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The connections between different notions of a Boolean elementary
subsystem may be visualised by means of the following diagram.

GG >6=2E

¥ %
B >E<0
v ¥

<G 62,

ProBLEM 1. How to complete the diagram? Which implications
hold and which fail?

We have proved the upper and lower Lowenheim-Skolem-Tarski
theorems for <. Thus from Theorem 5 it follows that both theorems
bold for <, and <3;,. From Guzicki’s example it follows that the lower
Lowenheim-Skolem-Tarski theorem fails for <, and therefore for <.
However, if we introduce into the lower Loéwenheim-Skolem-Tarski
theorem some stronger assumptions (see [1] Theorem 4.3.1), it ‘will
hold for <,.

ProsrEM 2. Does the lower Liwenheim-Skolem-Targki theorem hold
for- <<°% Does the upper Liwenheim-Skolem-Tarski theorem hold for
<% <sand <t

A partial answer to Problem 2 is given in {17 (see page 63). Namely,
for any Boolean-valued relational system & and any cardinal number u
there is a Boolean-valued relational system &' of the power at least u
such that € <, &".
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A non-symmetric generalization of the
Borsuk-Ulam theorem (*)
. o
Kapil D. Joshi (Bloomington, Ind.)

Abstract. The following generalization of the well-known Borsuk-Ulam theorem
is proved. Theorem: Let X be a compact subset of the Euclidean space E#** which
disconnects E**! in such a way that the origin is in a bounded component of B™1— X

.and let f: X —RE" be a map. Then there exist two points #, ¥ in X, lying on opposite rays

from the origin (i.e. ¥ = — Az for some 1> 0), such that f(z) = f(y). This provides an
affirmative answer to a question of Borsuk. The proof is based on P. A. Smith’s theory
of the index of a periodic transformation acting on a topological space, Yang’s result
about maps from such spaces to the Euclidean spaces and the technique of approximating
the set X by a special class of polyhedra, the so-called “regular polyhedra” defined in
the paper. The special cases n = 1 or 2 of the theorem were proved earlier by Sieklucki
by a different argument.
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1. Introduction. The classic Borsuk-Ulam theorem [2] states thatb
if f is & map from the n-dimensional sphere 8" into the »-dimensional
Tuclidean space R™ then there exists a pair of antipodal points {x, —x}
on 8" such that f(w) = f(—u). Several generalizations of this theorem,
proceeding in various directions, have been obtained among others by
Agoston [1], Jaworowski [8], Yang [14], Granas [6] who extended the
result to infinite-dimensional Banach spaces and Munkholm [9] who
considered Z,-actions on a homology sphere for a prime p. In many of

(*) The main result of this paper was included in the author’s dissertation sub-
mitted to Indiana University in partial fulfillment of the requirements for the degree
Doctor of Philosophy in April 1972, The author would like to thank his advisor, Prof.
Jan Jaworowski for his help.
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these genéralizabions (see for example, [14], [8] and [1]) the sphere is
replaced by a more general space on which some suitable notion of anti-
podality can be defined. The generalization to be proved in this paper
is also of this kind. We replace the n-sphere 8" by an arbitrary compact
subset X of R which disconnects the latter in such a way that the
origin O of R"*! lies in a bounded component of R*™'— X (we abbreviate
this to say that X separates O from oo). For our purpose, two points
in X are antipodal if they lie on opposite rays from the origin. Thus our
main theorem is as follows.

THEOREM A. Let X be a compact subset of R*** which disconnects R+t
in such a way that the origin lies in a bounded component of R *— X. Then
given any map f: X — E" there exist two points © and y in X lying on opposite
rays from the origin (that is, y = — Az for some A > 0) such that f(z) = f(y).

It should be noted that the points # and % whose existence is asserted
in this theorem are related to each other only by the geometric con-
dition that they lie on opposite rays from the origin and not by any
functional relation. In particular, they need not be the images of each
other under the action of some involution on X. In fact although we
shall work with a space with an involution which is closely related to X,
the space X itself may not have any involution aeting upon it. In this
sense Theorem A is “non-symmetric” in nature and bears some resem-
blance to the results obtained by Hopf [7], Noguchi [11] and Agoston [1].

Theorem A provides an affirmative answer to a question raised by
Borsuk at the International Symposium on Topology and its Applications,
held in Herceg-Novi in 1968 (see [4], p. 344). The special cases when
n=1 or 2 have been proved by Sieklucki in [12]. However, the proof
there depends heavily on the fact that 8§ can be given the structure
of a topological abelian group for these values of . Since the non-
existence of such a group structure on 8%~ is well-known for other values
of 7, Sieklucki’s proof cannot be applied for any other value of n.

Our line of approach can he described as follows. Suppose X is
a compact subset of R"™' separating O from co. We consider the space
A(X) called the antipodal space of X and defined by A(X) = {(w, )
e XX X| y= —Jip for some 1>0}. There is a fixed-point-free invo-
lution 7' on A (X) defined by T(z,y) = (y, ). A map f: X—R" induces
a map g: 4(X)—~R" defined by g(z, y) = f(=). The desired result about f
can be obtained by an application of a theorem of Yang ([14], p. 270)
to the map g. But in order to do the latter we must first show that the
Smith index of (4 (X); T) is at least m. We have not succeeded in doing
this in general. However if X happens to be what we call a regular
polyhedron (defined in Section 3) then it can be shown that the Smith
index of (4 (X); T) is'n. Fortunately the class of regular polyhedra turns
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out to be large enough so that any given neighborhood of X always con-
tains a regular polyhedron. Thus, in this sense an arbitrary compact
subset of R™** which separates 0 from oo can be approximated by regular
polyhedra. The desired result about such a set is established by first
proving it in the case of a regular polyhedron and then applying the
limiting process. The technique of approximation by polyhedra was
introduced by Sieklucki [12]. What we use here is a sharper version of it.
Namely, not only are our approximating sets polyhedra, but they are
polyhedra of a very special kind.

In section 2 we list facts from P. A. Smith’s theory of fixed-point-
free involutions as well as Yang’s result which are vital for our work.
In section 3 we introduce the notion of a regular polyhedron and prove
that if X is a regular polyhedron then the Smith index of (4(X); T) is .
In section 5 we show how an arbitrary compact subset of R*+! separating O
from co can be approximated by regular polyhedra. Section 4 is prepara-
tory for section 5. In the last section we combine the machinery developed
in sections 3 and 5 with Yang’s result to obtain the desired generalization
of the Borsuk-Ulam theorem.

