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Complements of sets of unstable points (*)
by
I. Namioka (Seattle, Wash.)

To the memory of Tudor Ganea

Abstract. In the present paper the following fact is established: Let X be a locally
compaet connected finite dimensional space and let ¥ be a closed subset of X such
that each point of ¥ is “homotopically labil” in the sense of Borsuk and Jaworowski.
Then X~Y is connected. In order to establish this theorem, the singular homology
groups H,(X,X~Y) are investigated by means of the sheaf theory.

§ 0. Introduction. A few weeks before his death, T. Ganea asked the
author if a set of unstable points can disconnect 2 space. If by “unstable”
one means “labil” in the sense of Hopf and Pannwitz, then there is an
easy example to show that a single “unstable” point can disconnect
a space (see 2.1). If, however, “unstable” means “homotopically labil”
in the sense of Borsuk and Jaworowski, then one suspects that a set
consisting of unstable points cannot disconnect a space provided, of
course, the space is connected to start with. In § 2 of the present paper,
we justify this suspicion. We show that, if X is locally compaet and of
finite dimension and if ¥ is a closed subset of ¥ consisting of unstable
points, then the homology groups of X and X ~¥ are isomorphie. If in
addition X is conmnected, then X ~Y is connected. These facts are
established by a homological method.

The idea of the proof is quite simple. Assume, for the sake of sim-
plicity, that X is a compact, metric and finite dimensional space, and
let ¥ be a closed subspace of X eonsisting of unstable points. We establish
that H(X, X ~Y¥)=0 for all.g by induction on dim¥. If dim¥ = -1
this is clear. Assume that dim ¥ = n. Suppose that there is a non-zero
element o in H(X,X ~Y). Write ¥ = Y, v Z, where Y, and Z, are
closed and dim(¥, ~ Z,) < n—1. By the inductive hypothesis and the
relative Mayer-Vietoris sequence of the triad (X; X ~¥;, X ~ Z,), we see
that « is mapped to a non-zero element in either H (X, X ~¥,) or
H X, X ~ Z,). Suppose that the image of ¢ in H(X, X ~¥) is non-zera.
We may repeat this argument, and obtain a sequence of closed sets
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YD Y, D%,D.. such that diam(Y¥;)->0 and the image of a in -

H(X,X~Y,) is non-zero for each k. Let y,=() ¥,e¢ ¥. Then
H(X, X ~{yo}) = dirlim H (X, X ~ ¥;) # 0. However, since y, is un-

stable, it is “homologically unstable”, i.e. H(X,X ~{y,}) =0 for all ¢q.
This eontradiction proves that Hy(X, X~ ¥) =0 for all ¢. In order to
obtain the most out of the type of argument just outlined, one usually
resorts to sheaf theory as will be done in this paper. In § 1, a sheaf theoretic
preparation .is carried out. The basic spectral sequence (Theorem 1.7)
is a relative version of the usual spectral sequence, and probably is well-
known in some quarters. Our chief reference in- sheaf theory is Swan [9].

§ 1. Throughout the paper, all topological spaces are assumed to be Haus-
dorff. Let X be a topological space. For each non-negative integer g,

let 4,(X) be the set of all singular ¢-simplexes of X i.e. the set of all .

continuous maps T: 4,~X where 4, is the standard g¢-simplex. For
each T in 4, (X), let |T| = TT4,). Since X is assumed to be Hausdortf,
|T] is closed. A Tocally finite singular p-chain in X is a formal expression
Z’X)m(T)~T, where m is a function on A4,(X) into the group Z of all

Tedyl. :
integers, and where the family {|T{: m(T) s 0} of closed subsets of X is
locally finite. For a locally finite singular p-chain s = > m(T)-T,

. T edg(X)
we define the support [s| of s by

lsl = UAIT]: m(T) # 0} .
Note that [s| is necessarily a cloged subset of X.

A family @ of subsets of X is called a Jamily of supports if it satisfies
the following conditions: )

1) Each member of @ is closed.

