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Forcing with proper classes
by
Andrzej Zarach (Warszawa)

Abstract. In the paper a method of forcing with proper classes is presented. Some
sulficient conditions for semantic forcing to be definable are formulated. (This part
of the paper does not use the power set axiom; also some further proots depend, in fact,
only on satisfying the collection schema in the ground model.)

In the sequel the conditions for a generic set implying the generic extension to
be & model for ZF~ (vesp. ZFC) are given. As a corollary (using some concrete combi-
natorial conditions for a notion of forcing) we obtain e.g. the consistency of the theory
ZIC- 4 “every set iy countable”+ “the constructible universe is a model for ZF”.

0. Introduction. In this paper we shall consider foreing with classes
in the theory ZF~ (ie. the ZF set theory without the power set axiom).

We shall agsume the knowledge of the method of unramified forcing
due to Shoenfield [10].

In part 1 we give the definition of forcing where the notion of forcing
is a proper class and we introduce the definitions of a generic class and
also the construction of the model M[@] together with its simplest pro-

© perties. This construction and lemmas are analogous to those of Shoen-

field. Shoenfield [10] defines weak forcing in ZF under the assumption
that the notion of forcing is a set. He proves the main three lemmas of
Cohen and the usual connection between weak forcing and semantically
defined forcing. '

In part 2 we show that Shoenfield’s result can be proved in ZF-.

In part 3 we prove that for certain notions of forcing which are
proper classes (the semicoherent notions of forcing — see Definition 3.2)
the main three Cohen lemmas hold. The proof is divided into a sequence
of lemmag, Note that the facts preceding Definition 3.2 are contained
in [10], whereas here they are proven in the case of ZF~.

Lart 4 iy fundamental to this paper. It was inspired by Chuaqui [1],
which is illustrated e.g. by the notion of a sequence of dense sections
(with suitable moditications) and the definition of a strong generic sef
(i.e. property G1!). In the sequel we investigate the properties of M[G]
in relation to the properties of the generic set under the assumption that
forcing satisfies the three Cohen lemmas. o
1 — Pundamenta Mathematicae, T. LXXXI
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G!! — Theorem comes from Chuaqui and states that if M is u count-
able standard model for ZI'C, G strongly generic, then M [G] is a c.sm.
for ZFC.

The proof given in the present paper is not based on the definition
of forcing formulated in [1]. Since one of the purposes of the paper wag
to obtain a model for ZX~ collapsing all cardinals onto w, the generic
set used for this purpose had to have properties weaker than strongly
generic, yet sufficiently strong to give in the generic extension all the
axioms of ZF~ and above all the axiom of comprehension.

The idea was as follows: consider generic gets for which int,e:rsoching
uniformly defined dense sections is equivalent to intersecting . gome
uniformly defined subset of those sections. This leads to the definition
of the set of classes (Definition 4.2) and the main definition of the paper,
i.e. the definition of a (-3-generic set (Definition 4.1), This definition
is as follows: dtn

-~ @ is O-3-generic = for every set of clasges {D,}uer Where b 2 @,
there exists a function W: b~V We M, such that (@),(W(a)C D,)
and (a)y(W(a) ~ & # 0).

This definition leads to the formulation of our basic theorem, ie. the
3-Main Theorem: If M is a 3-model {“collection” model), O, s
a notion of foreing in M and the three fundamental lemmas about forcing
are satisfied, then if @ is O-3-generic over M then M [@] is 4 3-model.

The proof of this theorem is divided into a sequence of lemmag all
based on the main lemma: It M is a c.s.m. for ZF~ and @ is 3-generic,
then the axiom scheme of comprehension is satisfied in MG

Further lemmas, including the proof of the satisfaction of A.C., are
proved in the following way: first we prove that some class of names
can be restricted to a set of names and then the comprehension is applied.
The proof of AC is different from that of [10] since we could not uge the
fact that K, is definable in M[@].

In part 5 we show that a coherent notion of forcing (see Chuaqui [1])
is semicoherent and thus we show; by a method different from that of
Shoentield [10], that forcing with a coherent notion of forcing satisfies
the Cohen lemmas. It is worth mentioning that Baston [3] and Jensen [B],
who forced with classes, used coherent notions of forcing.

We prove a Combinatorial lemma which establishes the faet” that
a continuous and coherent notion of forcing (see Definition. 5.3) with
definable well-ordering of the class of conditions satisties the set — c.c,
In this case every generic set ig 3- generic,

In part 6 we prove the tollowing theorem.:

Consis (ZF) «+» Consis (ZF~ - (ZF)E - (@) (“x is countable”)). This gives
a positive solution to a problem formulated by Scott at the end of [9].
The problem was suggested to me- by Professor Mostowski and led to
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the considerations enclosed in this paper. Using the methods of part 6

. one can.prove that if M is a e.s.m. of ZF+V = L and M k “x is a regular

cardinal”, then there exists a c.s.m. N for ZF~ such that M C N, On™
= On", Nk (ZF)"+(2)(|z| < x); moreover,

Nk Card[x] « M F Card[«] & x < x ,
ef¥(n) = ct™(x) for x<x and N F2*= x" for x<x. ;

Part 6 ends with the applications of the results of Chuaqui [1] (with
suitable modifications) to a partial solution of the following prob‘lem:
Let M be a e.sm. of ZFC and let F: On™ - On™ be a functional in M
guch fthat
(&) (&)< &>F (&) < F(&)) -

TFor what F' does there exist a c¢.s.m. N of ZFC such that M C N, O@M
= OnY and for all ordinal xeOn* we have Nk Card[x] iff
M E (fa) (2 = wyy)? .

We believe that forcing with classes will help to prove some problems
of higher order arithmetics and set theory. It seems to be very 1mpor.tant
to know for which partially ordered classes weak forcing can be defined.
It is known that if a partially ordered class can be gxtendeq to a sgt-
complete Boolean algebra (i.e. complete under the intersections which
are sets), then weak forcing can be defined and Cohen’s lemmas are
satisfied.

1. The construction of the model M[@G]. In the follqwing paper ZF~
will denote a theory whose language and primitive notions are thos_e of
Zermelo-Fraenkel set theory, with the exception of the power set axiom,
which is omitted. ‘ o .
In ZF~, as in ZI, we shall include the regularity axiom in the follow-
ing form: .

(@)[@ # O (Ey)(y cv &ony=0)].

The remaining axioms of ZF together with the gssential explanations
are given in an explicit form in [2]; our notation differs from that of [2]
only in our uge of “( )” instead of “V” for the general quantifier.
" In the remaining part of the paper we shall often refer to some easy
theorems of ZI; in particular:
(@) (T2 (Trans (1) & x € t)
()] (Trans(t) & ¢ # @)~ (d!7)[Func(r) & dom (r) = t & |
L @)y € xg(r)—>O0rd(y)) & (w)(u e t>r(u) = Sup {r(2): z<ul)]],

i.e. for every transitive non-empty set there exists a uniqu rank funct;on.
"Hence we deduce that if ¢, and 7, are non-empty transitive sets, and 7,
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and 7, the respective rank functions, then » | f, ~ b= 1y M 4y ~ 1y, and
since for every set # there exists a transitive set ¢ such that x e !, to every
set 2 there corresponds exactly one ordinal number denoted by rank (x)
and such that rank(z) = Sup {rank(y): ¥ € x}
By £, we shall denote the language of ZF; if M is a sel, then L, M)
denotes the ZF language extended by constants taken from M.
If a is an ordinal, then it is not essential for all sets of rank < o o
form a set; if, however, » is a set, then {y: rank(y) < a &y e @} i3 also
@ set. The latter remarks permit us to transfer the resulty concerning
forcing from ZF to ZF~ in an easy way. In the model-theoretical Part
of this paper we assume a new axiom, which has a metatheoretica)
character.
SM axrom. There ewists a standard model for 41,
Faor 1.1. There ewists a transitive, countable, standard model for 71

Let M be a given transitive, countable, standard model for ZI' or
for ZF~. '

~ DeriNmrion 1.1. A pair (0, <) is a notion of forcing it ¢ is a formuly
with one free variable, and < a predicate with two free variables, €, <;
€ Lyp(M), and if the following statements hold in model M:
1° (@) (C(2)~» < (, @),
2° (@) W)(Cl0) & 0ly) &< (2,9) &< (y,2) >0 = Yl
3° (@) (@)(2)(C(2) & O(y) & C(2) &< (9, ) &< (y,2) > < (@, 2))y
4 (@2)(0(2) & ()(0(y) > < (9, ).

