢, ¥, X ¥, contains two subsets 4 and B
such that APB but 4 nond’ B.

Sinece APB, there is a point in Cly,, ypd N Clp pB, where
(Y, x X,)* is the Smirnov Compactification of (I’1>< Y,, P). By a result
of Leader [7], (X;x X,)*=X;x X} and (¥;x ¥,)* = Y*X ¥y, so say
(3%, 2%) is the point in the intersection of Clp,,rged and Clp,,pysB.
If ff, i = 1,2 is the extension of f; to X;, then F* = f7 X fa must be the

‘unique extension of F: (X,X X,, 8)=(¥,x ¥,, P} to X x X;.

Consider W = F"Y(y*, ") = fi (y") x i (="
1)  We claim that Olg,, gl {(4)~ W=0.

Assume not. Then there is an open set U containing W such that U
AF"YA) = @. But since f;Hy*) and f, (") are compact, open sets T,
in X¥ and U, in X} exist sueh that W C U, x U, C U. Now, f; and f; are
closed maps, hence easily hereditarily quﬁtient It follows from
Remark 2. 3 (a) that f1(T,) is a nelghborhood of y* and f5(U,) is a neighbor-
hood of z*; hence, F*U,x U,) = f{{U)xfs(Us) is a nelghborhood of
(", &). But U1,< U,CU and F*(U)~ 4 =0 —which contradicts the
fact that (y ,2%) e Gl(ylxm*A This estabhshes the elaim. Similarly,
Clix,xxa FHB) N W = @.

Let (a,b) be a. point in Cly.xyf™ Y4) W and let (c,d) be
a point in Clix, x B (B) ~ W.
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Since 4 nond’ B, there is a function g: ¥ — I suchthat g(4)= 0, g¢(B)=1
and g o F is a p-map. Our objective is to show that the extension, (g « F)¥,
of go P to (X, x X,)* takes (a, b) and (¢, d) to the same point in I. But
first, let @, € X,.

(i) We claim that (g o FY(a, @) = (g o F)*(c, @),

If we consider ¥ as a map onto (¥;X ¥,, '), then by Lemma 9.4,
Yo X {ys} = Y, X {fo(a,)} has the quotient proximity induced by F|x (s,
Then, since (g o F)lx i = (Ilrxpa) © (Flxixie) 16 follows from Theo-
rem 1 of [10] that gly, ., is 2 p-map. But the extension of a p-map
to the Smirnov Compactification is unique, hence

(111) ((!I ° F)]X]X{mg})* = (!] ° F)ﬂxi“x{m} = <gIY1X{l/2})* ° (‘F]XD({xz})*

where {(g o F)|x,x(zg)" 18 the extension of (g o F)|x, s 10 X7 X {z,} and
(9] 7uxim)” 15 the extension of the p-map ¢|p e 0 (¥ X {H.})" (Which
is Y} X {y,} by the remark following Lemma 9.4). Now, f;(a) = fi(¢) = o*,
80 (lelx{xg})*(a: &) = (F]Xlx{xg})*(ci 2,) and hence )

(giylx{yg))* ° (lelxm})*(“y @) = (glylx{yg})* ° (F|X1x{xs})*(c7 @)

It follows from equation (iii) above that (g F)*(a, ) = (g o F)*(c, my),
establishing claim (ii). If we repeat the above argument with the roles

of X, and X, interchanged, then it follows similarly that (g o F)*(a,, b)

= (g o M"{zy, d) for any =, e X,.
(iv)  'We now use a limiting process to show (g - F)*(a, b) = (g - F)*(c, d).

Pick a net {(a,, b)) in F'(4) eonverging to (a, b). Then <b,> C X, con-
verges to b, so {(a,b,)>—=(a,d) and {(¢,d,)>—>(¢c,b). But for each a,

it follows from (ii) that (g > F)*(a, d,) = (g o F)*(¢, b,), hence in the limit,

(g o F)*(a, 0)= (g o F)"(c, d) .
If we pick a net in F~*(B) converging to (¢, d), a similar argument will show
(g o F)*(a, d)= (g - F)*(e, d) .
Again, we can easily interchange the roles of X, and X, to show that
(goF)(a,d)= (g F)*a,b) and (goF)e,d)= (g F)c, D).

Putting these together we easily verify (iv).
However, since g(4) = 0, (g F)(F~(4)) = 0, so that

(g ° F)*(OI(X1XX5)*F_1(A)) =0. Slmﬂaﬂ'y (g ° F)*(OI(X1XX3)*F—1(‘B)) =1.

