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Closed, continuous images of complete metric spaces
by

K. R. Van Doren (Auburn, Ala.)

Abstract. Every closed, continuous image of a complete metric space is shown to
contain a dense subspace which is metrizable in a complete manner; hence, the Baire
Category theorem is valid for closed, continuous images of a complete metric spaces.
Also, if X is a closed, continuous image of a complete metric space, then there is
a closed, continuous image ¥ of a complete metric space such that every open subset
of ¥ contains a copy of X. Thus, a closed, continuous image of a complete metrie
space need not be a countable union of closed, metrizable subspaces.

Lagnev [2] has constructed a La¥nev space (Lafnev = closed,
continuous image of a metric space) which is not first countable at any
of its points. It is easily shown that if X is a regular space, I is a dense
subset of X, and p is a point of M at which M, regarded as space, is first
countable, then X is first countable at p. Hence Lafnev’s space containg
no dense metrizable subspace.

Tt is shown herein that every closed, continuous image of a complete
metric space contains a dense subspace which is metrizable in a complete
manner. It follows from this result that the Baire Category theorem is
valid for closed, continuous images of complete metric spaces. ‘

The author [7] has shown that if X is a In¥nev space which contains
a dense metrizable subspace, then there is a Lanev space Y such that
every open subset of ¥ contains a copy of X. Thus, if X is a closed,
continuous image of a complete metric space, then there is a Lafnev
space Y such that every open subset of ¥ contains a copy of X. This
result is strengthened herein by showing that there is a closed, continu-
ous image Y of a complete metric space such that every open subset of ¥
contains a copy of X.

Fitzpatrick [1] has constructed a Lafnev space which is not a count-
able upion of closed, metrizable subspaces. 8. A. Stricklen has observed,
in work as yet unpublished, that every closed, continuous image of
a locally compact metric space is a countable union of closed, metrizable
subspaces. It is shown herein that there is a closed, continuous image
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of a complete metric space which is not a countable nnion of closed,
metrizable subspaces.

The author wishes to thank Professors David Lutzer and Frank
Slaughter, Jr., for pointing out an inadequacy in the argument first
given for the following theorem.

TueoREM 1. Every closed, continuous image of a complete metric space
contains a dense subspace which is metrizable in a complete manner.

Proof. Suppose f is a closed, continuous mapping of a complete
metric space X onto a topological space Y. Lafnev [2] has shown that
there is a closed subset K of X such that f(K)= Y and if H is a closed,
proper subset of K, then f(H) is a proper subset of ¥. Let

G={[IE)" )l ye T}

M= {ye¥| (fIK)(y) is compact}.

and let

Morita and Hanai [3] and Stone [4] have shown that M is a metrizable
subspace of Y.

Suppose there is an element g’ of G such that f(g’) is in ¥ —M and ¢’
contains an open subset of K; then ¢’ has a boundary which is a proper
subset of ¢'. If g is an element of @ which has a boundary, let B, denote
the boundary of g; if ¢ is an element of ¢ which has no boundary, let B,
denote 2 degenerate subset of g. Tet H = | J B,: then H is a closed, proper

€
subset of K such that f(H) = ¥. This is gm iontradic’oion; therefore, if g is
an element of & such that f(g) is in ¥— M, then ¢ does not contain an
open subset of K.

Suppose the set M is not dense in ¥; then Y— M contains an open
subset of ¥, so that (f|K)(¥Y— M) contains an open subset of K. Lagnev
has shown that Y—M = LH} N, where N, is discrete in ¥; hence,

(f!K)_l(Y—M)=_L;‘(flK)‘l(Ni)‘ Thus, (f|E)"(Y—M) is a countable

union of closed subsets of X, no one of which contains an open subseb
of K, since (f|E)~Y(¥,) is the union of the elements of a diserete collection
of leosed subsets of K, no one of which containg an open subset of K.
f[jhlS co_njm"adicta the Baire Category theorem for complete metrie spaces
since K Is & complete metric subspace of X; thereforé, M is dense in Yf

Veinstein [5] has shown that a metrizable closed, continuous image
of a comp}ete metric space is metrizable in a complete manner; hence
M is metrizable in a complete manner, sinece (f|K )”i(M Yis a Gy s;‘u in K,

QOROLLARY 1. The Baire Category theorem is valid for closed, econtinu-
ous tmages of complete metric spaces. ’

icm®

Closed, continuous images of complete meiric spaces 49

Proof. It follows from Theorem 1 that if Y is a closed, continuous
image of a complete metric space, then there is a dense subspace M of ¥
such that the Baire Category theorem is valid for the space M. It is easily
shown that if the Baire Category theorem is valid for a dense subspace
of a topological space, then it is valid for the space itref.

COROLLARY 2. If Y is a non-metrizable closed, continuous image of
a complete metric space and Y is a countable union of closed, metrizable
subspaces of Y, then the set of all points af which ¥ is not first countable
is not dense in X.