2)If A,Be®, then AU Be®.

3)If A¢® and B= B~ C A, then Bco.

If a family of supports & satisfies the following two additional con-
ditions, then it is called Dparacompactifying:

4) Each member of & is Pparacompact.

5) If A € @, then 4 is contained in the interior of some member of @.

The family of all closed subsets of X is g family of supports. The
family ¢ of all compact subsets of X is & family of supports, and ¢ is para-
compactifying if X is locally compact.

Let @ be a family of supports, and let C7(X) be the set of all locally
finite singular p-chains s such that |s| e ®. We set 0F(X) =0 for ¢< 0.
Clearly Og’(X) is an abelian group under the obvious operation. Note that
0;(X) is the group of wsual singular p-chains in X. The boundary map
9: CYX)—~>C;_ y(X) can easily be generalized to the boundary map
0: 07(X)~0p_4(X). The resulting chain complex {C7(X),d} is denoted
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by O¥X). If & is the family of all closed subsets of X, then G2(X) will
be simply denoted by C(X), and this is the group of all locally finite
singular p-chains in X. Let 4 be a subspace of X. Then C (4) is a sub-
complex of C,(X), and the quotient complex {C,(X)/C,(A4)} is denoted
by {C(X, A)} or C (X, 4). For each element s of C(X, 4), we define
the support |s| of s as follows: Let s be represented by %’ m(T)-T e C)(X).

Then
sl = UA{ITI: m(T) # 0, |T| ~(X~4) #0}.
Clearly [s| is well-defined. For a family of supports @ in X, let
CX, A)={s: s € C(X, A), |s] « D} .

Then C2(X, A) = {07(X, A)} is a subcomplex of ( (X, A). We remark
that the complex CY(X, A) is the quotient of the complex Of(X) by
a subcomplex C%4(4), where @, = {B: Be®,BC A}. The gth homology
group of the complex C%X, A) (resp. O%(X)) is denoted by HJ(X, A)
(resp. H(X)).

Let X be a topological space and let 4 be a subspace of X. For each
non-negative integer g, we define a presheaf (“stack” in [9]) 8§, on X by

8,(U) = CYX)[[C3(4)+ Co(X ~T)] -

If VCU, then Cyd)+ CfX ~U)C Cyd)+ 0fX ~V). Therefore the
“restriction” map 8,(U)—>8,(V) is defined in the obvious way. Let §; be
the sheaf generated by the presheaf 8,. The boundary map OyX)- C;_,(X)
induces & presheaf map 9,: §,~8,; and a sheaf map J,: §,~8§,, such
that 8, ,9,= 0 and- 9, .9, = 0.

1.1. Lemma. Let @ be a family of supporis in X. Then the complexes
ONX, A) and {T'48;, Tyc,} are isomorphic.

Proof. We apply [9, pp. 84-87] to an indexed collection of sub-
sets of X given by {|T|: T ¢ 4/X), |T| ~ (X ~A) # @}. The presheaf §'
in [9, p. 86] is precisely our §,. Hence by Proposition 5 [9, p. 86], I'S, is
isomorphic to the group of all locally finite chains of the family {|T|:
Ted (X), |T|~ (X ~A) + @} But the latter is isomorphic to Cy(X, 4).
Let gp: Cf(X, A)->TI'S; be the resulting isomorphism. Then bj Lemma 6
[9, p. 871, lpes| = |s| for each s in CiX, A). Therefore ¢, induces an
isomorphism Cf(X, A)—~>T,8,. Clearly {p;} is a chain map.

In order to make §, into a cochain complex of shea,vgs, we let
87 =8_,and 6% = 8_,; §%->8"". The cochain complex {87 §} is denfte.d
by §*. The gth homology (resp. cchomology) sheaf of 8, (rvesp. 87) is
denoted by J8,(8,) (vesp. #%(8")). ~ o

The proof of the following lemma requires only a slight modification
of the usual proof (c.f. [9, p. 88]) and is omitted.