From 2° & 4° it follows that the element existing by 4° iy unique.
‘We shall denoted it by 1¢.

Remark 1.1. If Mk (Hx)(y)(y cw « O(y)), then the set defined
by formula € will also be denoted by 0, which — we hope — will not
lead to ambiquity. Instead of <(@,y) we shall write & <y and instead
of C(x) we shall write o ¢ ¢, even in the cage where ¢ does not define
a set. : '

‘ DEFINTIION 1.2. A set X C M is said to be a class in M if there existy
2 formula @ (m,) € £,5(M) such that ge X = M E Ola).

DEFINIIION 1.3. D is dense in C it D is a class in M such Ghat
(@) e D>w e C) and (0)(Hy),(y < ).

DEFINITION 1.4. The elements of the clags ¢ are said to be

DEriNrrion 1.5. Two conditions p and g
exists an s e C such that s < pand s<q If s
then p and ¢ are incompatible. o

Remark 1.2. By V we shall denote the universe of the set theory,
ie. the class of all gets.

conditions,
are compatible it there
uch an ¢ does not exist,
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DEFINIPION 1.6, G eV is C-generic over M if GCC and

1° 1¢ € @,

2 peG&eG->(Us)us<p&s<y),

3P pel&qeC&p<grqeld,

4° if D) is dense in €, then G ~n D % @.

LomMA 1.1, If p e C, then there ewists a G-(C-generic over M such
that p € G

The proof is a direct consequence of the fact that the language
{50 (M) is countable; hence there is a countable number of classes dense in C.

Remark 1.3. There is no need to make precise the sense in which
the notion of rank is used. Indeed, since M is a transitive, standard model
for ZF~, then the rank defined in it and the rank defined for a whole
universe coincide with the elements of model M.

DrpinerioNn 1.7, For ae¢ M and a G-C-generic over M

Ko(a) = {Kab): (Ep)al<b, p> e a)} .
This definition is inductive with respect to rank (a).
DErINITION 1.8, M[G] = {K4a): a e M}.
DEMINITION 1.9, @ = {<b, 1¢>: bea). :

. Remark 1.4, aeM-—ieM and Ky a)=a. Hence MC M[G].
Besides, (M [G], ey is a transitive, countable, standard model; accordmgly,
the axioms of extensionality, of pairs, of the empty set, of regularity,
and of infinity (o ¢ M C M[@]) are true in M[G].

The pair axiom holds becauseif p, g Gand a,be M,e.8.p = ¢= l¢,
then {<a, p>, <b, ¢} ¢ M and

Ko({la, >, <0, ) = {Eala), Ka(d)} .

M[@] is standard, transitive and regular; hence ae M{@] is bim Ord;,i;?;l
in M (@] iff it is an ordinal in the universe. Evidently On* C On*"*.

LummA 1.2. rank(K (a)) < rank(a).

OROLLARY 1.1, OnM = OnM0, .

TmMMA 1.3, If G e M, then M[G]* “awiom of union”, and G e M [6].

initi i ai sult of this

2. Forcing: Definition and general properties. The main re ‘

section is the proof of the fact that the three fundamental Cohen lemmas
gt ing forei roved in ZF".
concerning forcing can be proved in ; ' ‘

Forcing is essential for the discussion of the axiom of replaceme'nt
in model M [¢]. Its importance depends on the fact that the properties
: ‘ du : - " Il . . -M-‘
of M[G] may be examined inside the model M. o

Itl ]Ll 0] J. R. Shoentield supplies the definition of weak forcing in
a version which I have made use of in this paper.
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Further on we shall assume that M is a transitive, countable, standard
model for ZF~, that {0, <) is a notion of forcing in M, and enpecially

for the aims of this section that ¢« M. If ¢ is '-generic ovor M, then
we shall denote Kg(a) by @ and we shall say that o is a name for
If @ elyp(M) is a gentence, then l; @ will be understood a8 the ful-

filment of sentence & in model M[@], where every constant a e M ap-
pearing in @ is interpreted as @. ‘ ‘

DEFINITION 0F FORCING. Let @ be a sentence of language Lau( M)
and p a condition. Then we say that p I @ iff (@) (@ is (- generic over M
and peG— }—u D). ‘ S

Remark. In the above definition the assumption that ¢ M is
superfluous. The definition is correct also for notions of forcing which
are determined by proper classes in M. In this last case, howover, we
could not find a general method permitting us to define the relation
P & in model M. We shall presently show that in case (' e M the re-
lation p I+ & is definable in M.

The Main Theorem. If M is a countable, trangitive, standard model
of ZF~ and (C, <) is a notion of foreing in M with ¢ e M, then we have
the following:

DepiNABILITY LuMMA. For every formula ®(w,, ..., ) e e there
ewists a formula IOYCH( Dy @y weey Wiy Bppyy By pn) € Ly SUGh that Jor every
peC and ay,..;0;e M :

n ¢

P Il-(b(a“...,a@) ‘ ; )
iff M Forcy(n,, v, ..., 2, Bry1y Tpp) [Py sy oy @, €, ]

TrRUTH LEMMA. For every sentence @ e Law(M) and every G-(-generie
over M

v

FO i (@p)alp kD).

EXTENSION LEMMA. For every sentence @ e Low( M) and p,qe ¢

PLQ&qIFDsp FP,

In proving these Lemmas we shall follow Shoenfield [10], Hoe re-
cognizes as primitive the conjunctions —, and v while the remaining ones
are defined in the usual way. He also considers the exigbential quantitior &L,
as given and, using it, he defines “( )”. Given are the symbols e, 53 @ ¢y iy
defined as — (z e y) and z =y as — (& 5 y). All this refers to the language
of forcing and is necessary for correctness of an inductive definition
of | » L.e. weak forcing. In [10] Shoentield defines P Fo for pel and
D el,n(M) where @ is a sentence. Further he shows that P & iff

H ©
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P l%*wz — @ and, proving foreing lemmas for 1:, he sul.)sequently transferf
the proofs onto I , putting — — @ ingtead of @. Since in model M of ZF~
it is not obligatory that {a: rank(a) < a & a« M} be an element of M,
we must add certain notes to the definition given by Shqenﬁeld, 80 that
his proof could be applied to ZF~.