2. Smith theory and Yang’s result. Throughout this and the remaining
sections by a space we shall mean a compact metric space. The homology
groups will always have coefficients in Z, and consequently Z, may be
suppressed from the notation. Unless otherwise stated, we shall use Cech
homology. Of course, if X has the same homotopy type as a compact
polyhedron, then it does not matter which homology theory is used.
By abuse of language we shall sometimes denote certain cycles on a space
by subsets of that space. For example, when we say, “consider the
n-cycle 8” on 8’ we mean “consider a suitable triangulation of 8™ and
consider the simplicial n-cycle whose carrier is 8. Similarly if f: XY
is & map and 2 is a cycle on X, we shall denote by f(2) the image cycle
on Y. Also by abuse of language, we shall use the same symbol, when
confusion is not likely, to denote a Euclidean complex and its polyhedron.
A similar statement holds when we consider cell complexes. The cell
complexes we consider are a very special case of Whitehead’s CW complexes,
in that the cells are homeomorphic to Euclidean disks and the attaching
maps are embeddings. If K is a triangulation of a polyhedron X and
¥ C X corresponds to a subcomplex of K, then this subcomplex will be
denoted by K|Y. A similar notation will be used if K i a cell structure
on X.

A homeomorphism 7 of a space X onto itself is said to be of period n,
if the order of 7' in the group of all homeomorphisms of X onto itself
is m. The theory of homeomorphisms of finite period was developed by
P. A. Smith and a treatment of this can be found in [13]. A homeo-
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morphism of period 2 is called an involution. We shall be exclusively
eoncerned with involutions which have no fixed point (i.e. a point which
is mapped onto itself by the involution). Smith’s theory takes a particu-
laxly simple form when applied to involutions. Despite this, in the interest
of space it is not possible to give here a complete account of the results
we shall need from Smith theory. A detailed exposition is given by Yang,
[14]. We shall therefore list down only those definitions and theorems which
will be directly used in this work and refer the reader to [14] for details.

A T-space is a pair (X; T') where X is a space and T is an involution
on X. A subset, A of X is said to be T-invariant if T(4) C A (and hence
T(4)=A).

The same symbol T' can be used without confusion to denote in-
volutions on different spaces at the same time. Tf (X; T) is a T'-space
and A C X is T-invariant, then there is an involution on 4, induced by
the involution 7' on X. This induced involution will again be denoted
by T itself. Occasionally when the involution on X is of a very special
kind, a different symbol may be used to emphasize this fact.

- If (X5 1), (¥; T) are T'-spaces, a map f: XY is said to be a T'-map
or an equivariant map if Tf = fT.

A T-space (X; T) is said to be simplicial if there is a triangulation K
of X such that T maps each simplex of K onto some other simplex of K.
Obviously when this is the case, simplices of a given dimension are
permuted among themselves under the action of 7. If T': X —» X is sim-
plicial with respect to a triangulation K of X, we say K is a symmetric
triangulation of X. When this is the case, we also say that T acts sim-
plicially. Note that if T acts simplicially on X, then the 7'-space (X; T)
is simplicial, but the converse is not true. For example, let X = [0, 1] v
w [2,3] and define T by

242 if ze[0,1],

T(m) = 1 .
(w—2)" if ge[2,3].

Clearly (X; T) is simplicial although it is impossible to triangulate
X in such a way that T itself acts simplicially.

In developing the theory of special homology groups it suffices fo
deal ‘with simplicial T'-spaces. Whatever is true for such 7'-spaces is
of course ttue for those where T acts simplicially.

Let (X; T) be a simplicial T-space. We recall that the homology
groups are assumed to have coefficients in Z,. For an integer p = 0,
let Op(X), Zy(X), Byp(X) and H,(X) be respectively the pth chain, cycle,
boundary and homology groups of X (in some triangulation given by
the definition of a simplicial T-space). Since T permutes the p-di-
mensional simplices of X among themselves it induces a map, also de-
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noted by T, T: Cp(X)->O0p(X). A chain ¢ in Oy(X) is called a T-chain
if T(¢)= ¢. It is not hard to show that ¢ is a T'-chain if and only if
¢= d-+T(d) for some d in Cp(X). The T-chains in Cp(X) form a sub-
group of Op(X). This subgroup is denoted by Op(X; T). Note that T
commutes with the boundary operator & and so & maps Cp(X; T) into
Cpi(X; T).

We define Zp(X; T)= Cp(X; T) n Zp(X) and Byp(X; T)= 00, (X; T).
Then By(X; T)C Zo(X; T) and we define Hp(X; T)= the factor group
Zy(X; T)By(X; T). Elements of Z,(X; T) are called p-dimensional
T-cycles, or invariant p-cycles or symmetric p-cycles; those of Bp(X; T)
are called p-dimensional T -boundaries or invariant p-boundaries or sym-
metric p-boundaries. Hp(X; T) is called the p-dimensional, special Smith
homology group of (X; T). The term “equivariant” is also used in place
of “invariant”.

If (X; T) and (¥; T) are simplicial T'-spaces and if f: XY is a sim-
plicial, equivariant map, then f induces a homomorphism (fu)p: Hp(X; T)
—~H,(Y; T). We shall often drop the subseript p from (fi), and write
fu: Hp(X; T)—Hp(Y; T). The operation of associating fi to f is functorial.

To define the special Smith homology groups of an arbitrary I'-space
(X; T), we consider the inverse system of the nerves of certain coverings
of X and take the inverse limit. These groups are also denoted by
H,(X; T) etc., and they turn out to be isomorphic to Hp(X; T') as defined
before in case (X; T) is simplicial to start with. Again, an equivariant
map f: XY between two T-spaces (X; T) and (Y; 7) induces homo-
morphisms fy: Hp(X; T)—>Hy(¥; T) in a functorial way. We omit the
details of these definitions since they will not be needed directly.

1f (8% T) is the n-sphere S™ with T the antipodal involution, then
it can be shown that

Hy8 T
o5 )=0 for p>n.

~Z, for0<p<mn,

Next we come to the important concept of the so-called index homo-
morphism, For every T'-space (X; T) and for every integer p > 0, there
is a homomorphism v: H,(X; T)—>Z, called the index homomorphism.
(A better notation for this would be »x 5 ,. But » alone will not cause
any confusion.) Again we omit the definition of ». The index homo-
morphism is natural in the sense of the following theorem.

(2.1). TuporEM. If f: XY is an equivariant map between T -spaces
then vf, = v, where on the left hand side v means v: Hyp( Y5 T)—>Zy and on
the right hand side v means v: Hy(X; T)—>Zs.

(2.2). TEEOREM. For every T-space (X; T') there is an integer n such
that v: Hy(X; T)— Z, is an epimorphism for 0 < p < n and is the zero map
for p >mn.

2 — Fundamenta Mathematicae, T. LXXX /‘ 7
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It is interesting to note that this theorem holds even when X itself
is not finite dimensional. (We, of course, assume, as always that X is
compact and metric.) The integer  is called the Smith index (or simply
the index) of the T-space (X; T). We shall denote it by Ind(X; T).

