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Applications of the Baire-category method
to the problem of independent sets

by

K. Kuratowski (Warszawa)

Abstract. A set ' C X is said independent in B C X", if for every system =z, ..., 2,
of different points of ¥ the point <@, ..., z,> never belongs to R. The main result states
that, if X is a complete space and R is closed and nowhere dense, then the set J(R) of
all compact subsets F of X independent in B is a dense G5 in the space C(X) of all
compact subsets of X. Using Baire category theorem this statement is extended to
the case where R is an I';-set of the first category and also to the case of an infinite
sequence Ry, R,, ..., where B, C X"®,

The same method allows also to show the existence of Cantor sets in X (supposed
dense-in-itself) independent in B (or more generally, in B,, R,, ...). Similar results were
obtained in [10] and [11].

Applications to indecomposable continua (and others) are considered.

§ 1. Introduction.

DEFINITION. Let X be a space and B an n-ary relation in X, i.e.
RBCIX" A set FCX is said to be independent in E, written F ¢ J(R),
if for every point &= <&, .., z,> e " with distinct cocrdinates (i.e.
2 # @y for ¢ % j), we have £ ¢ X*—R.

In particular, if R is a binary relation (n = 2), I is independent, if
no two of its elements are in the relation R.

In many cases, it is important to know whether or not there exists
an uncountable compact set FC X independent in a given relation E.

The Main Theorem of this papér will give a possibility of proving
the existence of an ¥ independent in R (under suitable assumptions on X
and B) with the use of the Baire category method; thus — avoiding
individual constructions of F (ackward —in many cases). Ce

Let us note two ugeful (and obvious) formulag -

1) if R,CRy, then J(R,)CJ(Ry),
@) 7 - T BR) =1 J(By) .

5 — Fundamenta Mathematicae, T. LXXXI
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§ 2. Terminology and notations. X denotes in this paper an arbitrary
complete (metric) space.
By a Cantor set we mean any space homeomorphic to the well known
Cantor discontinuum.
C(X) denotes the space of all compact non-empty subsets of X with
the exponential (Vietoris) topology; that means that the sefs

(3) {1 C G}
and
(4) {ar: FnG#3},

where F e C(X) and @ is open, form an open subbase of C(X).
(B)  The space C(X) is topologically complete.

More precisely, the space C(X), with thé Hausdorff-distance topo-
logy (which agrees under our assumptions on X, with the exponential
" topology) is complete.

The fact that the exponential topology of C(X) for X complete,
agrees with the Hausdorff-distance topology of C(X), was essentially
shown in [3], vol. II, p. 47. (See also [7], 3.3 and 3.6.) It follows (by a known
theorem of H. Hahn, see [3], p. 124) that C(X) is topologically complete.

- Aget 4 C X is called nowhere dense, if its closure containg no interior
points. A countable union of nowhere dense sets is called a set of the
first category. A complement of a set of the first category is called residual.

By a classical theorem of Baire, a residual set in a complete space is

dense in this space.

Since a countable union of sets of the first category is a set of the
fivst category, it follows that a countable intersection of residual sets
(in a complete space) is residual. :

We shall say that almost every element of a space hag a given property,
if the set of elements which have this property is residual,

§ 3. A Lemma on topological spaces.

Let X be an arbitrary topological space and let G be an open dense sel
in the space X™ (n == 1). Let Hy, ..., Hy, where m 2= n, be open non-cauply
sets in X. Then there ewists a system of open non-emply sets Uy, .., Uy
such that

(6) U, C H, f()?‘ 1<igm
and ‘
(7) Uy X oo XU, CG  whenever iy < ...« i, .

Proof (by induction relatively to m-— n).
«. Case m—n = 0. Put @ = H,;x ... x H,. Since @ is donge in X"

and @ is open, we have @ ~ ¢ # @, and since @ ~ ¢ is an’ open non -empty
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set i;l X", there exists a system Uy, .., U, of open non-empty subsets
of X such that .

Ui o x0,C1Q ~G),

ie. Uyx . xUCHy % oo x Hy and Uy X ... xU, CG.

Hence the conditions (6) and (7) are satisfied (in condition (7) we
put, of course, ¢ = j).

. Case m-+-1. Assume that the lemma for m (=n) is true.

Let (01, 04y ..., 0) e the set of all n-elements systems o; of the
form (4y, ..., 4a) where 4 <C ... <ip, < m-+1.

We shall define in X open non-empty sets

Hi, 0<j<iand 1<i<<mt+1

so that
(8) HY=H;,
(9); - HiCHT for =1,

(10); Hix .. xH CG for j=1and o;=/(i,..,1,).
7 n

n

We proceed by induetion relatively to j<<t. Let 0 <j <¢—1 and
let ojyy == (i), ..., %,). As has been shown (see case ), replacing the system
Hy,..,H, by Hi,.., Hi, there exists a system of open non-empty
sets HPFY, .., HI' satisfying conditions (9);,, and (10),,.

Thus the sets H{™ have been defined for- i e ¢;. For i'¢¢;, we put
Hit = HY.