‘We shall now define pn-*(l) in the following five cages:

a) pira#b i (Ho)(Hg).,(<e, @ ea&pioyD)

or (Te)(Eg),,((, e &pieda)
b) prrach it (GL6)(F), (<0, q> € b &P I @ = o),
* . *
¢) P~ ¢ if (Q);gn‘” (qI+ D),

A pro v Y i prd or pi Y,
e) p ¥ (@a)®(a) if (ED)(p KO (b))

On the basis of (b), (¢), (a) it is clear that p Fa#b=(x), where
(*) is the formula

(W) (BLg) .y <0, 0 € @ & (0., {d) ()<, 83€ b (B lr o # D) v
V({ﬂ:(;)([v[q)ﬁp((c, 0 € b & (1).,(d) (8)5f<d, 8) € a~(Hr)g,(r Ko # d))] ,

and it is evident that if 7' is a transitive set, a ¢ 7' and (¢, ¢> <4, th«;rf
¢ ¢ T and rank (¢) < rank(a). Let T be a transitive set., TeMand a,bel;
then in formula () for (fle) and (d) we can substitute (Ee)g, (d)p re-
spectively. o
' Theg:a remarks suggest the following construction: Let 0 # T 11’)76
a transitive set. By the replacement axiom there exists a _set I _E@)
= {rank(#): # ¢ T'}. Let f be a function defined on I7(T) such that f(0) =
and
J == max (I ank (b)) &
F(E)= Ufn) v {(p,a,b}: peC&a,beT &&= max(rank(a), rank (b))
B

8 ((010) (80) 1y <0y 0 € 0 & (D) 8) <A, 5 €D
x4 ('Q["“),it(@" o, d>e L‘gf(n))) ) V(Q[O)(E[q)},p(@‘, @Heb&
e

& (1), () (8) (< 8> € A (Br)<ry 0, d> € ,,ngf("))))}

for & e 11(1). . X Lotk
Frdrrg the roplacement axiom and the sum azlomtftzllliwsfthe ;:égtlg’(l;“;
| W wueh g i ; will be denoted by fr. i
and uniqueness of such a function. Tt will b noted. e
= | f,(,%(_s). It is obvious that if T, T, are I_loq-empty and ‘?rans1t1ve,

el
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‘then - R(T)) ~ B(1,) = B(Ty ~ T,); hence p nu*a # b iy equivalent to the
faet that there exists a set @ % T, transitive and such that (p,a, b
e R(T). It is easily seen that if (p, a, by ¢ B(T) for a certain T' and T ix

, * :
transitive, then <{p,a,b>»e R(T,) for a,beT;; hence pi-a # b is de-
finable in ZF~ and there exists a formula Fove(wy, o, @y, @y, w,)e Lo

N *® .
such that for every a,be M and pel plra#b iff
* m T ]
‘ M EForel(wy, .., @)[p, a, b, ¢, =].
Hence we have
DEFINABILITY LmMMA. For every P(my, &y, ooy ta) € Lyp there emisls
a formula Forcy (g, %y, ..., Ty, Byyp1s Do) € gy 8UCh that for every a, .., ay
eM and peC
*
Pk Pay, ..., )
. * -
iff Mk Foxeg(zy, 7y, ..., Ty Tprs mnrkz)[pv pyeney s G: <.

Remark. 0 e M 'is a crucial assumption, since it permits defining
by transfinite induction.

ExrENSION LEMMA. If @ is a sentence of L (M), then
(@) elp) g K D>p D) .
TrUTH LEMMA. b @ iff (6p)a(p o).

ForcING LEMMA. p I @ iff p | — — P.

The Main Theorem is an easy consequence of the above lemmasg,
whose simple proofs we shall ask the reader to complete with Ghe aid
of [10].

3. Forcing for classes. We shall assume that V() e Ly M),

< (4y) e Lz( M) ,

M E (w)(0)(C'(u, v) > Ord (u) & (a)(La)| () [y e 2 & C'(a, o)) -
For every «, 0, will denote a unique set in M such that

ME@W(yel, o (a, v) -

Let O(x) = (Ha)C'(a, x). We assume that O, <> s a notion of foreing
in M. On the basis of the axiom of comprehengion for every a the set

Sa={P,0:peC,&qeC, &< (p,q)} helongs to M.

Eorkever'y o (C,,<,> will be a notion of forcing and we shall write
<(}’a_, <) instead of {(C,, <,>. Note that all the notions of foreing <0,, =) are
defined by one formula with a parameter q. Further we shall agsume

©
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that 0, C Oy if ¢ € f. Obviously M is a standard, transitive and countable

- dfr
model for ZF~. Let &, = G~ C, if ¢ is C-generic over M. For p ¢ C let
A'(p) =minO(a, p). I a e M, then

Aa) = U fa: (80)(Ep)c(<h, p> e a & (4(b) = avA'(p) = a))))

i definable by transfinite induetion.
' I ael and T is transitive, ¢b,p)ea, then beT and rank(b)
< rank(a). Henee defining 4 by transfinite induction is valid.

For every set 8 from the universe we can define Kg(a) = {Kg(b):
(tLp)g(<b, p> e @)} without any assumptions about §. Such will be the
formal sense of K . ‘

Faor 3.1. If A(a) < a, then K, (a) = Kela).

DErINITION 3.1, a = {9, p>: (b, pdea&pe ).

Facr 3.2. 4(a™) < a.

Facr 8.3. K (a®) = K (a).

Facy 3.4. If A(a) < a, p, then K(,,ﬂ(w) = Kg(a).

The simple proofs are left to the reader. From the given facts we
infer that

(1) MG = ] M[G,],
ae()nM
(2) A(a) < a, > Ky (a) = Kgla) = Kgla),
(3) every set M[@,] is transitive,
(4) (a)(G, e M[G,]) and (a)(G, < M[G]),

DErNITIoN 3.2, A(a, b, p) = rnaJx(A (a), 4(b), A'(p)).
~ Dmwminirion 3.3, Keeping in mind the assumptions mentioned at
the beginning of § 3, we shall call ¢' a semicoherent notion of forcing if, for
every 6-(-generic over M and o e On™, @, is C,-generic. over M.
Let ¢! be a semicoherent notion of forcing. To every C, there corre-
. *
sponds & weak foreing in the way described in § 2. We shall denote it by |+a.
The form of the formulae stating that sentence @ is forced in the sense
* X .
of i and of that stating that it iv forced in the sense of l}-ﬂ ig the same.

o

We shall now define forcing Ik* for ¢. Let a,be M, p e C; then

P aAb i K o #b,

A, b, )

*aeb it pF  aeb
9 H
P (e, b, D)
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P —® it (9olg<p>— (@F D),
P dVpr V¥,

(EB) (p I D(b) .

P OVY i
pi (Ha)d(2) if
Since p € Oy, 4., it is Teagonable to speak about p F

Aa, b, n)
a € b; further definitions are inductive with respect to the length

a s b and

*
P
Ala, b, p)
-of the formula.

Lmmva 3.1. If A(a,b,p) < a, §, then
pu—*a=b+->p|y*a=b and pu-*aqu«»pu—*ae;b.
a B 3 i
Luvma 3.2. If A(a, b, p) < a, B, then
Lk * * *
P a# beoplrastb and P aebopl ach,
« B '3 #

We shall omit the simple proofs.

LEMMA 3.3. If p<q and qF a#b, then pi a #b; if qF aeb,
then p K aeb.

Proof. Let a = max(d(a,d, p), 4(a, b, q)).

* dfn. *
qI- a #b = qF
A, b,q)

a#b and qu-*aaébz_:qu-*a;éb

. ' *
since by Lemma 3.2 qn—u oo a#b= qu-* a#b Bul p,qeC, and
Ala,b,q '3

P <g; hence by the Hxbtension Lemma we have p|+* a#b and by

Lemma 3.2 we have p i’ a # b, ie. pu.* a b,
A, b, p)

‘The proof for acb is analogous.

CorOLLARY 3.1. The Batension Lemma is true Sor ||-*.
The details of the proof are left to the reader.
COROLLARY 3.2. The Truth Lemma is true for .

For the proof it suffices to make use of Corollary 3.1 and to provo
the _Truth Lemma for atomic formulae on the basis of the facts in this
section. Thus we have proved the Truth, Definability'and Extension Lemmas.