An immediate consequence of (2.1) is,

(2.3). TamorEM. If f: XY is an equivariant map between two
T-spaces ‘then Ind(X; T) < Ind(¥; I).

If T is the antipodal involution on §*, then it turns out that the
index of (8"; T) is . This fact, combined with the last theorem gives,

(2.4), TerorEM. If f: X->8" is an equiveriant map, then Ind(X; T)
< n. Bquality holds if and only if the map fu: Ho(X; T)—Hy(S; T) in-
duced by f is non-zero. If, moreover, (X; T) and the map f are simplicial
then equality holds if and only if there is & symmetric n-cycle z on X which
is mapped onto the non-trivial n-cycle on 8™

It should be noted that the word “symmetric” in the statement of
the last theorem cannot be dropped. It may happen that the map
et Hy(X) = Hp(8"™) is non-zero but still the map fi: Hy(X; T)—+Hy(8"; T)
is the zero map. As an example let X = §"x {—1,1}. Define I X+ X
by T(%,t) = (—=, —%) and f: X—>8" by f(z,?)= . Clearly f is equi-
variant and takes the n-cycle carried by §"x {1} on X to the non-trivial
n-cycle on 8" But since the coefficients are in Z,, the only non-zero
symmetric n-cycle on X, which is carried by X itself, goes to the zero
n-cycle on 8" under f. Thus fi: Hyp(X)—Hn(8") i3 non-zero but the map
ot Ho(X; T)—>Hp(8"; T) is zero and so the index of (X; T') is less than .
Actually it is not hard to show that in this example the index of (X; T)
is zero.

‘We conclude this section by stating the following theorem due to
Yang ([14], p. 270) which will be needed in section 6.

(2.5) THROREM. Let (X; T) be a T-space of index n and let f be a map
of X into the Buclidean F-space R*, where 0 < &k < n. Let X = {x ¢ X| f()
= f(Tw)}. Then Xy is T -imvariant, compact and (X T) is of index = n— k.
In particular if n=TF then Xy is non-empty, i.e. there exists x in X such
that f(x) = f(Tx).

Since the Smith index of the n-sphere with the antipodal involution
is n, the Borsuk-Ulam theorem follows immediately from (2.5). This
theorem will also play a crucial role in our proof of the desired generali-
zation of the Borsuk-Ulam theorem.

3. Regular polyhedra. We are concerned with compact subsets X
of R"*! which separate the origin O from oo (i.e. for which the origin lies
in a bounded component of the complement). If X is any compact sub-
set of B"** not containing 0, then there is a map, often called the Borsuk
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map, p: X—8" defined by p(z) = z/llv|. Borsuk [3] proved that the
origin is in a bounded component of R""*— X if and only if the map p is
essential. This, in turn, is equivalent to the condition that the induced
map on the n-dimensional Cech homology groups p«: Hau(X)-—>H,(S")
be non-zero. Given any such set X we construct a space 4(X), called
the antipodal space of X and defined as {(#,¥) e XX X| ¥y = — 1=, for
some 4>0}. Equivalently, A(X)= {(z,y)e XX X| p(@) = —p(u)}
Clearly A(X) is a closed subset of X X X and consequently is compact.
There iz a natural, fixed-point-free involution 7' on A(X) defined by
I(z,y)= (¥, »).

We are interested in the Smith index of the T'-space (_A (X); T).
There is a map ¢: 4(X)->8" defined by ¢(x, y) = p(x). Clearly this map
is equivariant with respeet to T and the antipodal involution on &§.
Hence by (2.4) we certainly know that the Smith index of (A(X); T)
cannot exceed n. We would like to know if it is equal to ». The importance
of knowing this is that a map f: X R" induces a map g: 4(X)->R",
defined by g(z,y) = f(2) and in order to apply Yang’s result to the
map g, we must know that the Smith index of (4(X); 7) is at least .

We have not succeeded in showing that the Smith index of (4(X); T)
is necessarily #n. We remark that from the fact that p.: Hn(X)—>Ha(8™)
is non-zero, it is not hard to show that g.: Ha{A(X))—>H,(8") is also
non-zero. However, as remarked after the statement of (2.4), from this
alone, we cannot conclude that gu: Hn(d(X); T)— H(8"; T) is non-zero.

In some special cases we can show that the index of (4(X); T} is »
by actually constructing an invariant n-cycle on A4 (X) which is taken
by ¢ to the non-trivial invariant n-cycle on 8" An important instance
in which such a construction is possible is when X is a regular polyhedron,
a concept we shall define shortly. Before doing so we put the argument
in a slightly different but equivalent framework., This will allow us to
handle the maps p and ¢ with more ease. We emphasize, however, that
the change is purely technical and not conceptual. At the end of section 5
we shall come back to the original framework. _

If X is a compact subset of R** not containing the origin, then there
exist real numbers 0 < 7 << R (depending on X) such that X is contained
in the interior of the annulus A(r, R) = {# e R"™| r < |uf] < RB}. There
is a homeomorphism ¢: A(r, B)—>8"x I defined by

z BR—|a
¢($)=(M, R—’I'>'

By means of ¢ we regard X as a subset of §"x I; in other words we
identify X with @(X). Then the Borsuk map p becomes merely the re-
striction of the projection of §"x I onto §”. Moreover, O is in a bounded
component of R**'—X if and only if X (that is, ¢(X)) separates the

9%
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top and the bottom of the cylinder 8§ X I. This leads to the following
definition. :

(3.1). DEFINITION. A subset X of 8 I is said to be a Borsul set
it X is compact and separates the top X™x {1} from the bottom 8" x {0}.

In this new formulation Borsuk’s characterization [3] can be rephrased
by saying that a compact subset X of §"X I, not intersecting either
the top or the bottom, is & Borsuk set if and only if the map p: X8,
which is the restriction of the projection, is essential. This is so if and
only if the map p«: Ha(X)-Ha(S") on (ech homology groups is non-zero.
Notice that the set 4 (X) now becomes {((z,s), (—@,1)) e XX X| z ¢ 8",
s,tel} and the map g A (X)—->8" becomes q((m,s), (—a, 1)) ==

To define regular polyhedra we first make the following definition.

(3.2). DEFINITION. Let ¥ be a topological space and let pr.: Y X I-Y
be the projection, A subset § of ¥ x I is said to be vertical if the map
pr.|§: 8- is not injective, that is, if there exist ¥ in ¥ and s,¢in I
such that (y,s) and (y,t) are both in § and s # ¢.

Clearly, if ¥ is Hausdorff and § is compact and not vertical then
the map p: S—pr.(S) defined by the projection is a homeomorphism.
In this case we say that § falls on or projects onto or lies above p(S).

Now we are ready to define regular polyhedra.

