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The relationship between two weak forms
of the axiom of choice
by

Paul E. Howard, (Ipsilanti, Mich.) Herman Rubin,
and Jean E. Rubin (Lafayette, Ind.)

Abstract. Let P and Q be the following propositions:

P: For every set z # @, if R is a transitive relation on = such that every R-anti-
symmetrically ordered subset has an E-upper bound, then = has an E-maximal element.

Q: There is a choice function on every well-ordered, non-empty set of non-
empty sets.

‘We show first that P — Q. Secondly we show by means of a Fraenkel -Mostowski
model that the implication Q —P does not hold. And finally we derive some consequences
of Q. All theorems are in ZF without. the axiom of choice (AC).

1. Introduction. Let P and Q be the following propositions:

P: For every set & # @, if R is o transitive relation on x such that every
R-anti-symmetrically ordered subset has an R-upper bound, then % has
an R-maxzimal element.

Q: There is a choice function on every well-ordered, non-empty set of
non-empty sets.

Tt is clear that Zorn’s Lemma implies P and although it will not be
used it is interesting to note that P is equivalent to the following pro-
position.

P’: For every set » + @, if R is a transitive relation on « such that
every R -anti-symmetrically ordered subset has an R-upper bound, then x has
an R-upper bound.

2. The proof that P—»Q.

TaeorEM 1. P—Q.

Proof. Let # be a non-empty, well-ordered set of non-empty sets
and let y be the set of all choice functions on initial segments of x. Define
the relation B on y by

fRg if and only if D(f)CD(g).
(For any function k, D(h) is the domain of h.) R is trangitive and since
» is well-ordered any subset of y which is R-anti-symmetrically ordered
is actually well-ordered by E.
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Suppose ¥’ is an R-anti-symmetrically ordered subset of y. We
choose an upper bound f for y' as follows:
D(f)= UD(g)
gey
and for each u e D(f), f(u) = g(«) where g is the R-first function in ¢’
which has » in its domain. -
If we agsume property P we can conclude that y has an R-maximal
element g. And g is clearly a choice function on . Hence property @ holds.

3. The Fraenkel-Mostowski model. We now construct a Fraenkel-
Mostowski model of ZFU (Zermelo-Fraenkel set theory weakened to
permit the existence of urelements) in which Q holds and P fails.

Suppose m = (V, e, @) is a model of ZFU in which AC holds and
which has a2 countable set U of urelements. We construct a Fraenkel-
Mostowski model as follows (The construction takes place in m.):

Let < be a dense linear ordering of U without first or last element
and let @& be the group of all order preserving permutations of U. For
each bounded subset 4 of U, let G4 = {p e G: (Vae A)(p(a)= a)}.

Each ¢ « G can be extended to an automorphism ¢* of m by e-in-
duction as follows:

pa)=¢(a) for aecl,
9’9 =0,
, g'(@) = {o"(9): y e},
and since (p71)* = (p*)™* and (¢p)* = @™y* for all p, y € G, we can identify
@ and g%
For each # in V define

8(z) <> (EAC U) (4 bounded and (Vo ¢ G)(p(s) = o))
and

W(a) < (S(2)A [Vy e TC(a))(S(y)) ,

where TCO(x) denotes the transitive closure of . Finally let V' = {w e V:
W(2)} and let m’ = <V', ¢, @). Let § be the filter generated by {Ga: A is
2 bounded subset of U} then it is easy to verify that

LaeU>{peG: pla)=a}eF and

2. He¥ and o e G>pHp ™ e §.

Hence the proofs in [2] show that m’ is a model of ZFU.

THEOREM 2. Q holds in m'.

ITroof. Suppose « is a well-ordered set of non-empty sets (in m’),
=71 is a well-ordering of # in the model and 4 is a bounded subset of U
sueh that ¢ e Gs—>¢( =1)= 7. One can easily show that for every
yez and pe Gy (y)=y.
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Let A'=[v,v]={ueU: v<u<?} be an interval such that
A Clv, '] and there are two urelements w and w’ such that v<<w << w'
< v and
ywlnd=0=[w,v]n4d.

For each y € # choose {(y) € y. (The function { may not be in the model m’.)
Suppose, for each y e, that 4,, is a bounded subset of U such that

pe Gy, ~ot@) =1 .
Since < is a dense linear ordering and 4,,, is bounded, there is a permu-
tation p,,, e G, such that pg,(4,,)C4".

Define F: o |2 by F(y)=y,,({(»). It now remains to show
two things: First that ¥ is in the model m’ and second that F is a choice
function on .

To show that F is in m’ it suffices to show that every ¢ e G, fixes
the set of ordered pairs {{y,w,{t(y)>: ¥ ez} =F. So suppose yex
and g e Gu. Since AC A', G4 C G4, hence p(y) = y. Now we note that
Vi Pi(v) = v for every wvedy,, hence PPt (@) = t(y) and so
PPt (W) = vt (¥))- And combining this with the previous result we geb

‘P(<?/7 "/’t(y)(“?/)))) = {y, ‘Pt(y)(t(y))> .