1.2. LEMMA. The cochain complex §* is homotopically fime.
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1.3. CoroLLARY. Let @ be a paracompactifying family of suppdﬂs n X.
Then for p # 0, the following sequence is exact:
. oIt
—HY(X, 877> HY(X,89)
Proof. See [9, p. 76]. ;
Combining Lemma 1.1 and Corollary 1.3, we obtain the following
spectral sequence. Recall that @-dim X < » if and oply if HY(X, F)=0
for all p >n and all sheaves & on X. S

5& .
S HE(X, 87— ..

1.4. THEOREM. Let @ be a paracempactifying family of supporis in X,

and let @-dim X < co. Then there is a convergent spectral sequence such that
By l= Hg(X, %,(8,)) ‘

and :{Eﬂ;"“: g—p=r} is the graded group associated with HYX, A)

suitably filtered .

Proof. Apply [9, pp. 116-117] or [5, p. 178] to the cochain com-
plex §*, and note that %7%8*) = #,(8,) and, by Lemma 1.1, HIX, A)
o H,(Ty8,) = H(I58%).

The following proposition contains some information concerning the
sheaves J&,(S,).

1.5. ProposrTioN. If w ¢ A, then the stalk J6 (S Wz 18 isomorphic to
HYX,X ~{w}). If v <Intd, then 368,),= 0 for all q.

Proof: Let # ¢ X and let Wy, be the directed family of open neighbor-
hoods of . Then .

(Spo=dit Im8,(T) = OYX)03(4)+CYX ~ fa}) ,

and the boundary map: (8,),—(8,_), is induced by the usual boundary '

map: OX)— C0;_,(X). Therefore there is a short exact sequence of chain
eomplexes: . -

0> CLA)/ 04 ~ {)) = OYVCL ~ (&) > (8,) >0

where i, is indueed by the inclusion map i: 4 - X. Consequently, we
have the following exact sequence: :

o HY A, A o) SHYE, X~ o)) > 1,(8,)y> HE (A, A ~ {5}) > ..

I x¢4, then HYA, A~{z})=0 for all ¢q. Therefore HYX, X ~{z})
S-%4(84)z for all g. Assume next that o « Int A. Then there is 2 member U
of WU, which is contained in A. Let j and % be the inclusion maps:
(U, U~{z})>(4, A~ {2}) and (U, U~{z})~>(X, X~ {x}) respectively.
Then %k =1j and k., and j, arve isomorphisms by the excision theorem.

Therefore 4, is an isomorphism for each q. It follows from the long exact
sequence that ¥y(S.)e= 0 for all ¢.
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From Proposition 1.5, if 4 is an open subset of X, then

HY(X,X~{z}) it
0 if

zvéd,
red.

Actually there is a slightly better way to identify the sheaf J,(S,). Let 3,
be the sheaf generated by the presheaf U-»HyX,X ~ U). For each #
in X, the stalk (3;); is isomorphic to HYX, X ~ {z}). Recall that if F is
any sheaf over X and if ¥ is a locally closed subset of X, then ¥y is the
unique prolongation of 5|¥ by zero (see [9, p. 31] or [5, p. 138]). In par-
ticular, if A is open, then 4 is a subsheaf of ¥ and there is an exact
sequence: 0>F4>F >Fx_,—0.

1.6. LemmA. Let A be an open subset of X. Then J64(S:) is isomorphic
to 3)xns-

Proof. For any open subset U of X, there is an obvious chain map
O X)]C) X ~U)—+8,(U). This map induces a sheaf map a: Jz—I0,(S«)
such that, at each point # of X, the maps as: (J)r == Hy(X, X ~ {x})
—>J€4(84)s of stalks are precisely the maps appearing in the long exact
sequence in the proof of Proposition 1.5. Hence, for x ¢ 4, a, is an iso-
morphism. If x e .4, then J6,(S«)z= 0 as remarked above. Therefore
Ho(Sx) 2= (Jp)xmus -

1.7. THEOREM. Let Y be a closed subset of a topological space X and
let @ be a paracompactifying family of supports in X such thai @-dim X < oo.
Then there is a convergent spectral sequence such that

Bt = H3 (Y, 3,)|Y)
and {E%™% qg—p = r} is the graded group associated with HY (X, X ~Y)
switably filtered. Here Oy = {B: Be®,BC Y}.