DEFINITION 3.4. p I+ @ iff (G) (G- (- generic over M and p e G~ + D).
: o
LEMmaA 3.4. p w* —— D iff p | D.

mula  Foreg(ay, @, .
and peC
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TreorEM 3.1. For every formula ®(x;, ..., w,) € L,y there ewists a for-

oy @n) € Lyp(M) such that for every ay,..,ane M

plD(ay, .. iff M ETRore, (@, @, .., @0)[D, €y, oovy an]

.y )

and for every sentence ® e Ly(M) and G-C-generic over M

‘;;(’) iff  (Hp)alp it D).

If p<q and g then pi-o.

The proof follows from Lemma 3.4 and the pertinent lemmas for .
All notions of forcing known to the author and such that the for-
mula (&) (p € G- r;;l)') satisfies the three fundamental lemmas are semi-

coherent. Therefore we shall further assume that C(-), <(-,-) € Lyp(M)

and <0,<> is a notion of forcing and the relation (G)(p e G— I-Gé)

satisfies the three fundamental forcing lemmas. These assumption will
be taken for granted in the next section.

4. Models M[¢]. In [1] Rolando Chuaqui formulates the following
theorem: if M iy a countable model for the Morse set theory with the
Godel axiom of choice, and @ is O-generic over M such that (G!!): for
every p e On™M there exists a €, ¢ M such that ¢, C C and for every sequence
of dense sections (D, a-< f> (see [1]) there exists a g e @ such that

(@) p( P yney (P A exists & pAge Da),;

then M[G] iy o countable model for Morse +‘ Gt‘)del A.C.
Remark. If p,geC and Mk (Es)ols<p &s <&Ml <p &

dfn

&t g1 8)), then 8 == pAg.

‘We shall need some new ideas and also certain modifications of the
given definitions, so that we may transter the results of [1] onto ZF.

DuriNIron 4.1, A class D iy a dense section in € if D is a class de-
tinable in M, DC ¢, D ix dense in ¢ and (p)e(@)p(p < ¢—>P e D).

DBRINTITON 4.9, Tf, for every a < g, D, is a dense section in ¢ and
there existy a formuln ¥(+,") eLy( M) such that M k¥ (a,p) =pe D,,
then we shull eall (D a<< B> n sequence of classes.

T¢ instead of f we have s set be M and ¥(,-) ¢ L,e(M) such that
M¥FW¥a,p)=pel, and D, is a dense section in C for aeb, then we
shall eall {D ), & set of classes. :

PreiNimoN 4.8, T ¢ is (-generic over M and fulfils the con-
dition (GH): for every set of classes {Dg}qe, where b # @, there exists
a function W: bVM, WeM and (a)(W(a)C D, & W(a)e M) su(‘z‘h‘

that (a),(W(a) G # @), then wo shall call G C-3-generic.
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Remark. V¥ denotes the universe of M.’

The condition (G!!), with such an interpretation of a sequence of
clagses, can be applied to ZF~ and in Z¥~ 4 AC it is stronger than (G1).

Indeed, since M kZF~+AQ, it is sufficient to derive from (Gi1)
the formula (G!), where instead of “for every set of classes {D,},.,,
where b # @ we put “for every sequence of classes <D a<< >, where
f>0”. Here AC is the formula

(m)(w # @ (Ha) (Uf) (Fune (f) & dom(f) == a & rg(f) = Jb‘)) .

Let (G!!) be fulfilled, and let (D,: a < #)> ben sequence of clagses and ged,
0, C € having the required properties. Let .

W(a)={pAg: peC,&pAg exists &pAge D).

It is clear that We M, W(a)C D, and W(a) ~ @ s ¢, since there is
a pe@n () such that pAg exists and pAageD,. Since p, g« @, there is
an se @ such that s <p, s <g; then s <pag and hence pAqed, ie.
W(a) ~n G # @. o

Faor 4.1. If C is a set, then every G-C-generic over M is strongly
generic, d.e. it satisfies (G!!) (we can put g=1¢, €)= 0).

MAIN LEMMA. If M is a tramsitive, countable, standard model of L1
and @ 48 3-generic, then the aziom of comprehension is satisfied in MG,

Proof. Note that if @ is a sentence of {,,(M), then D, = {prplk@V
VPpIt— @} is- a dense section. Let ®(x, ay, ..., ay) € Low(M) and ae M.
We shall show that {b: FG bea& Db, a,...,a,)} e M[G]. Tt }—G b € a, then
obviously there is a b « Rg(a), Wwhere ’ ‘

din
Rg(a) = {b: (Up)e(<h, p)> ca)},
such that FG( b=">b'"&bea. Now let

D, = {p: (pFbea & Db, ay, ..., an))v(p [y (b ca& Db, ay, ..., (l«n)))]

for b ¢ Rg(a). From the definability of for ving and the independence of
the shape of the formula Fore, from the parameters appearing in @ it
follows that every class D, is definable in M y A LIy g 1N A sef of
classes. We assume that Rg(a) ¢¥; otherwise

Q= {b: b, bea& B(b,ay, ..., an)} e M[(]|
and this completes the proof.

In virtue of (G!) there is a function W: Reg(a)—> V¥, W e M, WH)C D,
for b e Rg(a) and W(b) ~ G % 0. Let

ag = {<b, p): beRg(a)&ped J @& @0, a, ...\ ) &b e a)}.
€ ()

©
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From the axiom of replacement (in M) and the definability of forcing it

“follows that a, e M. If I—” b'ea&dd,a, .y Gp), then we can assume

that there exists a be Rg(a) such that Fa bea& Db, a,...,an) and

From the Truth Lemma we infer that if p ¢ G then
A pea&d,a, .., an))) -

Since (G1), we have pe W(b) ~ @ and for this p we Pa,ve phrbead
& Db, Uy eny tn). Hoence <b, p>ea, and pe @, Le. b'=bel,.

It 0 eii,, then there exists a b such that b= 5 and for a certain
pel@ we gel b, preay, ie. plkdb,a,..,0)&beca.

We know that p € ¢ and so, by the Truth Lemma, |~G Db, ay, .y ) &

&b ea and also I~” DDy ayy g an) &b ea, ie.
E O)(beay o> bea&®b,a,..,am).

This concludes the proof of the axiom of comprehengion in M[G].
AXTomM 0¥ UNION. Let @e M{G), T'e M and T be such a transitive
set that we X' Let, for deT,

In virtue of ((i!) there is a function W: 7 -V which fulfils the
known conditions,

Let

= {d,py deT'&pel ) WH)&pl(Ta)(wea&den)}.
ber

By the axiom of replacement in M and the definability of forcing,
ag e M and | & C Kelay), which is easy to check. Hence, a_nd also from
the axiom of comprehension in M[G], it follows that (J&e M[GT; we
apply the axiom of comprehension to the set @, and the formula

(Hy)yetd&mwey).

DRINIION 4.4, Lot @(+,+) be a formula with some parameters.
Then
dn

Bo(w, ) = (w)(u e @ & (BB (u, 1) (He) (2 ¢ y &P (w, ?)) -

DumNrroN 4.5, M is n 3-model if M is a standard, countable,
trangitive model for ZX and for every formula D(-,) € Lyp( M)

M k() {Ly)3s(®, 7) -
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AXIOM OF REPLACEMENT. If M s a 3-model and (1) is satisfied

then M[G]F “axiom of replacement scheme”.
- Proof, Let.aeM, ®(x,y)el,w(M) and }-ﬂ (@) (ML )P, y). We
shall attempt to gshow that
{d I- (Hb)(bea & Db d)} € M[(}]

Let’
{p (@d)(p - (Ty) P (b, 4)>D(b,d))} for beRg(a).
The reader can easily check that Dy is a dense section for b « Rg(a). Ii iy
obvious that {Dy},cneq 18 & set of classes. In virtue of (G!) there is
a function W: Rg(a)->V¥ possessing the given properties,
Let

Wiz, 9) = (2= <b,p> &p Ik (Ey)B®, y)->@ (b, y))).
Velyp(M) and M is a 3-model. Hence for the sel Rg(a)x |J W(b)

b e tgla)
there exists a set We ,M such that if z e Rg(a)yx | ) W(b') fm«la there
Ve Rg(a)
exists a y such that W(z,y), then there is a y,e¢ W such that ¥(z,y,).