(3.3). DEFINITION. A compact polyhedron P C 8"x I is said to be
a regular polyhedron if there exists a triangulation K of P and a symmetrie
triangulation L of 8" such that,

(i) the map p: P—>8", which is the restriction of the projection,
is simplicial with respect to the triangulations K and L,
(ii) no simplex of P is vertical,

(iii) P intersects mneither the top mor the bottom of the cylinder

8 x I,
(iv) the totality of n-simplices of P form an n-cycle & (with coef-
ficients in Z, as usual),

(v) p«{{#}) = a, the non-trivial homology class in H,(S").

First we draw some immediate consequences from the definition.
Conditions (i) and (i) imply that every simplex of P falls on a simplex
of 8" of the same dimension. In particular, dimP < n. Conditions (iii),
(iv) and (v) imply that P is a Borsuk set and also that dim P > n. Hence
dim P = n. Condition (iv)implies that every (n—1)-simplex of P is a face
of an even number (possibly 0) of n-simplices of P. Conditions (iv) and (v)
together imply that for any »-simplex ¢ of 8%, the number of n-gimplices
of P which lie above ¢ is odd.

Despite the large number of restrictions P has to satisfy in order
to be a regular polyhedron, it turns out that the class of regular polyhedra
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is large enough, so that given a Borsuk set X and a neighborhood U of
X in §*x I, we can find a regular polyhedron P contained in U. We
shall prove this in section 5. This section is aimed ab proving the following

- important property of regular polyhedra.

(3.4). TEEOREM. Let P be a regular polyhedron in 8" X I and let K, L be
the triangulations of P and 8™ respectively as in the definition above. Then
the antipodal space A(P) has a triangulation such that,

(a) the map q: A(P)~ 8" is simplicial, where on 8" we have the sym-
metric triangulation L,

(b) the involution T on A(P) acts simplicially with respect to this
triangulation,

(¢) the totatility of all n-simplices of A(P) forms an invariant n-cyele ¢,

(d) g.({&}) = a, the non-zero homology class in Hu(S").

Consequently, the map gy HalA(P); T)—Ha(8%; T) is mon-zero and
thus the Smith index of (A(P); T) is n.

Proof. First we introduce some notation.

Given a simplex o of 8, by —o we denote the image of ¢ under the
antipodal involution on S™. We note that —o is also & simplex of 8" sinee
the. triangulation of 8™ is symmetric. Clearly o and —o have the same
dimension and —(—o¢) = 6. We say that ¢ and —o are opposite to each
other. The minus sign should cause no confusion, even when we consider
a chain in which ¢ appears. The reason for this is that since our coefficient
group is Z,, the negative of the chain ¢ in the group of chains is o itself;
and we shall never use —o to denote this negative.

If ¢ and D are subsets of P we define Ant((, D) to be the set
(=, 8), (—a, 1)) e PXP| (2,8) eC and (—2,1) e D}.. Clearly, Ant(0,D)
C A(P) and A(P) is in fact equal to Ant(P, P). In the following lemma
we list down some simple properties of the binary operation Ant(,)
just defined.

(3.5). Lmmma. The following facts hold.

Fact 1. If C, D are compact, so is Ant(C, D).

Fact 2. If €y, Co, Dy, D, arve subsets of P then

Ant(Cy, D) n Ant(C,, D) = Ant(C, ~ Oy, Dy~ Dy) .

Fact 3. The involution T on A(P) maps Ant(C, D) onto Ant(D, 0).

Fact 4. If 7, 1, are any two simplices of P then g maps Ant (7, )
injectively into 8™ Moreover, q(Ant(z, 7)) = (1) (=P (7). Con-
sequently, Ant(z, 7,) is homeomorphic to a simplex of 8™

Fact 5. If v, 7, are simplices of P, then dim (Ant(v, 7)) = n if and
only if v, and v, both have dimension n and p(v) = — (7).

Tact 6. Let 8, 0, 61, 05 be n-simplices of P such that dim(Ant(0,, 62))
= n. Then, Ant(0,, 6,) = Ant(0;, 6;) if and only if 6, = 6; and 0, = 0;.
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Proof. The first three facts are obvious.

To prove Fact 4, we recall that no simplex of P is vertical. Hence
the restriction of ¢ to Ant(ry, 7,) is evidently one-to-one. Also by Fact 1

above, Ant(z,, 1,) is compact. Hence, Ant(z, 7,) is homeomorphic to its

image under g. Next, we show that, g(Ant(zy,7))=p (%) ~(—p(w).
First suppose ((, ), (—@, 1)) e Ant(z;, 75). Then @ ep(n) and —u € p(z,),
and 80, @ € p() N~ (—p(w)). But & = ¢((, 5), (—2, 1)). Thus g(Ant(z, z,))
is contained in p(z) N (—p (). Conversely suppose @ ep(v;) N (—p(,)).
Then there exist s,%eI such that (z,s) ez, and (—a,?) ¢ 7,. But then,
(my ), (—@, 1)) € Ant(ry, 7)) and so &= q((x,$), (—a,1))  g(Ant(z,, 7).
Thus p(7;) N (—p (7)) is contained in g(Ant(z,, 7)) Hence g¢(Ant(z, v))
= p(7ry) N (—p(re)). Since the latter is a simplex of §” the proof of Fact 4
is complete.

Fact 5 follows eagily from Fact 4. The simplex p(rl)m(—p(rg))
of §* has dimension » if and only if p (7;) and P(z,) are both »- dimensional
and p(7) = —p(w,). The result now follows because p maps simplices
of P onto simplices of 8" of the same dimension, as we observed after
stating the definition of a regular polyhedron.

To prove Fact 6, we need only to prove that under the given con-
ditions, Ant(8, 6,) = Ant(f;, 6;) implies that 0, = 0, and 6,= 6;. So
suppose Ant(8,, 6,) = Ant(0;, 6;). Then by Fact 2 above, )

Ant(6, ~ 6], 0, ~ 0]) = Ant(0,, 6,) ~ Anti(6], 6) = Ant(6,, 6,) .

Therefore dim Ant(6, ~ 6;,-6, ~ 6,) = n. Hence by Fact 5, dim(§, ~ 6))
= dim (6, ~ 6;) = n. Since the dimension of the intersection of two distinet
n-simplices is less than n, we must conclude that 6, = 6; and 6, = 6.

. The proof of the lemma is now complete. :

The importance of Facts 5 and 6 in the last lemma is that they give
a precise description of the form and the number of the n«simplices of
A(P) in the friangulation which we are about to construct. Fact 6
p.recludes the possibility that two distinet pairs (6, f,) and (6;, 6;) may
give rise to the same n-simplex of 4(P) and thereby establishes 2 one-
to-one correspondence between the set of n-simplices of A4 (P) and the
set' of pairs (6, 6,) for which dimf, = n= dim6, and p(0;) = — 0 (0y).
This correspondence is of great help whenever we want to find the number
of n-simplices of 4 (P) which satisfy a certain condition.