Proof. In Theorem 1.4, let A= X~7Y, and note that JC,(Ss)
=~ (J)r by Lemma 1.6. Finally by Corollary 1 [9, p. 93] (or by Theo-
rem 4.9.1 [5, p. 187]), H3(X, (1,)y) = HZ (Y, 3,|Y).

1.8. Remark. If X is an n-dimensional manifold, then J,= 0 for
g #n, and J=1J, is called the orientation sheaf of X. Theorem 1.7 then
yields that Hp (X, X ~Y) =~ H (Y, 3|¥). This is, of course, the well-
known Alexander-Lefshetz duality theorem [9, p. 138].

$y(84)e =

§ 2. In this section, we shall investigate the effect on a topological
space of removal of a subset consisting of unstable points.

The following definition of unstability is due to Borsuk and Jawo-
rowski [2], and it is slightly different from the definition given by Hopf
and Pannwitz [7].

A point , in a topological space X is unstable (in X) if, for each open
neighborhood U of #,, there is a homotopy k: (X, U)xI->(X, U)
such that ‘
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i) k(z, 0) =z for all # in X,
ii) h(w,?) == for all » in X~TU and ¢ in I,
iii) R(z, 1) # @, for all » in X.

Here I denotes the unit interval [0, 1] as usual. If &, is not unstable in X,
then z, is said to be stable (in X). As pointed out by Borsuk and Jawo-
rowski [2, p. 160], the property of being unstable is a local one.

If, in the above definition, condition iii) is replaced by the following
weaker condition:

iii)’ {h(w,1): ® e X} # X,
then the point a, is called labil by Hopf and Pannwitz ([7], also [1, p. 523]).

2.1. EXAMPLE. Let X be the union of the closed umit disk {(z, %)
22442 <1} in the plane and the segment {(z,0): 1 <2< 2}, and let
2= (1,0). Then =, is labil, and X ~ {x,} is disconnected. On the other
hand, the set of all unstable points in X cannot disconnect X. Therefore,
for our problem, the difference between conditions iii and iii’ is erucial.

A point x, of a topological space X is called homologically unstable
(in X) if Hy(X, X ~ {2,}) = 0 for all g. Recall that H® denotes the usual
singular homology theory (c.f. § 1). From the homology sequence of the
pair (X, X ~ {m,}), it is clear that the point «, is homologically unstable
if and onlyNif the inclusion map X ~ {#,}—X induces isomorphisms
Hy(X ~ {n,}) S HYX) for all g. The point =, is homologically stable (in X)
if it is not homologically unstable.

2.2, PRO}POSITION. If a point x, in a topological space X 1is unstable,
then x, is homologically unstable.

Proof. Let i: X ~ {m,}->X be the inclusion map, and let ¢ be & non-
negative integer. We must show that i,: HYX ~{m}) > Hy(X) is an iso-
morphism. Let a be an arbitrary element of Hy X ~ {x,}) such that {5 a = 0.
The element a is represented by a cycle z in O X ~ {@,}). Let A Dbe the
support 12 of # {e.f. § 1); then A is a compact subset of X ~ {w,}. Hence
U=X~A is an open neighborhood of ,. (Recall that all topological
spaces are assumed o be Hausdorff). By the hypothesis z, is unstable.
Hence there is a homotopy k: (X, U) X I»(X, U) satistying i, ii, iii above.
Let hyz) = h(z,t) and let g: X —+X ~ {z,} be the unique map such that
hy = ig. Then gxgx = (1)« = (ho)s = id. This shows that i, is onto. For
each # in A, g(#) = hy(#) = ». Therefore a= gyisa = 0, and hence i is
one-to-one.