It ]_a biea &(D'(bl, d;), then we can find a be Rg(a) such that I—G bea&
&P (b, dy) and i—a b= b,. Itis evident that W(b) ~ G # @. Letip ¢ W(b) n G
then we. have (Hy)¥(2,;y), where z=: (b, p>, and there exists o de¢ W
such that W(z,d), ie. plr (Ly)D(b,y)->B(b,d). Ilence }«(}(QL@/)di(b,y/)
~+®(b, d). From I—G D(b, d;) it follows that I-G(I)(b, d). Hence we have
d=dy and thus |3 + (@D)(bea & (b, d))} C Wx {Te}. W {1¢} ¢ M[G),

which together with the axiom of comprehension gives us the axiom of
replacement in the model M[G].

In an analogous way wé prove that if M is a 3-model and (G!) holds,
then for every formula @(-,.) ¢ Lyn( M ) the sentence

(@) (Ey) (2)(z € & - |(Bu) (2, u) - (WD)t ey & @ (2, o)

is satisfied in M[G].

Thus we have shown that M[G] is & 3-model it M ix w 3-model and
@ is 3-generic over M,

AXIOM OF CHOICE. Let

A = (o) # O (8f) (Ea) (Fune(f) & f: o' s ).

If M is a 3-model such that M k AC and (G1) holds, then MGk AC.
Proof. Let ae M and ‘

={({ <{<b,p>},p> <, w3, <F b )12} B0}, 2 ): <b,p>ea},

©
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where [ € M is hll(‘h fm f unction defined on Rg(a) that there exists an a ¢ M
guch that f: Rg(a) - ~> a. We know that such a function does exist, because
M EZF - AC. I*‘rom d = {((' ley: ced} and M EZF~ it follows that

a*e M.
Now note that

K({dy, pyy <dyy po}) == {Koldy), Ke(dy)} if pe@
and ;
Ka({idy, p, <oy p3}) =0 it pe@.
Hence woe have ;

K ola )N} == (B, f(b)>: b, pdea&pe @ .

If (G!) holds, then M[GJ E “axiom of comprehenmon’ hence

dafn
@l e K@ )\{0) e M{G] .

Lot h(p) == ]’rﬁ)’tn{{m,ﬂ') €G'y for wead. Since On™ = 0rM& gnd

MG EZF, we have he M[G). Tt is evident that h: @—On and &
is 1=1; thus b introduces o well-ordering in @ and it belongs to M[G].
Hence we get MG E AC. Thus we have proved

3-MAIN TnwormM. If M is o 3-model, {C', <> is a notion of forcing
in M and the three fundamental lemmas abom foreing are satisfied, then
M[G] is a 3-model if G i C-3-generic over M.

If M= ACQ then MG E AC.

Now we shall formulate the following

(G -MAIN Triworem, If the following assumptions are satisfied:

a) M is a 3-model,

b) Mk Lh(‘ axiom of power set & the aziom of choice,

¢) O, =5 i8 a notion of forcing in M,

d) the three fundamental foreing ?6mmas are fulleled

o) (G holds.

Then we have MGk 210 AC.

Proof. Feom the 3-Main Theorem it suffices to show that the axiom
of power et iy satisfied, The. proof will be based on the translation of
the proof of [1] into the language of the Zermelo-Fraenkel set theory.

Lot ae ,M mul @ w . There are an ordinal a and a function fe M

sueh that f: a e Rg(a) is o map onto Rg(a). If 4 « M and 4 C @, then let
Dy Ap: p (B AVpIf(B) ¢ A} for  p<a.

Dy, 45 B<a> 18w sequence of classes in M. @ is strongly generic; hence
there exists a (!, ¢ M wuch that for every A C a there exists a ga ¢ @ ful-
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filling the condition (8)u(®p)gno (PG € Dy 4)- et ACa. We: shall
define a set ¢ as follows:

o={,py deRg(a)&pec O, &prg, tded}

of course ¢ e M and ¢C Rg(a)x ;. We shall prove that & == 4. Let ug
agsume that  « . Then there exist a d and a p ¢ & such that <d, p> e ¢,
%= d and we have pAg, 4 de A, pArg, 6.
Hence, by the Truth Lemma, d ¢ 4, i.e. &< 4, which implies &C 4.
It Z ¢ 4, then there is a d ¢ Rg(a) such that 4 = 7 and a f < « such
that f(f) = d. Hence there exists a pe@ ~ ¢, such that pAag, IFded
or pAg,lkd¢ A. Obviously pag, e @, and if pAg,lrd¢A then ¢,
- contrary to Ze A and #=d. Therefore we have pAgq,I-ded, which
implies <(d,p>ec and p ¢ &. Thus we get de? and % ¢&; hence 7= 4,
From this we infer that if 4Ca then in Pu(Rg(a)x ¢,), which iy an
element of M in virtue of the axiom of power set, there exists a name
for 4. Hence and by the axiom of comprehension in MG we have

@) (EYL)(tey o tCa)]

and M[G]F ZF+AC.

OOROLLARY 4.1. If M is a 3-model, (0, <> ¢ M is a notion of forcing
and @ is O-generic over M, then MG is a 3-model and G ¢ M [G. Purther-
more, if N is a standard, transitive model of ZF~ and G e N and M cu,
then M[G]1C N. Mt AC implies M[G]F AQ. o

CoROLLARY 4.2. If M is a standard, countable, iransitive model for ZF,
{0, <> e M is a notion of forcing and @ is O- generic over M, then M[G] s
@ countable, transitive, standard model for ZR. If M & AC then M [G]E AC.
If N is a standard, transitive model for ZF~ and G ¢ N ) then MG C N,
if MCN.

Remark. If Nk ZF~, G N, then the funectional

K(z) = {K(y): (Ip)el<y, p> e m)} s definable in N,

The proofs of both corollaries result from the previous theorems
and the above remark. As a consequence we also have

COROLLARY 4.3. If M is a 3-model, {0, is a semicoherent notion
forcmq in M and @ is C-generic over M, then, for every a, M[@,] is a 3 -model
and G, ¢ M[G] and M[G]= | M[Q,]. Hence M [G] is a transitive, count:

ae0n
able and standard model, where the amiom of union is satisfied and “rank”
is. definable. Mk AC implies M[G]k AC. All the - awioms mentioned in
Remark 1.4 are satisfied in M[G].. L '
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5. Continuous and coherent notious of forcing.
Let O'(+y0), =(+,) e Lyp( M), M De a 3-model and let

Mk (@) ()0, 9) - Ord@), M & (a) (@) [()ft e y > C(a, 1))

Let C(a) = (Ma) (e, ) and let <¢, <> be a notion of foreing in M,
Tet O, be a set in M such that

ME (@)@ e 0, o (g, z)va=14) .
DupiNrrion b1,
Ay y) = (H2)(0(r) & () & Oly) &2 (2, 2) & §
V(2 ) & () (O(w) & < (uy 2) & << (u, ) > < (uy 2)).

Baor 5.1 If Mk A(w, y), then there exisis exactly one condition which
is the greatest lower bound of @ and y. It will be denoted by zAy.

Facr 5.2, For every a, <C,,<,> is a notion of forcing. (The definition
of <, 48 a given al the beginwing of § 4.) As previously, we shall write
Oy = dnstead of (Uy, <> We also assume that C, C Cy, when a e p.