Now consider the collection F of all sets of the form Ant(zy, )
?vhere (715 7o) TUDS over all pairs of simplices of P. From Fact 2 ab(,we
it follows that the interseetion of any two members of F is again a membex"
of ¥ .‘By Fact 4 in (3.5), each member of F is homeomorphic to a simplex
(possﬂ)ly the empty simplex) and the homeomorphisms agree on the
Intersections, since they are all induced by g. Thus, the family & will
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be a triangulation of A(P) provided we show that A(P) is covered by
members of . But this is obvious. In fact, it ((z,s),(—, 1)< A(P)
then ((=, ), (—®, t)) e Ant(zy, 7,) where 7, and 1, are any two simplices
of P such that (z,$) e, and (—z,1) €1,

It is clear that the map ¢: 4 (P)->S8" is simplicial with respect to
the triangulation just constructed. Moreover, Fact 3 mentioned above
shows that T acts simplicially with respect to this triangulation. Thus
we have proved parts (a) and (b) of our theorem.

Now we turn to the proof of (¢). If the totality of n-simplices of
A(P) at all forms a cycle ¢ then this cycle must be invariant because T
acts simplicially. We have therefore merely to show that the totality of all
n-simplices of 4(P) forms a eyele. Since the coefficients are in Z,, this
amounts to showing that every (n—1)-simplex of A (P) is in the boundary
of an even number (possibly zero) of n-simplices. If an (n—1)-simplex
of 4(P) is not a face of any n-simplex of A(P) this assertion is obvious
for that ‘(n—l)—simplex. Hence we have to consider only those (n—1)-
simplices of 4 (P) which oceur in the boundary of at least one n-simplex
of A(P). Consider an n-simplex Ant(z,, ) of A(P). By Fact 5 in (3.5)
p(m) = —p(r) and so g(Ant(z, 7,))= p(r.). Therefore an (n—1)-face
of Ant(z,7,) corresponds to a unique (n—1)-face of p(7y) and hence
to a unique (n—1)-face of 7. It follows that every (n—1)-face of
Ant(r,,,) can be written in the form Ant(oy, o,) for some (n—1)-face
6, of 7, o, being the unique (n—1)-face of 7, satisfying the condition
p(0) = —p(oy). Consider a particular (n—1)-face Ant(o,, 0,). We have
to show that the number of all #-simplices of 4 (P) which have Ant(oy, o,)
as a face is even. Let R, ,, be the set of all n-simplices of A (P) which
have Ant(o,, 6,) as a face. Let S, ,, be the set defined by

8,10, = (01, 05)] 04, 6, n-simplices of P, o, << By,
0p <3 Osy —p(0;) = p(6:)}

(the symbol < denotes the relation “is a face of”). The preceding dis-
cussion about the (n—1)-faces of an n-simplex of A4(P) combined with
Fact 6 in (3.5) shows that the sets B, , and S, , are in one-to-one
correspondence with each other and therefore have the same cardinality.
Thus, the proof of (¢) will be complete once we prove the following lemma.

(8.6). LEMmA. Cardinality of the set S, o defined above is even.

Proof. p(o,) is an (n—1)-simplex of §* and consequently is in the
boundary of exactly two n-simplices of 8% say < and 6. Since p(os)
= —p(a;) it follows that p(g;) is in the boundary of exactly two #-sim-
plices of 8", —v and —6. If 0, < 6, then p(o,) is a face of p(6;) because
p is simplicial. Therefore p(0,) is either 7 or g. Similarly, if o, < 0, then
p(6,) = —7 or —0.
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Let

@ = number of n-simplices of P which have ¢; as a face and which
fall on <. ) ‘

b = number of n-simplices of P which have o; a8 a face and which
fall on 6.

¢ = number of n-simplices of P which have o, a8 a face and which
fall on —1.

d = number of n-simplices of P which have o, as a face and which
fall on —0.

The set S,,,, decomposes into two disjoint sets defined by
A0y = {(61; 05) € 8p .| 2(0y) =7, 0(0) = —7}
and
By, o= {(61, 05) € 85,,0,| 2(6)) = 0, p(6) = —6}.

Lvidently the cardinality of 4, ,, is ac while that of B, ,, is bd. To
prove the lemma we must show that (ac4bd) is even. Now, (a-+0b) is
the number of n-simplices of P which have o, as a face. Hence (a4 b)
is even as observed after the definition of a regular polyhedron. Similarly
(¢+d), being the number of n-simplices of P which have ¢, as a face,
is even. From this it follows by an elementary argument that (ac- bd)
is even. This proves the lemma and consequently (¢).

Finally we prove (d). First we observe that if Ant(w,7,) is an
n-simplex of A(P), then g(Ant(z,7,))=p(v). Hence, again using
Fact 6 in (3.5), the number of n-simplices of A (P) which are mapped
by g onto a given n-simplex o of 8™ is equal to the cardinality of the
set 8§, defined by

8, = {(z1, )| %, 7. n-simplices of P, p(n)= o, p(ry) =— o} .

Let k= number of #-simplices of P which fall on o and let
j = number of n-simplices of P which fall on —o. Then k,j are both
odd, as we observed after the definition of a regular polyhedron. Hence
kj is odd. But evidently %j is the cardinality of the set §, defined above.
Therefore, in the n-cycle ¢(¢) on S™ every n-simplex of 8" occurs an
odd number of times; and 50 ¢,({{}) = a, the non-zero homology class
in H,(8"). Thus (d) is proved. '

Since { is invariant, so is ¢(f) and thus we have shown that the
map ¢u: Hu(A(P); T)—>Hn(8"; T) induced by the map q: A (P)—g8" is
non-zero. This shows that the Smith index of {4 (P); T) is n and completes
the proof of the theorem.

4. Admissible cell structures on cylinders on manifolds. This gection is
prepamtory for the next section. In the next section we shall show that
i X C8"x I is a Borsuk set and U is a neighborhood of X in 8*x I then

icm®

A non-symmetric generalization of the Borsuk-Ulam theorem 25

there exists a regular polyhedron P contained in U. The polyhedron P is
obtained from the n-skeleton of a subcomplex of a certain “admissible”
cell structure on 8" I. The purpose of this section is to define the con-
cept of admissible cell structures and to give a method for their con-
struction. The only property of 8™ which is needed crucially is that it
is a compact, combinatorial n-manifold without boundary. Therefore,
we give the construction for the more general case of a ¢ylinder on a com-
pact, combinatorial »-manifold without boundary. '

Let ¥ be a compact polyhedron with a fixed metric d,. We shall
put the metric d on ¥ x I defined by d((z,s), (y,t)}: do(z, y)+ [s—1].
By the mesh u(L) of a triangulation L of ¥ we mean the maximum of
the diameters (with respect to d,) of simplices of L. Similarly by the
mesh u(K) of a cell structure K on ¥ x I we mean the maximum of the
diameters (with respect to d) of the closed cells of K.

