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denote a point of f~X(y). For each positive integer n let 2, = (zm, Rom s Bapy oe)
denote the point of Y’ such that 2, =y, for k=1,2,3,..,mand 2z,

= (24, %%n) fOr E=mn,n+1,n-+2,..; then the sequenee By, oy gy o
converges to y in Y. For each positive integer n, let w,, = (Wy,; Wyy, , Wy, , ..,)
denote a point_of fY(z,) such that wy, =z, for k=1,2,3, ..., % and wy,

belongs t0 fr'(z,) for k=n+1, n+42, n—]—B o} then the sequence

o
W, , Wy, Wy, ... converges to @ in [] X,,. Thus, f~(¥')/G is dense in f~(¥)/G.
n=1
It is easily shown that if every open subset of a dense subspace of a topo-
logical space contains a copy of X, then every open subset of the space
itself contains a copy of X. Hence, every open subset of f(¥)/@ contains
a copy of X.

If X = §, the space described in [6], then f~( ¥)/G is a closed, continu-
ous image of a complete metric space such that the set of all points ab
which fY)/G is not first countable is dense in f~(¥)/@. It follows
from Corollary 2 that f~(¥)/@ is not & countable union of closed, metriz-
able subspaces. Therefore, closed, continuous images of complete metric
spaces need not be countable unions of closed, metrizable subspaces.
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x™ is homeomorphic to X" iff m~n where ~is a congruence
on natural numbers

by

Véra Trokova (Prague)

Abstract. If a congruence ~ on the additive semigroup of all natural numbers
is given then a locally compact separable metric space X is constructed such that x"
is homeomorphic to X" iff m ~n.

Let X be a topological space. Define an equivalence ~ on the set N
of all natural numbers such that m ~n iff X™ is homeomorphic to X™.
Clearly, ~ is a congruence on the additive semigroup (¥, +). In the
paper, the following theorem is proved:

THEOREM. For every congruence ~ on the additive semigroup of all
natural numbers there exists a locally compact separable metric space X such
that X™ is homeomorphic to X™ iff m ~n.

The analogical results for Abelian groups and modules are shown in[3]
and [1] respectively, but the proofs are quite different. Concerning the
terminology, see [4].

1. Productively independent spaces.

COoNVENTION. Denote by N the set of all natural numbers. If X is
a topological space then, as usual, X* = X, X" = X x X*, X" is a one-
point space.

DEerFINITION. A set X of topological spaces is said to be productively
independent if, whenever {kx; X ¢ X}, {hx; X ¢ X} are two collections

of non-negative integers and [] X** is homeomorphic to [] X"x_ then
XeX XeX
kx = hx for all X ¢ X. We recall that a set X of topological spaces is said

to be rigid if, whenever f: XY is a continuous mapping, X, Y ¢ X,
then either f is a constant or X = ¥ and f is the identity. Hvery element
of a rigid set is called a rigid space.

Lenvwma 1. Let {X, Y} be a rigid set, m, n e N, and f: X"->Y™ a continu-
ous mapping. Then f is a constant.

Proof. Let g: X*+Y be a continuous mapping. Choose © ¢ X. Denote
by «* the point of X* whose coordinates are all ». Put a = g(a"). Since
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every continuous mapping of X into Y‘ is & cqnstant oné can prove by
induction that g(2) = a whenever ze X*X {@" %, i=1,..,n g.e.d.

TLmia 2. Let X be a rigid space, m, n ¢ N. Let b X™ X" be a homeo-
morphism into X" Then m < n.

Proof. Tet m: X™>X, py: X*=»X, i=1,..,m j=1,..,n be
the projections. Put I={1,.., m}, d ={1,..,n} and choose aecX,
If §C I, define a mapping Ag: X X" guch that @, o Ag(w) = @ for i e g,
;0 Ag(w) = a for i ¢8. For every jeJ the mapping xixrnlx iy
is either the identity or a constant. Denote by 8% the set of all j « J such
that it is the identity. Obviously § =@ < 8 = J. Now we prove that
@: expl->expJ defined by ¢(8)= 48" is a one-to-one mapping. Take
8,,8,CI, 8, # 8, we may suppose S # 0 # B, If jed—(S; '8y,
then p;oh o dg, = p;oh o Ag, because both the mappings are constant
and Ag (a) = Ag,(a). The equality §; = 8, implies p; o b o dg, = p; o b o Ag,
for all jeJ. Then necessarily ho dg = hodg, hence Ag = dg and
consequently 8 = §,, which is a contradiction. q.e.d.

PrOPOSITION 1. Bvery rigid set of spaces is productively independent.