DrrNeeioN 5.2, In view of the above assumption, (¢, <> is said
to be a coherent notion of foreing if there exists a formula €(-,-) e Lyn( M)
fultilling the conditions

L M (@) ()0, 1) >{0rd(s) & O () ,

2° Mk () (@)(9)(0"(a, ) & O"(a, y)->A(z, ),

3° M F(a) (m)(’&[y)(G[z)(y’)(z')[O(m)»((O’(a, ¥) & 0''a,2) &

V= yne & ((()"(a, Y)& "o, &) & o=y Ag)>(y = y'& 2= z')))],

4 M E () (2') () () (2) () ()] (0 (2) & O() & C'(at, 1) & O"(aty 2) &
VOay y) & 0o, @) & o= yhw &l =y A &< (@, @) (<, 9) &

& < (2, 7)) _

Definition 5.2 states that for every a A: C,x 0“~(C is an order
isomorphism of the classes ¢, % C* and ¢, where C°(+) = ("(a,*). If p e C,
then by 9, ™ we shall understand the unique conditions existing in
virtne of 3°, whore pyy e 0,, p@ e 0% and p = pgya .,

Faow 5.3, If p,qe Oy aeOn™, p =< qthen pgy << g, 9 < ¢,

Yaow 5.5, If pel,, qgeC and p,q are incompatible in C, then p, gy,
are incompatible in C,.

DuriNmion 5.3, <0, <> I8 a continuous and coherent notion of forcing
i it is a notion of foreing, and there exists a regular cardinal » and y ¢ On™
such that, for any limit ordinal 2 sueh that of (A) = xand A =y, O, = U C, .

a<i

2 — Pundamenta Mathematicae, T, LEXKI
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DEFINITION 5.4, 4'(p) = min()’(a,p).

Facr 5.6. If the formula <'(-,-) € Lyp(M) is @ formula which defines
in M o well-ordering of dlass C, then the formula

2, 9) = [[4@) < A@)v{4'(e) = A'y) & <, y))|

is a well-ordering of type <On™ in class €.
The idea of the following lemma can be found in Solovay’s paper [11].
COMBINATORTAL LEMMA. Let (C, <) be a coherent continious notion
(3f forcing, let the formula <’ (-,-) € Lyp( M) define in M a well-ordering
of dlass C, and let F(-) € Lyp(M) define o class of pairwise incompatible
conditions, i.e. M k ()(F (2)~C (@) and

ME ) @E)(F (@) & T () &y # 2> — (Eu) (Clw) &< (u, 9) &< (u, 2))) -

Then F is a set in M, t.e. ME (E[v)[(m)(w €V > 3"(60))] .

Outline of the proof. 1° For every class of pairwise incompatible
conditions there exists a maximal clags of pairwise incompatible con-
ditions.

2° If & is a maximal class of pairwise incompatible conditions, then
by h(p) we shall denote the earliest element ¢ ¢ F in the ord(srmg << which
is compatible with p < C.

Let g(a) = m;n( (0,) C Cy); g is defined in M, g: ()n” >0nM, g is

increasing and continuous in limit ordinalg A such that cf(A) == » and 4 ;2
Let ay =1y, 0py = g(a) for < x and o= U a, for 6<x ‘m(dh

that 6 is a limit ordinal. Then §, = U a; = g(f) (md by Fact 5.6 we get
F g Cg,
* 3-1EMMA. If C is a continuous coherent notion of forcing im M and

<(+,) well-orders C into the type <On™ and @ is C-generic over M, then
G is 3-generic.

Outline of the proof. Let {Dy},., be & sol of clagses in M, and <
a well-ordering of type < On™ in C. For every b ¢ a let p, the be earliest
element of class .D, in the ordering 2. Let b e a. We ghall restrict our-
selves to the conditions from D,. Let , be the maximal set of pairwise
incompatible conditions belonging to D, and let p, ¢ F,. If we put W(b)
=G, then. W e M (5, is constructed in a uniform way for all b¢a by
means of a formula with a varying parameter b) and W(b) ~ G # .

SEMICOHERENCE LEMMA. Hvery coherent notion of foreing is o semi-
coherence notion of forcing.

ZF -00MBINATORIAL LEMMA. Let M be a 3-model and M E the awiom
of power set.
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(__l) Let @(_-,-) € Lop(M) and let I be g class de
a definable well-ordering in M having o field M o
type n(M) << On™. Let R be a dlass definable 4

efinable in M. Let < be
nd ordering M into the
n M and

M E (@) )y co oy e n & o m, y))] .

Let = (a,9) = yCa.
(2 )L(’ V() € Lyl M)

(r(f) Fun( (&FCMxN& (m)(n)(<m W e f> B m, n)) &W(f) .

Lel
ME2(0) & () (g) (o) & g CA)=¥(9)
M k() (@)C(f) & O(g)>(Fune(f o 9N~>¥(foyg).
Let
) dfn . .

a=0(m) = mis a-th eclement of dlass M in the ordering <
3 afn ’
oy a) =

O(m) & (m)(m)(<m, ny e z->0(m) < o) ,

(*1// p (l_lll.l M
a, @) = («(,'L')&(m)(Tt)((m,n)ew——>o(m)>a).
Then <C, <> is a coherent notion of forcing.

We omit the elementary proof of this lemma, and also that of the next.
» L ;mvm B If the assumption (1) of the ZF -combinatorial lemma is
ia::f’;( y;z(m)l RN TL“I well-ordered by <3 inlo the type n(n) < On™, then in the
jase 0 x) = Pin(x). the assumption (2) of 1}
is satufins < D (2) of the ZX-combinatorial lemma

> U8 A continuous coherent
wifred, (0, < 1§ notion of foreing and C may
be well-ordered into o type < On', f reind X

Liet o be o fixed ordinal number,

s (i, y) e yCuw,
(&, f) = Pune(f) & dom (f) C €x w, &rg(f) COon &Fin.(f) &
& (A M(CE B, my ef>n<g).
O = (W 0E, )
then by Lemma 5.1 we got
JOROLLARY 5.1, O,<y is a coherent continuous notion of forcing

and O may be well-ordered into lype On.
o
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6. Some applications.
THEOREM. e
Consis (ZF) « Consig (ZF—+(Z1«‘)L' v) (Bf) (Fane(f) & f: o *"*1*:1:)),

‘We shall first recall a fact about construetibility. We denote by £(+)
the formula of constructibility.

Tacr 6.1. Let N,, N, be standard, transitive models for Z1 having
the same ordinals. Then {a e N2 Ny EL[al} = {ae Ny NybLla]}.

All the explanations are given in [4], [8], [2]. We shall add some
facts following immediately from the preceding section.

By §§ 3 and 4, the combinatorial lemma, the 3-lemma and the
gemicoherence lemma we have

TuroreM 6.1. Let M be o 3-model. Let (O, <> be a cohcrent continu-
ous notion of forcing i M such that there emi&te a definable well-ordering
of O in M into type <On™. Then M[&] is a 3-model for every (- -generic
over M. Mk AC implies M[G]E AC.

TarorEM 6.2. If M is o 3-model and M EZF, ae¢ M

= {f: Fune(f) & Fin(f) & dom(f) C On X w, & r&(f)
C On & (B) (&) (W(LLBy Eryyy e ry <2 B

and < (@, y) = y Ca, then M[G] is a 3-model for every G- U -generic over M.
Fwthewwre, for every ordinal & e On = On™MA there exisls a function

¥ ‘ .
B, e MIG] such that By w,—> & If M EAC, then

MGk (x)(m # @~ (Tf)(Fune(f) & dom(f) = w, & rg(f) = 1")] .

Let O,={feC: dom(f)CéXw,} and Gy= G~ U, and let N be
o standard, transitive model for ZF~,

Lot M CN and G.e N for &eOn™. Then we have MG C N.