A cell structure K on a space S is said to be simplicial if all closed
cells of K are simplices and the attaching maps are simplicial embeddings.
This is equivalent to requiring that K be a triangulation of 8. We recall
that if K is a cell structure on a space § and if §'C 8 corresponds to
a subcomplex of K then by K|S’ we denote the induced cell structure on S’

(4.1). DEFINITION. A cell structure K on ¥ X I is said to be n-admis-
sible if there exists a triangulation L of ¥ such that

(i) K™, the n-skeleton of K is simplicial,

(ii) the map pr.]K": E"—»Y (where pr. is the projection of ¥ x I
onto ¥) is simplicial with respect to K™ and L,

(iii) no simplex of K™ is vertical.

Obviously an n-admissible cell structure is also m-admissible for
m < n. When the integer n is understood an n-admissible cell structure
may simply be called admissible. The main theorem of this section is
the following.

(4.2). TEEOREM. Suppose Y is a compact, combinatorial n-manifold
without boundary. Then given ¢ >0, there emists an n-admissible cell
structure K on Y x I whose mesh is less than e. If, moreover, T is a simplicial
inwvolution on Y then we may require, in addition, that the triangulation L
of Y appearing in the definition be symmetric with respect to T.

Proof. First we shall show how to construct an n-admissible eell
structure on ¥ x I, starting from a given triangulation of Y. (By a triangu-
lation of Y we always mean a triangulation which makes ¥ into a combi-
natorial n-manifold, i.e. the star of every vertex is a polyhedral n-disk
whose boundary is the link of the vertex.) Later we shall show how this
construction can be modified so as to give arbitrarily fine »-admissible
cell structures on ¥ X I.

Let L, be a given triangulation of Y.
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Let I be the first barycentric subdivision of IL,. Then, ¥ is also
a combinatorial manifold with respect to L. The advantage of taking L
instead of L, is that the vertices of any simplex of I have a canonical
ordering. The n-+1 vertices of an »-simplex o of I can be written uniquely
a8 g, Vs ., Un Where vy is the barycenter of an (n—i)-dimensional
simplex of L, (0 < ¢ < n). We call v; the i-th vertez of o. Note that if o ig
another n-simplex of L which has v; as a vertex then o; must also be
the ith vertex of o’. Hence, without ambiguity we can say that v; is an ith
vertex of L. (This terminology is somewhat misleading in the beginning, be-
cause there are more than one vertices of I each of which is an ith vertex
for the same 7. Perhaps a term such as “vertex of order 4” instead of “ith
vertex” would be better. But we choose the latter for its brevity.)

If » is a point of o, then for 0 <4 < %, the barycentric coordinate
of & Wlth respect to the ith vertex of ¢ will be denoted by ;. Thus

0 < @y < 1 for every ¢ and Z’ #¢= 1. Note that if # ¢ 0 ~¢’, then all the
i=0
barycentric coordinates of z regarded as a point of o are equal to the

corresponding barycentric coordinates of x regarded as a point of ¢,
where ¢, ¢’ are any two n-simplices of L. Thus we can speak of the ¢-th
barycentric coordinate of a point of ¥ without ambiguity. For each ¢,
0 < ¢ < n, taking the ith barycentric coordinate defines a continuous func-
tion from ¥ to the unit interval. Of course it may happen that two distinet
points of Y have all the corresponding barycentrie coordinates equal.

We construet n--2 continuous functions from ¥ to the unit interval
[0,1] as follows.

fo is the function which is identically 0.

i=1
For 1 <4 < n+1, define fi(x) = 3 @ where a is the kth barycentric

k=0
coordinate of # for k=0, ..., n.

Then for every x, fi m) < f1 (@) for 0 < i << n and f,,, is the function
identically equal to 1. Note that fi(w) = fH_l(w) if and only if z is on the
face of some n-simplex of L which is opposite to the ith vertex of that
simplex. Bach f; is linear when restricted to any simplex of L.

For each i let A= {(z,%) e Y X I| fi(®) <t < fipy(@)}. Then clearly

YxI= UA;

A mla,ngulatmn for Y x I can be given in which the (n-+1)-simplices
are of the form {(z,%)] % e o, fi{x) <t < fi. (%)} for some n-simplex o
of L and some 0 <{ < n. This triangunlation coincides with the standard
product triangulation (see, for example, [5], p. 67) on ¥ xI; for the
(f»—]—l)-simplex {(&,8)] ®eo,file) <t<fi (o)} is precisely the (n-1)-
simplex spanned by the n-+2 points, (vy, 1), ..., (v, 1), (v, 0) (V4415 0), ...
s (@,L,O),‘ where v is the kth vertex of ¢, 0 <k < n.
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Unfortunately there are some #n-simplices in this triangulation of
Y x I whieh are vertical. Qur intention is to match together such vertical
n-simplices. It is precisely at this point that we need the hypothesis
that ¥ is a combinatorial n-manifold w.r.t. the triangulation L.

Let »; be an ith vertex of L. Let Am and X, be respectively the star
and the link of v; in L. Then the pair (|4,], |Z,]) is homeomorphic to
(D% 8" ') where D" is the n-dimensional disk.

For a point & in |4,|, fi®) = fi(e) if and only if z is in |2,,|. Hence
if @ |d,]|—|Z,| then fi(@) < fiq(2).

Tt follows that the set B, = {(z,1)] we |4,], fil#) << fa(@)} is
homeomorphic to the (n-41)-disk D**'. Tndeed, let D" and D" be the
standard Eueclidean disks of dimension n4+1 and #» respectively with
D"C D", in such a way that D" bounds the equatorial $»~* on 8" and
let g: [4,,|>D" be a homeomorphism. Then a homeomorphism h: By
— D" ean easily be defined in such a way that for each z e |4,,], the
segment {(z, )| fi(#) < t < f;.,(#)} is mapped onto the line segrment which
is the intersection mth D" of the line through g(z), perpendicular to
the equatorial plane. & is well-defined because if fi(z) = f;..(2), then g(x)
must be on §*"L. The boundary of B, consists of n-simplices of ¥ x I,
of the form {(z, t)] # € o, fi{x) = t} or of the form {(z, )| x ¢ ¢, f;;,(#) = £}
for o e, None of these simplices is vertieal. Moreover the restriction
of the projection map to each such simplex is simplicial. Also 4,= | JB,,
as v; ranges over all the ith vertices of L. It follows that ¥ x I has a c2ll
structure K whose n-skeleton consists of faces of simplices of the form
{(%, )| % € 0, fi(w) = £} for some n-simplex o of L and for some 0 < ¢ < n+1.
None of these simplices is vertical. Moreover pr.| K™: K"-Y is simplicial.
Thus K is an n-admissible cell structure on ¥ x I.