In particular, (g F)*(a,b)=0 and (g« F)*e, d) = 1— which contra-
dicts (iv).
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It follows that 6’ = P and £, x f, is a P-quotient map. This completes
the proof.

3.6. COROLLARY. If fi: Xy, i=1,..,n are p-quotient maps

between separated proximity spaces, then F: ﬁ X¢—>ﬁ Y: defined by
] =1

. t=1 L3

F(wyy ooy @n) = (fi(®), .., fal@n)) is @ p-quotient map.

3.7. COROLLARY. A p-quotient map between separated proximily spaces
is p-bi- quotient.

The next lemma follows from a result of Hager [5].

3.8. DEFINITION. A topological space X is pseudocompact iff every
real-valued continuous function on X is hounded.

3.9. LevmA. Let X and ¥ be infinite separated prozimity spaces each
with the fine prowimity. Then the product promimity is the fine prozimity
on XX Y iff XX Y is pseudocompact.

3.10. THEOREM. Let f;: X, Y, and f,: X,— Y, be (topological) quotient
maps between Tqy, spaces and let X, and X, be infinite. Then if Xyx X, 1s

- pseudocompact, fi X f, is a quotient map.

Proof. Let X;, Xy, ¥; and Y, each have the fine proximity. Then
by Lemma 3.9, the product proximity on X, x X, is the fine proximity
and since ¥;X Y, is Ty, it follows from Theorem 2.3 of [3] that the
quotient topology is equal to £(6'). Now, by Theorem 3.4, 8’ is the product
proximity P on Y;X ¥, s0 {(P) = {(d') is equal to the guotient topology
and hence, fX ¢ is a quotient map.

4. Examples and relationships. In this section we explore the re-
lationships between the maps introduced in sections 2 and 3 and their
topological analogues.

4.1. EXAMPLE. A Dbi-quotient, p-quotient map which is not regular.

Let X = [0, 2] and identify [%, 2] to a point. Then the natural map
is easily bi-quotient and p-quotient. But f[0,1]4’f(3,2], although
[0, %) nond (£, 21.

Example 4.1 contrasts with topological quotient maps since bi-quo-
tient maps are hereditarily quotient.

4.2. EXAMPLE. A regular map which is not quotient.

Let X = Rx R with the product proximity. For (z, y) e EX R, let
f(m, y) be the point on R where a line through (z,y) at a positive angle
of 45° with the x-axis crosses that axis. The quotient topology is cleaxly
the usual topology. It is not hard to show that the quotient proximity
is the trivial proximity and hence does not induce the quotient topology
although f is regular.
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4.3. EXAMPLE. A hereditarily quotient, p - quotient map which is not
bi-quotient.

Let X be the disjoint union of countably many copies of [0, 1] and
let X have the elementary proximity. Identify all 0’s to a common point.
Then 6 with the quotient topology is completely regular, so the natural
map f is quotient and p-quotient. f is also easily hereditarily quotient.
But Michael has shown [8, Example 8.1] that f is not bi-quotient.

In [8], Michael proves a theorem for bi-quotient maps that has an
analogue for proximity spaces. His topological result might lead us to
expect that 4.4 (a) below is equivalent to f being p-bi-quotient, and
hence that 4.4 (a) holds for every p-quotient map. However, since 4.4 (a)
easily implies that f is regular, Example 4.1 shows that this is not the
case. The proof of the proposition is similar to Michael’s.

4.4. ProrosiTiON. If Y s a separated prowimity space and f: X+ ¥
is a p-map, then the following are equivalent:

(a) For A, a closed subset of ¥, W a p-cover of f~(A), then finitely

many. f(T), UeW cover some.p-neighborhood of A.

(b) For A, a closed subset of Y, U a p-cover of X, then finitely many
f(TO), UeW, cover some p-neighborhood of A.

(A cover U= {U,},c4 18 a p-cover of X iff there is a coverV = {V J,. 4
such that for all « V,€ U,.)

Proof. a= b is clear. To show b= a, let 4 be a closed subset of ¥
and U a p-eover of f~(4). Since Y is T,, for each x ¢ A pick W, and V,
such that W, €V, and V; nond 4. Let U = (¥}, and W= W v f7(V).
Then W is a p-cover of X, so there is a set ¥ = € v D such that A€ N,
where € is the union of finitely many f(U), U ¢ U and D is the union of
finitely many V.. But then 4 nondé D implies A € (.
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