Finally, we define the system U, ..., U,,,, by setting

(11) U,=H, for 1<i<m+l. R

Thus defined, U, ..., U, is the required system. For, by (8), (9);
and (11), the inclusion (6) is fulfilled. Next, let 4, << ... < i, be given
and put o; = (i, ..., 4,). Since H C HY (by (9);), inclusion (10); implies (7).

Thig completes the proof.

§ 4. Auxiliary properties of C(X).

ProvosytioN 1. The set of all finite sets is dense in C(X).

This is an easy consequence (for each T -topological space) of the
fact (mentioned in [7], 2.4.1), that the set of all finite sets is dense in
the space (denoted 2%) of all closed non-empty subsets of X.

ProposITIoN 2. If X contains no isolated points, then the set of all
Cantor subsets of X is a Gy-set dense wn C(X).

Proof. It is easily seen ([5], vol. IL, p. 108) that for I' compact, the
necessary and sufficient condition to be a Cantor set, is the existence,
.
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for each m, of a finite system I'== (G, ..., Gyy) of disjoint open sets

such that ‘
FCGuv..uly, Fn@+0
Now let us denote Tr,, the set of I satistying the above conditions.

Obviously (comp. § 2 (1)) Tr,, is open in C(X), and so is T, = l,] J T 1

Since T = Tw, it follows that T is a Gy-set in C(X)q

and  8(Gyyq v Gy) < 1fm .

m
Tt remaing to show that T is dense in C(X).
By virtue of Proposition 1, it suffices to show that cach neighbour-
hood of a finite set (in C(X)) containg a Cantor set, and this reduces to
the eagse where this set is composed of a single point p. Now let

Q= (I (FCG)(F G #0) ..~ G, # 0)}

be an open set in C(X) containing {p}, i.e. p ¢ @ where (F= G ~ G ...
Gy

Since G iy open in X, G contains no isolated points. Since overy
dense-in-itself complete space contains a Cantor set (see e.g. {5], vol. II,
p. 444), there is a Cantor set F C G. Obviously I e Q.

PROPOSITION 3. The mapping F" is continuous.

More precisely: if we put On(F) = ", then the mapping Py C(X)
= C(X™) is continuous.

We shall deduce this proposition from the following more general
statement. .

ProrostTioN 4. Let X and Y  be topological spaces and let YW(K,L)
= K X L. Then the mapping

¥ CX)xCY)-~C(XX Y)

18 continuous.

Proof. We have to show that the sets

A= {(E,Ly: (KExI)C & B={<K,L> (KXL) G 0}

are open in C(X)X C(Y) whenever ¢ is open C(X X ¥).

TFirst, let us assume that (K, Ly» € 4, i.e. that (K, x L) C G Then
by a Theorem of Wallace (see [4], p. 142), there exist open sets U in X
and ¥V in Y such that

K,CU, LCV and UxVCd{,
Hence (K C U)(LCV)=>(KxLCE), and
Ky, Loy e {K: EC Uyx {L: LCV}CA.

and

Since the sets {K: K C U} and {L: L CV} are open (comp. (1)), we

have thus defined an open neighbourhood of (X,, L,> contained in A.
Therefore 4 is open.

icm®
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Next, suppose that (K, L,» ¢ B, i.e. that (K,X L)~ G # @. Let
@ € Ky, 4y € Ly and {@y, Yo» € G. Then there are open sets U in X and V
in Y such that
e U,  goeV

and UxXxVC@E.

Therefore
Ky, Loy e {H: KU # @YX {L: LAV g}CB.
Since the sets {K: I0~ U s @} and {L: T~V @) are open, it
follows — like hefore — that B is open.
This completes the proof of Proposition 4.
We deduce by induction that, assuming

VB yy Ky ooy Ky) = Ky X Ky % ...

the mapping ¥,: C(Xy) x C(X) x ...
continuous,

In particular, the mapping [C(X)]"-C(X") is continnous and con-
sequently so is &,: C(X)—C(X"), because the mapping C(X)~[C(X)]" is
continuous (since for every space Z, the mapping of Z onto the diagonal
of Z" iy continuous). ’

X Ky ,
XC(Xn) > C(Xy X Xy X .. X Xp) is

Remark. The Propogition 4 was proved for the case where X and Y
are compuact by Bngelking (in o more general form, see [2], p. 725, Cor. 2).
It is also possible to deduce Proposition 4 from the Theorem of Engelking.
Prorosirion 5, If A is a Gy-set in X, then the set {F: FC A} is
a Gg-set in C(X). '
Let A == Gy ~n Gy ..
for all n=1,2,.. Hence

(F: FCAy=[) {F: FC G},
n

where all &, are open. Then FC A iff FC G,

which completes the proof.