To get sufficiently fine n-admissible cell structures on Y x I we
start with a sufficiently fine triangulation of Y. We divide the interval
[0,1] into » equal parts where r is sufficiently large. Then we put cell

. EoOE+1
structures on each of the slices ¥ X P for k=0,1,..,r—1 by

the construction given above in such a way that two adjacent slices
induce the same cell structure on their common face.

To make this precise, let e >0 be given. Take a triangulation I,
of ¥ such that u(L,) < e. L, may be taken to be an iterated barycentric
subdivision of a given triangulation of Y. Since L is the first barycentric
subdivision of L, we have u(L) < }e. Let r be a positive integer such
that 1jr < %e. For k=0,1,..,7—1 define homeomorphisms hz: Y x
X [kfr, (k+1)r]-Y X I by

(y,rt—Fk)
(¥, b+1—11)

if % is even,

hly s 1) = if % is odd
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Note that for each k, hx and hy,, agree on ¥ x {(k-+1)/r}. Thus we geb
a map h: ¥ x I-Y x I whose restriction to each slice ¥ X [kfr, (b-+21)/r]
is a homeomorphism. ‘

Let K* be the cell structure on ¥ x I obtained from L by the con-
struction above. Then kb gives a cell structure Kz on ¥ X [kfr, (B4+1)}r].
If & is even then Ki|¥Y X {(k+1)}r} and K,,|¥ X {(k+1)/r} coincide
since each of the corresponds to K*|¥ x {1} under h. Similarly if % is
odd then Ki|¥x {(k+1)fr} and K, |¥ x {(k-+1)/r} both correspond to
E*|Y x {0} under % and so coincide with each other. It follows that Ky's
define a cell structure K on Y x I. The n-skeleton K" of K consists of
the union of the n-skeletons K¥s of the K,’s. The n-skeleton of each
K is simplicial with no vertical simplices; since Ky is obtained from K*
via Bz and ki preserves verticality. It follows that K™ is simplicial with
no vertical simplex. Also the map pr.|E": K"-Y is simplicial.

It only remains to show that w(K)< e Since every cell of K is
contained in 2 closed (n--1)-cell of K it suffices to show that the diameter
of each closed (n--1)-cell of K is less than e But by construction of K,
every closed (n--1)-cell of K is of the form hz'(B,,) for some k, 0 < k
<r—1; some 4, 0 <4< n and some ith vertex v; of L, where B, is as
in the construction above. Therefore, we only need to show that for
each k= 0,1,..,7—1 each 4=0,1,..,n and for each ith vertex v
of L, §(hz'(B,))<e¢ where & denotes the diameter. Now, obviously
B, C|4,] %[0, 1] where 4,, is the star of v¢ in L. Hence h'(B,,) C 14, %
X [kfr, (k<-1)/r]. The set |4,| is the union of a finite number of #-sim-
plices of L, all having #; as a vertex. Since the diameter of each simplex
of L is less than 1e it follows that §(|4,,) < ke. By choice of » we also
have that 1jr < 1s. Combining these together we see that the diameter
of |4y, x [kfr, (k+1)/r] is less than (§e-1e). In particular é(h,jl(Bw)) < &

Finally, we observe that if T is a simplicial involution on Y then L
may be so chosen that T acts simplicially with respect to L,. Then L is
also symmetric with respect to 7. The theorem is now completely
proved.

Remark 1. The hypothesis that ¥ be a combinatorial #-manifold
cannot be replaced by the weaker one, say, dim ¥ = n. For example
if Y is the space homeomorphic to the letter ¥ with y, as the common
point of the three rays then it is easy to show that in any cell structure
on YXI, {y,} XI is contained in the 1-sgkeleton. Therefore, there is no
1-admissible cell strueture on ¥ x I.

Remark 2. Since Y is a polyhedron, so is ¥ X I. We actually con-
structed a triangulation of ¥ X I in the construction above. However,
we have to content ourselves with the structure of a cell complex rather
than that of a simplicial complex, on ¥ x I. This is so because, although
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the sets B, in the construction above are homeomorphic to D™ and
their boundaries are polyhedral n-spheres, the sets B, themselves are
not necessarily (n--1)-simplices. In fact, they may not even be convex.

5. Approximation by regular polyhedra. In this section we apply the
construction given in the last section to prove the “approximation theo-
rem” which asserts the existence of a regular polyhedron within a given
neighborhood of a Borsuk set in §”x I. At the end of the section we define
the terms “Borsuk set” and “regular polyhedron” for subsets of R
and reformulate the results proved for subsets of §”xI. The intention
of doing this is to have the results in a form in which they can be im-
mediately applied in the next section.

(5.1). THEOREM. Léi X be a Borsuk set in 8™ x I and U a neighborhood
of X in 8"xI. Then there exisis a regular polyhedron P contained in U.

Proof. We may assume that U is open and does not intersect 8" x {0}
and 8"x {1}. Let 2 = d(X, S"x I—U) where d is the metric on §"Xx I
obtained from some given metric on S8 as in the last section, Let K be
an n-admissible cell structure on 8% xI for which the triangulation L
of 8" is symmetric with respect to the antipodal involution on 8" and
whose mesh x(K) is less than e Such a triangulation exists by (4.2).

Let Kx be the sub-cell-complex of K consisting of those cells of K
which intersect X. Clearly |Kx] is a neighborhood of X and |Kx|C U by
choice of &. Since X separates S™x {0} and 8™ {1} so does |Kx|. Hence
by Borsuk’s characterization, the map pr.||Kx|: |Kx|>8" induces a non-
zero map on the x-dimensional (lech homology group (with coefficients
in %, as usual). But since Kz is a finite cell complex, |Kx| has the same
homotopy type as a compact polyhedron (actually if we trace back the
constructions then |Kx| is a polybedron itself); while 8" is a compact
polyhedron by itself. We conclude that

(i) (pr.||Ex|): Ha(|Ex|)—Hn(S") is an epimorphism in the singular
homology theory.

Let P’ be the n-skeleton of Kx and i: P'— |Kx| be the inclusion map.
It is well-known that,

(ii) 4y: Hn(P')—Hn(|Ex|) is an epimorphism in the singular homo-
logy theory.