Proof. Let X be a rigid set, and let {kx; X ¢ X}, {hx; X e X} be

collections of non-negative integers. Put K = [] X*¥, H = [] X", Let
XeX XeX
h: E—H be a homeomorphism. For every X ¢ X denote by mz: K X%,

px: H->X" the projections. Let ¥ e X; we prove ky < hy. Denote by
f: Y > K such a mapping that wy o f is the identity and zx o f is a constant
forall X ¢ X, X # Y. Lemma 1 implies that px o h o f is a constant for all
X # Y and consequently pyohof is a homeomorphism. Now use
Lemma 2. q.e.d.

PROPOSITION 2. There ewists a countable productively independent set
of metriec continua.

Proof. In [2] a metric continuum M, with the following property
iz constructed:

if H is a subcontinuum of M, and f: H->M, is a continuous mapping,
then either f is a constant or f(z) = x for all z ¢ H.

Let; X be_ a countable set of pairwise disjoint subcontinua of M. Clearly,
X is a rigid set of metric continua. q.e.d.

B ProrosiTION 3. For every cardinal number m there exists a productively
independent set X of metric semicontinua such that card X = m.

.PI‘Of)f. For every cardinal number m there exists a rigid set of metric
semicontinua, as follows from [5]. q.e.d.

2. Topologicgl representation of semigroups. All semigroups are supposed.
to be commutative. Their composition will usually be denoted bye.
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DEeFINITION. Let § be a semigroup, and T a class of topological
spaces. We say that S has a representation in T or 8 is representable in T
it there exists a mapping 7: S—T such that

(a) r(sy) is homeomorphic to 7(s,) <> 8 = 8;

(b) 7(s,08,) is homeomorphic to 7(sy) X 7(sy).

Then # is called a representation of S in T.

Remark. Clearly, if S is representable in 7, so is each of its sub-
semigroups.

CONVENTION. We denote by MC the class of all metric continua.

PROPOSITION 4. Every free unitary semigroup (with the unity) has
a represeniation in the class of all metric semicontinua. Moreover, if it is
countable then it has @ represeniation in MC.

Proof. The proposition follows immediately from Propositions 2, 3.
q.e.d.

PROPOSITION 5. Let a semigroup 8 be a product of a collection of free
unitary semigrowps with one generaior. Then § has a representation in the
class of all uniformizable semicontinua. Moreover, if the collection is couni-
able then S has a representation in MC. :

Proof: Let {S;; leI} be a collection of free semigroups with the
unity 1; and the generator a;. If s, ¢ §;, put 89 =1,. Every ;¢ §; can be
uniquely expressed as s;= a*. Let X be a productively independent
set of metric semicontinua (or metric continua) such that card X = card I,
let y: {a; leI}—>X be a bijection. If § = [] §;, s= {af’; le I} €8, pub

lel .

r(s) = [] v(a)®. qe.d.
lel

CONVENTION. a) Let § be a semigroup. If 4,BCS, put 4B
={aob; aecA, beB}. So, all subsets of § form a (commutative) semi-
group again. Denote it by exp8. '

b) Let T be a class of topological spaces, and m a cardinal number.
Denote by \/ T the class of all topological spaces that are sums of eol-

m
lections {X;; eI} such that cardl < m and X;eT for all TeI. The sum

of the collection {X;; I eI} will be denoted by \/ Xi.
lel

PROPOSTTION 6. Let C be a dlass of connected topological spaces, and
S a semigroup representable in C. Then expS is representable in AV o5
m

where m = max (¥,, card S).

Proof. Let = 8—C be a representation of § in C. If se S, put

X,=\/ P;, where cardl= max(x,, card§) and every P; is homeo-
lel '
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morphic to r(s). If ACS, put o(4d)= \/AXE. One can easily see that
ae

o: expS—> \/ T is a representation. g.e.d.
max (Ko, card S)

3. The semigroups S,, and expS,,. 1. Let m be a natural number.
Put M = {0,1, ..., m}. Denote by MRe the get of all sequences of elements
of M. Denote by pn: M¥e—M" the projection to the first » coordinates.

LEMMA 3. There ewists a countable set DC M® such that for every
nelN, ae M™ the set {dD; p,(d)= a} is infinite.

Proof. Let D be a countable dense subset of the set of all irrational
numbers of the interval (0,1). Consider the (m--1)-adic presentations
of the numbers of D. g.e.d.

2. Put M= {J M™ If a e M", write D, = {d ¢ D; p,(d) = a}. Clearly,

n=1
all D, are infinite and D, = D, 0 ... v Dy py- Let B be an element,
different from all D, a ¢ M. Let T,, be a free (commutative) semigroup
such that D' = {D,; a « M} v {B} is the set of all its generators. Let §,,
be its factor-semigroup given by the equalities:

(1) Diayey ® Diay© v © Digymy = Dy -
Then every element of 8, can be written in the form
@) Dho..o Do B,

where &, 1o ki are natural numbers, h,! are non-negative integers,
h+1>0 (if b = 0, we mean the word D% o ... o D¥, if | = 0 — the word B")
and the sets D, , ..., D, are pairwise disjoint.
Leyuma 4. The semigroup 8, is isomorphic to a subsemigroup of I1 lf"d,'
where every Ty is o free unitary semigroup with the generator d. <
Proof. If #=Dfo..oD"B" deD, put kra= D k; and I(»)

d€Dg;
= {@*% deD}u {BY. Then I: 8, []F, is an isomorphism. q.e.d.
deD’

PrOPOSITION 7. The semigroup Sy has a representation in the class MC.