Remark. The converse of Proposition 2.2 is false. Tet (X be the
(unreduced) cone over a topological space X, and let @, be its vertex. Then

(4 d 9 o ~
H(OX, OX ~ {w}) 3 Hyo(OX ~ {mp}) 3 Hy_y(X).

©
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Therefore the vertex =, is homologically unstable if and only if the reduced
groups ﬁg(X ) are all 0, i.e. X is acyclic. On the other hand, if #, is unstable,
then X is contractible (see [6, p. 563]). Since there are acyclic spaces
that are not contractible, there are homologically unstable points that
are stable. The point @, in Example 2.1 is labil but homologically stable.

Let @ be a family of supports in X. Then dim, X = sup{dim 4: A  &}.
By Theorem 1 [9, p. 109], @-dim X < dim, X if @ is a paracompactifying
family of supports.

9.4. TEEOREM. Let ¥ be a closed subset of a topological space X such
that each point of Y is homologically unstable in X. If @ is a paracom-
pactifying family of supports in X such that dim,X < co, then
H(X,X ~X)= 0 for all g, or, equivalently, the inclusion map i: X~Y>X
induces isomorphisms iy: HIX¥(X ~ Y)S H(X) for oll g.

Proof. By the hypotheses, #-dimX < dim,X < oo, and 3|¥ =0
for all g, where J; is the sheaf as defined in § 1. Hence by Theorem 1.7,
HXX,X ~Y)=0 for all g. As remarked in § 1, O%(X, X ~7Y) is the
quotient of C2.X) by C2*¥(X ~ ¥). Hence the last conclusion follows
from the standard homology sequence argument.

By specializing Theorem 2.4 to the case where @ is equal to the
family ¢ of all compact subsets of X, we obtain the following corollary.
Notice that in order to make ¢ paracompactifying, we must require that X
be locally compaet.

9.5. COROLLARY. Let X be a locally compact topological space such
that dim, X << co. Let ¥ be a closed subspace of X such that each point of ¥ is
homologically unstable. Then the inclusion map i: X ~ ¥ —>X induces iso-
morphisms ix: HYX ~ ¥)ZHYX) for all q.

2.6. Remark. By proceeding more carefully, one can improve
Theorem 2.4 and Corollary 2.5. For instapce, in Corollary 2.5, assume
that Y is a closed subset of X such that n = dim, ¥ < dim, X < oo and
that HYX, X ~{y}) =0 for 0 < g<n+r and for each ¥ in Y. Then
H(X,X~Y)=0for 0<g<r.

A topological space is called hereditarily normal if each subspace
is normal with respect to the relative topology. Metrizable spaces are
hereditarily normal.

2.7. COROLLARY. Let X be a pathwise connected, hereditarily normal,
locally compact topological space such that dim,X < co. Let L be the set
of all homologically unstable points in X. Then X ~L is connected.

Proof. Assume that X~ Y is disconnected. Then there are non-
empty subsets 4, B of X~Y such that X~¥ =4 B and A~B
— A ~n B = 0. Since X is hereditarily normal, there exist open disjoint
neighborhoods U and V -of A and B respectively (see, for instance,
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[3, p. 95]). Let Y =X~ (U v V)C L. Since Y is closed, by Corollary 2.5,
HYX~Y) >~ H{X) = Z. It follows that X~ Y= UvV is pathwise
connected. But this is absurd, because U and V are separated and non-
empty.

Next we shall consider spaces that are not necessarily pathwise
connected. A deformation of a topological space X is a homotopy h: X X
X I X such that (s, 0) = 2 for all » in X. A subset 4 of X is said to
be stable under deformation if, for any deformation h of X, h(x,t) ¢ 4
forall zin 4 and ¢in I. If 4 and B are stable under deformation, then
so are 4 and 4 ~B.