Therefore ¢ fixes F.

T is a choice function because ¢(y) ¢y and hence since wy,(¥) =¥,
F(y) = vt (¥) € 9-

THEOREM 3. P fails in m'.

Proof. Choose u#, ¢ U and let # be the set of ordered pairs

{a, 0> uy<a<b&a,beU}.

Define the relation R on z by <a, b> R {4/, b’y if a < a’. It is clear that
R is transitive, R is in m’ and # has no maximal element.

Suppose ¥ is an R-anti-symmetrically ordered subset of z in m’, then

1. <a, by and <(a, b’y ey implies b = b’ since <a, by R<a, by and
{a, by E<a, b

2. {b: (Ha)(<a,b) ey)} is contained in some interval [¢,d] of U.
For suppose A is a bounded subset of U such that ¢ « Ga—p(y) =1y. We
may assume without loss of generality that A is an interval [¢, d] of U.
It for some <a, by ey, bé[c,d]=A, thereis ape @4 such that y(b) # b
and y(a) = a. Then since y(y) =y, We have (p(a), y(b)> = <a; p(0)> ¥
contradicting 1.

3. By 2, we get {a: (&b)(<a,b)ey or b, @y € y)} is contained in
some bounded interval [¢, d] of U. Hence y has an upper bound <a’, b")
where d< a’ < b'. Therefore P fails in m".
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The model nt’ is similar to the model constructed by Mostowski
in [3] and used by Halpern in [1] to show the independence of the Boolean
prime ideal theorem from the axiom of choice. In m’ however, the linear
ordering theorem (and therefore the Boolean prime ideal theorem) is
false. The set of all countably infinite subsets of the urelements is an
example of a set which cannot be linearly ordered in m'.

4. Consequences of Q. Suppose # is an infinite set such that |z| = m.
Let s(m) = |{a: a <X #}| (we use lower case greek letters for ordinal number
variables.) Then s(m) is Hartogs’ aleph and bas the property that

(¥*)  s(m) is the smallest aleph which is not <m .

Let Q,-Q, be the following four statements.
Q;: For each infinite cardinal m there is an ordinal o such that x(m)
= Noy1+
Qq: For each infinite cardinal m, 8, < m.
Qs: The union of a well-ordered set of well-orderable sets is well-orderable.
Q,: The union of a countable set of countable sets is countable.
We shall show that Q> Q,—Q,, Q—>Q;, and Q->Q,. But first, as

a preliminary lemma, we shall show there is a form of Q, which is prova-
ble in ZF without AC.

Levma 4. If for each o< f the relation R, well-orders the set w,, then

U a, can be well-ordered.
a<f

Proof. Let y= |J=,. Define a relation R on y as follows: let

a<f
Uy Uy €y and for i =1,2 let o = smallest element of {a: w; e @}, then

U By« [o < ay 0 (0= ay = a and u, Bu,)].
It is clear B well-orders y.
THEOREM 5. Q—Q;.
Proof. Suppose z is an infinite set such that |#| = m. Let

y={ao: a<Szand (eew or a is an initial ordinal)} .

For each a €y, let z, be the set of all 1-1 functions mapping « into .
It follows from Q that there is a choice function F on {7, aey}
For each aey, let F(z,)=f, and let u= | Jf a. Since, by hypothesis,

ae
# is infinite,  must be infinite, and, it followys from Lemma 4 that « can
be well-ordered. Therefore, there is an ordinal « such that ] = K, .
Consequently, the initial ordinal w, is the largest element of y. This implies
that w, is the largest initial ordinal B such that § << ». Thus, it follows

from (*) that s(m)= 5.
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COROLLARY 6. Q;—Q,.
Proof. Theorem 5 and ().
THEOREM 7. Q—>Q;.

Proof. Let o= {y,: a<< §}, where for each a< g, ¥, can be well-
ordered. For each a < B, let 2, = {R: R well-orders y,}. Q implies there
is a choice function F on {z,: a << #}. For each a<< 8, F(z,) well-orders v,.
Therefore, it follows from Lemma 4 that {_J # can be well-ordered.

THEOREM 8. Q—>Q,.

Proof. The proof is similar to the proof of Theorem 7, but here
@ = {y,: a<< o} and each y, is countable. Let 2, be the set of all relations B
such that B well-orders y, and the order type of y,, B) is w. Q implies
there is a choice function on {z,: < w}. Now use the Cantor diagonal
procedure to count the elements of {J#, omitting repetitions.

It seems at first that Q;—Q,, but with closer inspection one sees
that the proof is not obvious. In fact, we do not see how to prove it. It is
also not known to us whether proposition P above imples the axiom of
choice.

Added in proof. Ulrich Felgner (Heidelberg) in an unpublished paper, “Abzahl-
bharkeit und Wohlordenbarkeit”, has constructed a Cohen model in which Q; holds
but Q, does not, thereby showing that it is not the case that Q;—~Q, in ZF without AC.
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