Proof. The proposition follows immediatel
Propention 5 ely from Lemma 4 and

3. Let p be a natural number. Denote b
. y 4,.,C8,, the set of all
elements of 8, that can be written in the form (QT’guch nghafu o0

i
(a) 1>0, >k =lmodm,
i=1

(b) he{0,1}v {p+1,p+2,..}.
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LA B. Let ¢ be a natural number. Then At  is the set of all elements
of 8m that can be written in the form (2) such that

1
(a") >0, 2 k; = tmodm,
i=1
(b") he{0,1, .., tyu{p+1l,p+2,..}.

Proof. The lemma is true for t= 1. Let t=r41, 7 >0 and let the
proposition hold for 7. Denote by ¥ the set of all elements of Sp in the
form (2) with (a’) and (b’) satisfied. If

3) g=DBo..oDRoB", o =Die.. oDgiBY,

a’‘n

r ;o
wedl , o ed,y,, then

1 v
Z kot 2 B,= (r+1)modm, h+We{0,1,..,r+1} v {p+1,p+2,..}.
=1 =
However, the sets Dy, -.y Doy Dals -5 D, need not be disjoint. Use (1)
and find the form (2) for z o', say
@oa = DE}o... o DY o BMY,

- . v
One can prove that 1" >0 and ¥ k7 = (3 k;+ > k;)modm;hence 4, ,CY.
o =1

=] i=1
Conversely, let 4 ¥, i.e. let y have the form (2) with (a’) and (b’) satisfied.

1) Let there exist i, ¢ {1,..., 1} such that k; >1: we may suppose
%, >1. Put ' =1 whenever h=1, and %'=0 otherwise. If we put z’
= Dy -BY, a= Dl e Dito..0 Do B*", then @' ¢ A, ,, © 4], and
zox' =1. .

2) Let k= ..=k =21 Put h'=1 whenever h=1t, and A =0
otherwise. Tf we put @' = Dy 0oB", @ = Dig 1y © o © Diayymy © Doy © -
w0 Dy o B, then a' € 4, ,, ® € 47, , and @ oa’ = y. Hence YC A4 .
q.e. d.

LeMyaA 6. Let t, & be natural numbers. Then At = ALy if and only
if t=p and ¢ = Omodm.

Proof. The lemma follows immediately from Lemma 5. g.e.d.

PROPOSITION 8. Buvery semigroup with one gencrator is isomorphic to
a subsemigroup of some expSm.

Proof. Lebt § be a semigroup with one generator a. If § is free, then
i: 8 exp8m, defined by i(a) = {B} is an isomorphism. If § is given by
the equality a? = a?*™, put i(a) = 4,,, and use Lemma, 6. q.e.d.

PROPOSITION 9. Every semigroup with one generator is representable
in \/ MC.

No
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Proof. The proposition follows immediately from Propositions 7,
6 and 8. g.e.d.

Remark. Since every space from \/ MC is a locally compact '

No .
separable metric space, the theorem follows immediately from Propo-
gition 9.
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Limit mappings and projections of inverse systems
by

E. Puzio (Warszawa)

Abstract. Let S= {X,,II;, X} and §' = {¥,, Hg/’ ,Z’} be inverse systems and
{g, f»} be a mapping of .S into S*, For some classes K of mappings we discuss the problem
when fy ¢ K implies lim{p, fr} ¢ K and when I ¢ K implies IT, ¢ K.

In this paper we are concerned with limits of inverse systems, their
projections and limit mappings induced by mappings of inverse systems.
More precisely, we show how the projections depend on bonding mappings
and how the limit mapping depends on the mapping of systems induecing it.

To begin with, we recall some definitions and simple facts about
inverse systems and give two auxiliary examples. Our terminology and
notations are consistent with those used in [3]; except that by a mapping
of an inverse system S'= {X,, [Ty, X} into S'= (¥, II%, 2’} we under-
stand a system {gp, f,} satisfying besides the usual commutativity con-
ditions also the condition that ¢(ZX’) is cofinal in X.

The diagram
xr—1—v
& ol E
r—t .y

is said to be ewact (see [8], p. 19) if it is commutative and the following
implication is true:

i hy)=k(t), them gH)NfHY) £O.
The diagram (1) is exact (see p. 19 of [8]) if and only if

2) feU(B)=h"%(B) for BCT
or, equivalently,
(29 af{4)=Fkh(4) for ACY.

Obviously, the diagram (1) is commutative if and only if
(3) fo{B)Ch'k(B) for BCT
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