Proof. It suffices to prove the existence of function #,. Indeed,
Gpy e M[G] and M[G]F the axiom of union, and so | [y, ¢ MG,
and since for f< w,

Drx{fegs-m '1;/(\\ B, )]/cf)
and for << £ 41 ‘

Dy={fe Oy (EP)LE, Bry 1) e f))
are dense in Cpyyy We have Gy n Dy O und Gy, Dy # O, Sineo
Gepq 15 & set of compatible (‘Olldltl()nh, we finally oorwludo im

1’5 = {</3; nyt (<&, By, my € |G, s a funetion .

By M[G]EZE™ we get T o, = & and F,e M[G]
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JOROLIARY 6.1, If a = 0, then M[G]is a 3-model and infinite ordinals
are countable. If M F AC, lhen

MGk ZE™ - (o) ( # 0 (Gf)(Func(f) & f: o — z)) .

COROLLARY 6.2, If there emists a standard model jo; ZT, then there
eists a standard model for the theory

ZF ™+ (LF) - (@) [ # O ~-—>([PIf)(I*‘unc(f) &dom (f) = o &1g(f) = 4] ,

where £(+) e Lyp and (ZF) denotes the amioms of ZF related 1o L(-). |
Outline of the proof. Godel has proved that

Cong (ZT) < Cons(ZF-+ (w) £ (x)) .

From the Skolem-Lowenheim theorem and the contraction lemma it
follows that il there exists a standard model for ZF, then there exists
a countable, transitive, standard model for ZF4- ()¢ (x). Let M be a such
model. By Corollary 6.1 there exists a 3-model N possessing the same
ordinals. Obviowsly M E AC, and so N FAC. NE£[a] iff MEL[a] iff
@ e M; hence

N b 2B~ 4 (ZF)V - ( )(m # G- (Tf) (Fune(f) & dom (f) = o &rg(f) = m)) .
Thus we get
Consis (ZF) « Consis(ZF~ -+ (ZF) + (@)@ # B~ (Ef)(Func(f) &

& dom (f) = w &1g(f) = w))) )
The notion of forcing used in Corollary 6.1 is homogeneous, and so the
last result is correct (see Chuaqui [1], Levy [7]).

The following remark seems to be useful for the reader who is
interested. in the interpretability of the theory ZF~ in the second order
arithmetic and vice versa: (see [12]).

If M is a 3-model and Mk AC, then M ¢ schema of the axiom
of choice.

The following problem remains open:

Let M be a transitive, countable, standard model of ZF--AC. Let
F: On™ . 0n™M be such a functional in M that

(E)(E) (6 < &> T(8) < F(E) .

For what F does there exist a countable, standard, transitive model N
of ZF+ AQ such that M CN, On™ = On® and for any ordinal » ¢ On™
= On" we have

N kCard[»] it Mk (Ha)(x= opg) ?
Wé can supply easy proofs of the following facts:
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1° F(0) = 0 (since o is -absolute).

2° F is contihuous, since the supremum of a sel of cardinaly is

a cardinal.
3° (a)(@peey 18 & cardinal regular in M) since

ZF +ACF cf(w,yy) = wayqy and

4° Tt Mk GOH and there is no inaccesible cardinal in M, then
(a)(F(a+1) is a non-limit ordinal).

We do not know the full answer to the above problem.

The eclass of functionals for which the problem has s solution fulfily
conditiong 1°, 2°, the natural condition (a) (F(a»lf—'l‘) is a non-limit ordinal)
and an artificial condition, which, however, is a consequence of hitherto
applied methods of forcing by classes, namely:

efN < ef M,

(@)(0pe is & singular cardinal in M->T(a+1) = F(a)--1) .

All ' known methods can be reduced to the proof that for a given
notion of forcing (C, <> there exist a functional mi: On->Card and
a functional g: On—On such that for any &, (U, <) satisfies the my, f§,-
density condition and the class {m,: & ¢ On} iy cofinal with On.

In [1] Rolando Chuaqui defines various combinatorial properties
of notions of forcing and proves several model-theoretical and combi-
natorial lemmas. The proofs and definitions can be transferred onto ZF
after a slight modification. Only Lemma 6.11 must undergo & serious
change, since from (x)(cf(x) < m->ct¥(x) <m) follows ofM (™)
=m* but not I m) =m.

DEFINITION 6.1. Let m e Card, p, &£ ¢ On, and let § be ai increasing
continuous sequence of ordinals with domain y. Let (0, <) be a coherent
notion of forecing.

- (a) (0,<)> is m-closed if for every linearly ordered subset X of ¢
such that |B|<m there is a p ¢ ¢ such that p < ¢ for all ¢ ¢ I

(b) <O, <> satisfies the m-chain condition if, for every subset B of
- incompatible elements of C, we have |B|< ny

(e) C satisfies' the wm, &-density condition if, for every sequence
(D,: a<<y) of C-dense sections, where y < m and for avery p e O, there
isa gel, g<p and I C 0, such that /7] < m and

(@) (4 )<g(Tr)p(r is compatible with ¢’ &rageD,).
If, furthermore, g = py, we say that ¢ satisfies the strong m, &-
density condition.
Levma 6.1. Let C; satisfies the m-ochain condition and let 0 be m - closed.

Let D be a dense section of O and p e 0. Then there is a qg<p, q¢C and

a set IIC G, such that |IT| <, gy = p and (@) ®r)y (r 48 compatible
with q' & ragq e D).

icm
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Proof (ZFC). Let &(f) = Func(f) & Ord(dom(f)) & (a)dom(,)(f(a) <p
& f(a) € D) & (&, faomyy |@ # f>(f(a)y is incompatible with TPy &
& {f(a)®, f(B)®} is linearly ordered) . '
(1) D(f)~|dom(f)] <m
since O, satisfies m-c.c.

Let Ay(f) = \J{4'(f(a): @edom(f)}; then

2) P(f) &P(g) &fCyg~a(f) < Ayg) -

Letfg%{) = O(f) & dom(f) = y & (9)((g) & dom(g) = y—A,(f) < Ay(g).
By (1)

(3) X ={f: (Ay)L(y, )} is & set.

Let Il C X be linearly ordered by inclusion; then

{4) P(UE) &4 B) = U{df): feB}.

Let g be such that &(g) & dom(g) = dom({J B); then 4,(|_ B) < 4i(g).
Indeed, if 4,(g) < 4,(|J) ), then there exists an feF such that A,(g)
< Ay(f). Let h == g} dom(f). It is easily seen that dom (k)= dom(f), ®(h)
and, in virtue of (2), A,(h) < 4y(g) < 44(f), but this contradicts fe X.
Hence

(3) - ECX &P linearly ordered implies (B e X.

By (5) and the Kuratowski-Zorn lemma there exists a maximal element f.
The set {f(a): aedom(f)}C (¢ is linearly ordered, its cardinality is
less than m and €° is mt-closed; hence there exists an se ¢ such that
s < f(a)® for aedom(f). It is easy to check that g=pgyrs and IT
= {f(a)p: aedom(f)} have the required properties.

LuMmA 6.2. If mis a regular cardinal and C, satisfies the m-c.c. and C*
8 m-closed, then O satisfies the strong m, &-density condition.

FUNDAMENTAL LEMMA 6.3. Let m be an increasing sequence of cardinals
in M, cofinal with Card™. Let B be a sequence of ordinals in M. Suppose
that {C,<> is a coherent notion of forcing in M. Let {C, <) satisfy in M
the my, .- density condition for every & e On™. Then every dlass G C-generic
over M is strongly O-generic over M. Hence M[G] & ZF -+ AC.