Proof. Suppose ¥ = | | ¥y, Wheré Y, is a closed, metrizable sub-
=1 .-

space of Y. Let H denote the set of all points of ¥ at which ¥ is.not first
countable. Suppose H is dense in Y. Suppose, furthermore, that there is
a positive integer » such that ¥, contains an open subset U of ¥; then U
contains a point p of H. It is easily shown that Y is first countable at p,
since ¥, is first eountable at p and U is an open subset of ¥ which con-
tains p and lies wholly in ¥,. This is a contradiction, since p is a point
of H; therefore, if n is a positive integer, then ¥, does not contain an
open subset of ¥. Thus, Y is a countable union of closed subsets of ¥,
no one of which contains an open subset of Y. This contradicts Corol-
lary 1; hence, H is not dense in Y.

THEOREM 2. If X is a closed, continuous image of a complete metric
space, then there is a closed, continuous image ¥ of a complete meiric space
such that every open subset of Y contains & copy of X.

2 3 p

Proof. Construct an inverse sequence: lei Y, bl Y, ... as in the
proof of Theorem 2 of [7], using ¥, = X = a closed, continuous image
of a complete metric space; this is possible, since X contains & dense

" metrizable subspace. Furthermore, it is possible to obtain complete

metric spaces for the spaces X;, X,, X;, ... Let ¥’ denote the subspace
of the inverse limit space ¥ as described in the proof of Theorem 2 of [T];
then Y’ is a dense subspace of ¥ such that every open subset of ¥’
contains a copy of X.

00 I
Let G= {[] fo* @) W1, ¥Y21Ys,..) € X}; then @ is upper semi-continu-
n=1 .
ous, as indicated in the proof of Theorem 1 of [7]. Hence, FHY)G is
a closed, continuous image of a complete metric space, since YY) is

a closed subset of [] X, and is, consequently, a complete metric space.
n=1

=]
Let G = {|| f7%Ua)| (W1, Yas Ygs )€ X'}; then ¥’ is homeomorphic to
=1

n
FHX), so that every open subset of f~(X')/G contains a copy of X.
Suppose ¥ = (Y1, Ya, Ys, -..) is & point of Y. Let &= (&, @, @5, --.)
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denote a point of f~X(y). For each positive integer n let 2, = (zm, Rom s Bapy oe)
denote the point of Y’ such that 2, =y, for k=1,2,3,..,mand 2z,

= (24, %%n) fOr E=mn,n+1,n-+2,..; then the sequenee By, oy gy o
converges to y in Y. For each positive integer n, let w,, = (Wy,; Wyy, , Wy, , ..,)
denote a point_of fY(z,) such that wy, =z, for k=1,2,3, ..., % and wy,

belongs t0 fr'(z,) for k=n+1, n+42, n—]—B o} then the sequence

o
W, , Wy, Wy, ... converges to @ in [] X,,. Thus, f~(¥')/G is dense in f~(¥)/G.
n=1
It is easily shown that if every open subset of a dense subspace of a topo-
logical space contains a copy of X, then every open subset of the space
itself contains a copy of X. Hence, every open subset of f(¥)/@ contains
a copy of X.

If X = §, the space described in [6], then f~( ¥)/G is a closed, continu-
ous image of a complete metric space such that the set of all points ab
which fY)/G is not first countable is dense in f~(¥)/@. It follows
from Corollary 2 that f~(¥)/@ is not & countable union of closed, metriz-
able subspaces. Therefore, closed, continuous images of complete metric
spaces need not be countable unions of closed, metrizable subspaces.
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x™ is homeomorphic to X" iff m~n where ~is a congruence
on natural numbers

by

Véra Trokova (Prague)

Abstract. If a congruence ~ on the additive semigroup of all natural numbers
is given then a locally compact separable metric space X is constructed such that x"
is homeomorphic to X" iff m ~n.

Let X be a topological space. Define an equivalence ~ on the set N
of all natural numbers such that m ~n iff X™ is homeomorphic to X™.
Clearly, ~ is a congruence on the additive semigroup (¥, +). In the
paper, the following theorem is proved:

THEOREM. For every congruence ~ on the additive semigroup of all
natural numbers there exists a locally compact separable metric space X such
that X™ is homeomorphic to X™ iff m ~n.

The analogical results for Abelian groups and modules are shown in[3]
and [1] respectively, but the proofs are quite different. Concerning the
terminology, see [4].

1. Productively independent spaces.

COoNVENTION. Denote by N the set of all natural numbers. If X is
a topological space then, as usual, X* = X, X" = X x X*, X" is a one-
point space.

DEerFINITION. A set X of topological spaces is said to be productively
independent if, whenever {kx; X ¢ X}, {hx; X ¢ X} are two collections

of non-negative integers and [] X** is homeomorphic to [] X"x_ then
XeX XeX
kx = hx for all X ¢ X. We recall that a set X of topological spaces is said

to be rigid if, whenever f: XY is a continuous mapping, X, Y ¢ X,
then either f is a constant or X = ¥ and f is the identity. Hvery element
of a rigid set is called a rigid space.

Lenvwma 1. Let {X, Y} be a rigid set, m, n e N, and f: X"->Y™ a continu-
ous mapping. Then f is a constant.

Proof. Let g: X*+Y be a continuous mapping. Choose © ¢ X. Denote
by «* the point of X* whose coordinates are all ». Put a = g(a"). Since
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