2.8. LEMMA. Let A be a subset of a topological space that is stable under
deformation. If a point x, in A is stable in A, then z, is stable in X.

Proof. Suppose that x, is unstable in X. Then we show that z, is

unstable in A. Let 7 be an open neighborhood of x, in A. Then there is
an open subset U of X such that U ~ 4 = 7V. Since #, is assumed to be

unstable, there is a homotopy %: (X, U)X I—(X, U) satisfying i, ii,

iii. Since A4 is stable under deformation, the restriction of % induces
a map h': (4,V)xI-(4,V) satisfying i, ii, iii relative to 4 and V.
Hence z, is unstable in A. This proves the lemma.

‘We also need the following theorem of T. Ganea [4]. In deference
to Hurewicz and Wallman [8], Ganea assumed that the spaces were
always separable and metric. However this assumption is superfluous
if we use the covering dimension exclusively. We also remark that Ganea’s
proof, which uses the Cech homology groups with the reals modulo 1 as
Ehe coefficients, can easily be converted to a proof that uses more familiar
Cech cohomology groups with, the coefficient group Z.

) 2.9. THEOREM (Ganea [4]). Let X be a topological space such that
dim, X < co. Then the set of all stable points is dense in X.

2.10. TamoREM. Let X be a connected locally compact topological space
such that &im, X << co. Let Y be a closed subset of X such that each point
of Y is unstable. Then X ~ Y is connected.

Pi-oof: For points #, y in X, we write v~y if 4 and y can be joined
by a path in X. By Proposition 2.2 and Corollary 2.5, the inclusion map
X~¥Y->X induces an isomorphism HYX ~ ¥) X AYX). This means:

(a) For each point & in X, 5~y for some y in X ~ Y, and

(b) If 2,y « X~ Y and @ ~y, then # and y can be joined by a path
in X~ 7. )

Let us suppose that X ~ ¥ is disconnected. Then X ~ ¥ = 4,u By,
Wherg 40 NBy=A4,nBy=0, Ay# @ and B, # @. If xed, and y e By,
then it is 1-10t true that  ~ y. For otherwise, by (b), # and 4 can be joined
byapathin 4,v By. Let A = {z: @~y for some y in 4,} and B= {=: w~y
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for some ¥ in By}. Then, by (a), X = 4 v B. Clearly 4,C 4, B,C B and
A~ B= 0. Since X is connected, either A ~B = @ or A ~ B # @. We
may assume that 4 ~ B % @.

Now each path that begins at a point in 4 (or B) is contained in 4
(or B). Therefore 4 and B are stable under deformation. By Lemma 2.8
each point that is stable in 4 is also stable in X. Consequently 4, contains
the set of all points that are stable in A. Since dim,4 < dim, X < oo,
it follows from Theorem 2.9 that 4, is dense in A4, i.e. 4,= 4. From
A~ By= 4, By= @, we see that 4 ~nBCB~B,C Y. Since dim,4 ~
A B<dim,X < oo and 4 ~ B # @, Theorem 2.9 implies that there is
a point %, in 4 ~ B that is stablein 4 ~ B. Since 4 and B are stable under
deformation, 4 ~ B is also stable under deformation, and consequently
the point #, is stable in X by Lemma 2.8. This contradicts the hypothesis
that Y consists of unstable points. The proof is therefore complete.

‘We can prove the following corollary in the same way as Corollary 2.7
is proved.

2.11. CorOLLARY. Let X be a hereditarily normal, connected, locally
compact topological space such that dim,X < oo, and let L be the set of all
unstable poinis in X. Then X ~IL is connected.

Final remark. In Theorem 2.10, the econdition dim, X < oo is
essential, because, in the Hilbert eube, each point is unstable. However
we don’t know whether or not the locally compactness of X is essential
for the validity of Theorem 2.10.

Added in proof. In Corollary 2.11, the econdition that X be hereditarily normal

can be dropped, because if a subset I without interior of a comnected space X
disconnects X then some closed (in X) subset of L disconnects X.
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