FUNDAMENTAL LEMMA 6.4, Let O salisfy the m, &-density condition
in M for some &; % e On™, and let m be a cardinal in M. Then cf™(x) =m -
iff ct™ ) = m, where G is C-generic over M. If m is a regular cardinal
in M, then m is a regular cardinal in M[G].

Proof. Suppose that 1= cf?¥(x) < m and ¢f™(x) > m. There exists
a function f ¢ M[G] such that f: n—» and the set f(n) is cofinal with ». Let

D, = |p: (E[c)(p I ((Ed)(d €% & <@, dy e f)>0 e % & (a, 0> e f))} -
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(D, a< n) is a sequence of sections C-dense in M. In virtue of the
m, &-density condition there exist a qe @ and /I such that [I7] <m
in M and

() ecgl®) en(Ep)plp 15 compatible with ¢ & pAged,).
Let p = |[IIxn|. Then p < nt and there exists a function ke M such that
he pﬁg ITxn. Let g be a function defined on /71 as follows:
[ 10: rAgi ((Bd) (de% & ity dy e f)-»0 e % & <, 6 ¢ f)}
| if »Aq exists, and
i (E8) P Aq I (Hd)(d e % & <&y dy e )-8 € % & <aty 8 e f),
| 0 otherwise,

g(rya) =

goheM, goh: p——>% and {goh(n): n<<pr={g(r,a): rell & a< n}. Let
= Sup{g o h(n): n < p}. Since ¢t¥(x) 2= m >y, we hswe 80 << %. Suppose
that F(y) = 7, whele y < 1. Then there is an ¢ ¢ G such that

sk ex &y, 0> e f &Fune(f),

and we can assume that s < ¢. Since s < ¢, there exists an r ¢ [l com-
patible with s and rAqeD,, i.e. there exmts a ¢ such that

rAgIF (Td)(dex& 5, d> ef)>0 en &y, 0> ef .

Sinee r is compatible with s, there exists a ¢’ ¢-generic over M such that
t,8 € @'; hence *Aqe G and by the Truth Lemma

R, €% & <y 0y e f & Fune(f)
il;nd

b, (Ea)(dex &<y dy ef)>C en & (7, Eref],
ie. l—G/;lz ¢; in other words, = ¢ and 7 < » Hence A ¢ exists and

(H8) <, *AQIH(Ed)(dex & P, d>ef)>den &<, 8 ef.

From the definition of ¢ and 6, it follows that there exists a << §,
such that

TAQIE(EA) (A 6% & <y dy € f) >y €% & 3y oy € f

Since sl-7 € % & <y, 7> ¢ f & Func(f) and since there exists a ¢ ('~ generio
over M and such that s, 7Aq e @', we have 7 == 5, << §,. This shows that
it fy)y= 7 for y <m, then n< § < % This contradicts the  assumption
that the set {f(y): y < m} is cofinal with »

In this manner we have proved that :Eor any »

ofM(x) =m it efM (k) .

©
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If we now assume that m is a regular cardinal in M, then ef¥(m) = m,
and hence nt = ¢fM®(m) > m, which means that ¢f%(m) = m, ie. that
mis & regulz‘u‘ vzwdinal in M[G].

Lemma 6.5, If () (x < n—>2%<n), m<mn, |B|<m and 1 is a reqgular
cardinal, then I (A, B ) fulfils the n-chain condition.

Proof. Let I be a set of pairwise incompatible conditions. Let 4, = @,
A, = | )4, where 4 iy a limit ordinal. Having defined 4,, we can choose

w<h

for every p e M, (A,, B) a qel such that ¢ t 4,= p provided that such
a q existe, A, = 4,0 ) dom(g).

q-chopen
We show that if ¢« wm, then |4, <n For ¢= 0 and «-limit the
proof is immediate. :
It |A,| <, then
H(Aay BY <2 T (HAJIBDP < [T (14|BIP < (14 1B
p(m p<m

= (|4 [BI)" < 2Hdl B

but |4 <, |B]=cn and m<n; hence |4 |Blm<mn and we get
olalBim 21 qe. |H,(4,, B)| < n. Since
l{g: ¢ c¢hoosen for A} =< |H,(4,,B) and |dom(g)<m,
we get
|Aal1| ------ |A \'}'II{m B)|1n<n'

It suffices to show that IC H, (4., B). Let p e I, Since |dom(p)| < m,
there oxists an o< i such that dom(p) r\Aaz dom(p) N Ayiq; p M4,
¢ H,(A,, B). Theve exists a ¢' ¢ I such that ¢’ } 4,=p | 4,, e.g. ¢ =p.
In virtue of the definition 4, there is a ¢ eI such that dom(q) C A,y
and ¢ } A, =p } A,. ,

T @edom(p) ~dom(q), then we4,.,; hence «edom(p) ~NAL,
= dom (p) ~ 4,. But q } 4, ==p } 4,, and hence.p(») = g{w) and p,qel,
ie. p=q. 'l‘]m means Lhat dom(p) C A,y C 4;,; hence peH (4, B).

LuMA 6.6. Let B be a definable, continuous, increasing functional
such that I': On-»>On and B (0) == 0. Let the following conditions be satisfied:
(a)(I'(a-t1) is a non-limit ordinal),
(M) 48 @ singular cardinal - F(A+1) = F(4) +1).
Let H be such a funcltional thet (5)'(13‘(£-—|~1) H(£)-+1). Let
0(f) = Fune(f) & dom(f) C Onx On &rg(f) C Oon &
& (£)(a) (B)({<&) ayy B e f>H () d18(F) & a < wppy &
& < wp) & (5)(11 (&) ¢ 2g(F) > |dom (f) ~ ((5+1) X wpe)l < “’F(e))
<(f,9)=9Cf ' '
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Oy = {f: O(f) &Ldom(f)C &1},

Cp={f: O(f) &Ldom(f) ~ (£+1) = O}
where 1. domf = {77: (E[a)((n, ay € dOm(f))} Then € is a coherent motion
of forcing. If for every & such that H (&) ¢ xg(F) and every oardinal m <

p ; (-1
we have 2" < wpe.y, then for every & such that IL(E) ¢ vglt 'y fulfils thé

Opey-chain condition and CF is wpe, - closed. If F(&-1) (&) 41,
then O is wpe,q)-closed and Oy fulfils the sy~ Chain condition under
the assumption that 27 == q,

CoROLLARY,
ZBC-GCH F (8){C fulfils the Opgegryy § = densily condition),

The above corollary and the previous lemmas imply the tollowing

THEOREM. If M is a standard, tramsitive and countable model of ZRC,
F: On™—O0n is an increasing, continuous functional in M, F(0) == 0 and

(@)(F(a+1) is @ non-limil ordinal),

(M) e Lim & wpgy 18 @ singulor cardinal in. M ->B (A1) == F(2) 1),

(é-41)*

then there ewists a standard, tramsitive, countable model N of ZT+ ACQ such
that On™ = On™ and for any ordinal % e On™ = On™ N F Card [w] iff
Mk (Ha) (¢ = wpg)- T

Remark. Let M be a model of ZF+AC, n—a singular cardinal

in M, {mg: &< ay—a sequence of cardinaly, and By E<ad—a so-
quence of ordinals. Let ¢ be such a notion of forcing that

(£)o(C satisties the M, B, — density condition).

If @ is C-generic over M and M [G1F ZF, then nt i a regular cardinal

in M[G] under the assumption that lim Mg = 1.

Outline of the proot. chW](11§<2 I Mty <t then we
would have ef*¥(n*) < n, whence, for a certain &< a, ofom(’n*‘) << 1My
In virtue of the my, f,-density condition, ctM(n*)< mg, and we thfe
a contradietion. This is the reason for introdueing & rather artificin
condition: : : .

(A){@pgy — singular+F (2-+1) = F(2)+41) .
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