Let p’: P'—8" be the composite (pr.||Kxl) . Then p’ is also the
restriction of the projection map pr. to P'. From (i) and (ii) we geb

(iil) pa: Hu(P')->Hn(8™) is an epimorphism in the singular homology
theory. )

P’ is a subcomplex of the n-skeleton K" of K. Since K is 7 - admis-
gible, K™ is simplicial and consequently P’ is simplicial. Thus P’ is a poly-
hedron. No simplex of P’ is vertical because no simplex of K™ is vertical.
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Moreover the map p’ is simplicial since pr.|K": K"- 8" is simplicial.
Since on the category of finite simplicial complexes and simplicial maps
the singular homology theory is naturally equivalent to the simplicial
homology theory, we conclude from (iii) that

(iv) pi: HalP')>Hn(S") is an epimorphism in the simplicial homo-
logy theory.

Clearly P'C U and so P’ does mot intersect S8™x {0} or §"x {1}.
Thug P’ is very close to be a regular polyhedron, except that the totality
of all n-simplices of P’ may not form a cycle whose image under p' is
the non-zero n-cycle on S" To remedy this, let 2= o+ 0y ... 0%
be an n-cycle on P’, where oy, 0y, ..., o) are n-simplices of P’ such that
pi({2}) = a, the non-zero element in H,(8"). Such a eycle # exists by (iv).
Let P be the polyhedron formed by oy, 0g, ..., o and their faces. Then
P is a subcomplex of P’ and satisfies all the conditions in the definition
of a regular polyhedron. Finally, since P C U, the theorem is proved.

Now we go_back to the original framework in which X is a subset
" of R**' rather than a subset of 8"xI.

(5.2). DEFINITION, A subset X of R™* is called a Borsuk set if X is
compaet and disconnects B"* in such a way that the origin O is in

a bounded component of B**'— X (that is, X separates O from oo in our

terminology).

Given real numbers 0 <r< R by A(r, R) we denote the closed
annulus {z ¢ B""| r <[] < B} and by A°(r, R) its interior {x ¢ R™"|
< i < R}. Such an annulus is canonically homeomorphie to 8"x I by
the homeomorphism %, p: A(r, R)—>8"x I defined by

hy, 5(®@) = (@]l] ; (B—l2])/(B—1)) .
The following proposition iy obvious.

(5.3). ProrosyTioN. Let X be a compact subset of R™* mot containing
the origin. Then the following statements are equivalent.
(i} X is a Borsuk set.

(i) If A(r, R) is any annulus such that X C A%y, R) then h, z(X) is
o Borsuk set in S"x I.

(i) There is some annulus A(r, B) which contains X in its imterior
and 8 such that h, p(X) is a Borsuk set in S*x I.

Next, we define the mnotion of a regular polyhedron for subsets
of R™,

(5.4). DEFINITION. A subset P or R™* is said to be a regular poly-
hedron if, )

(i) P is a Borsuk set and
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(ii) for every annulus A(r, R) containing X in its interior, k. p(P) is
a regular polyhedron in 8™ xI.

If A(r, R) and A(s, S) are two annuli and Y is a subset of each of
them, then it is easy to see that the sets &, z(Y) and i, &(Y) are homeo-
morphic to each other by a homeomorphism % which is compatible with
the projection pr.: §"xI—8" and consequently preserves verticality.
In view of this, the following proposition is also clear.

(5.5). PROPOSITION. A Borsuk set P in R is a regular polyhedron
if and only if there is some annulus A(r, R) containing P in iis interior
such that h, p(P) is a regular polyhedron in 8" X I.

The following theorem is a reformulation of (3.4).

(3.6). THEOREM. Let P be a regular polyhedron in B, Then the Smith
index of the T-space (A(P); T) is n.

Proof. Let A(r, R) be an annulus such that X C A%, R). Let @
= h, g(P). Then @ is a regular polyhedron in 8*x I and so by (3.4) the
Smith index of (4(Q); T) is n. Define k: A(P)=>4(Q) by k(z,y)
= (h, p(@), Iy, 5(y)). Clearly % is an equivariant homeomorphism and so
the Smith index of (4 (P); T) is also .

Finally we reformulate (5.1).

(5.7). TEEOREM. Let X be a Borsuk set in R™™* and U a neighbor-
hood of X in R™. Then there exists a regular polyhedron P contained in U.

Proof. Let A(r, B) be an annulus containing X in its interior. We
may assume that U is open and contained in A%r, R). Let ¥ = h, x(U).
Then V is a neighbourhood of the Borsuk set &, p(X) in §"x I. By (5.1)
there is a regular polyhedron @ in 8™ I such that @ CV. Let P = h_ 5(Q).
Then by (5.5) P is a regular polyhedron. Also PC U. This completes the
proof.

6. The main result. In this section we apply the machinery developed
in the previous sections together with Yang’s result, (2.5) to derive the
desired generalization of the Borsuk-Ulam theorem. We first prove the
result in the case of a regular polyhedron and then for an arbitrary Borsuk
set by “approximating” the latter by regular polyhedra and applying the
limiting process.

(6.1). THEOREM. Let X be a regular polyhedron in R*** and let f: X - R"™
be a map. Then there exist two points & and y in X such that y= — Az for
some 4 >0 and f(z) = f(y).

Proof. Define the space A4(X) and the involution T on A(X) as
in the previons sections. By (5.6) the index of (4(X); T) is n. Define
g: A(X)-+R" by g(z, y) = f(z). Then by (2.5), there exists a point (z, ¥)
in A(X) such that g(z,y)= g(y, ). This of course gives the desired
result.
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(6.2). TurorEM. Let X be a Borsuk set in R gnd let f: X R be
a map. Then there ewist two points » and y in X such that y = — Az for
some >0 and f(z)=fy).

Proof. First by Tietze’s extension theorem extend f to a map
. Rl R, Fix real numbers 0 < 7 < B such that X is contained in
the interior of the annulus .4 (r, B) with the notation of the last section.
Let U,D U,D U2 ... be a sequence of open neighborhoods of X in R"+?

such that U, C A%r, R) and () Uy = X. By (3.7) for every k there exists
. k=1
a regular polyhedron Pj contained in Uy. Applying (6.1) to Py and the
restriction of F to Py, we get for each % points zy and yx in Py and positive
veal mumbers Az such that yr= — k2x and F(wxx) = F(ys). Note thab
since both @z, y; are in A(r, R) and |y = A& ll@sll; it follows that #/R
< A < RJr for each k. Hence by compactness of 4 (7, R) and of the closed
interval [r/R, Rjr] we can find integers 0 < Ty < ko < k3 << ... such that
the sequences @y}, (Ux)is and {4}, all converge, say, to , y and 2
respectively. Then we have y = — Az and 4 > 0 (infact, 1 > r/R). Moreover,

Ze F\ Uz and 50 # ¢ X. Similarly y e X. But by continuity of 7 we also
k

=1
have that F(z) = F(y) and hence that f(#)= f(y). This completes the
proof. )
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