§ 5. The Main Theorem. Let X be o complete space and let R C X™ be
nowhere dense. Then almost ecvery I e C(X) s independent in R.
More precisely, if R is closed and nowhere dense, then the set J(R) is
a (s dense in C(X),
Proof. Sinceo the first paat of the Theorem follows from the second
(by: virtue of (1)), we may assume that R is closed.
1, J(RY is ¢y (Heve the assumption of R being nowhere dense can
be omitted.)
Denote by A, the set of all points (@, ..., €n)y of I with, at least,
two identical coordinates. Then, we have by definition of J(R) (see § 2)

(12) J(R) = {I ¢ C(X): F*"C G dyp}

where ¢ = X" K.
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Denote, like in § 4, Gu(F) = F", and put
Q= {ZecC(X"): ZCGw An}.

Therefore J(R)= D;(Q).

Since & is open and 4, closed, so G w Ay, 18 & Gy-set in X", and hence
(by § 4,5), Q is G in C(X"), and it follows by the continuity of @, (see
Proposition 3 of. § 4) that J(R) is a Gy-set in C(X).

9. J(R) is dense in C(X). We have to show that, for every 4 e C(X)
and every open set H in C(X) such that A ¢ H, there exisis F e (H ~ J(R)),
ie. by (12) .

(13) e H
and
(14) mCcaoud,.

Since the family of finite sets iy dense in C(X), we may assume
that 4 is finite: 4 = (ay, ..., am). Since A e H, there are opensets Hy, ..., Hy,
such that a, e H; and

(15) {(@y € Hy) oo (#m € Hp) = {(0, oy ¥m) € H} .

Let Uy, ..., U, be open non-empty subsets of X satisfying con-
ditions (6) and (7). Let bye U; for 4= 1, .., n, and lot F = (b, ooy by).

Formula (13) follows immediately from (6) and (15).

Finally, Dy (7), we have {b;,, ..., by, > ¢ & whenevev 4, < ... =2 4,3 this
implies (14).

19

§ 6. Corollaries and remarks.

COROLLARY 1. The first part of the Theorem remaing true if we assume
R to be of the first category.

In its second part we may assume that B is an B -set of the first category.

k
closed nowhere dense.

COROLLARY 2. Let Ry, Ry, ... be a sequence of sets Ry C X0 of the
first category. Then almost every set I« C(X) is independent in ecavh set Ry,
k=1,2,.. (see [9] and [10]).

Because the family of these sots F' is [ J(Re)

k
CorOLLARY 3. If the complete space X has no isolated points, lhen —
under the assumption of the Theorem — almost every Cantor subsel of X is
independent in R.
Similar remarks apply to Corollaries 1 and 2.
This follows by virtue of Proposition 2 of § 4.

- Remarks. Let ¢ denote the Cantor discontinuum and X & complete
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space. As usually, XY denotes the space of continuous mappings f: (- X,
with the topology of uniform convergence. ‘

There is a natural mapping I" of X% onto C(X ). Namely

I'(f) = £(0).

By & theorem of Michael, the mapping I" is continuous and open
(see [8]).

Now, for RCX" denote

I(R) == {f e X“: f(C)e J(R)}.

Obviously I(F) == I"'[J(R)], and using Michael’s Theorem. one

deduces from our Main Theorem the following Corollary (*).

COROLLARY 4. If R CX™ is closed and mowhere dense, then I(R) is
a Gy-set dense in X°.

Because, an inverse image of a @,-set under a continnous mapping
is Gy, and the inverse of a dense set under an open mapping is dense
(see e.g. [B], vol. I, p. 117 (7)). ‘

One sees easily that, similarly, the Corollaries 1-3 can also be formu-
lated in terms of the space X° instead of ¢(X).

§ 7. Applications.

1. Let X be the space of reals and let o By mean that the difference
a4y i rational. ' ‘ :

Here I is an F,-set of the first category. For, let #,,7,, ... be the
sequence of all rationals, Then K= R, B, ..., where % R;y means
that @—y = ;. Obviously Ry is & closed nowhere dense set, and hence R
a set of the first eategory, .

According to the Corollary 3 of § 6, there exists a Cantor set F such
that, if @, y « I' and @ # y, the difference —y is ivrational (in fact, almost °
all compact sets have this property).

Gall & get ¥V of reals o Vitali (non-measurable) set if it contains exactly
one point from each member of the quotient-space X/R.

According to the Corollary 3 of § 6, there is a Vitali set containing
a' Canlor set.

S Let X be o melrie indecomposable continuuin (ie. X cannot be re-
presented as the wnion of two proper subcontinua). Let @ Ry mean that
there ds @ proper subcontinuum of X containing @ and y, i.e.

(w B y) = HE e CLX): (I s a continuum) (I # X) (weF) (y ¢ F)} .
(*) Which is, in facl, the “Muain Theorem” of Mycielski’s papers [10] and [11].
This implication was pointed ont to the author by Prof. J. Mycielski.
The inverse implication ecan be deduced —- as noticed by Mr. R. Pol — from the
Hausdortt theorem on the invariance of the topological completeness under open
wappings (Fuand. Math. 23, p. 279).
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Thus, R s the projection of the set
{{F,m,y>: (F is a continuum) (F # X) (wel) (y e )}

parallel to the C(X)-amis on the product space X X X.

Since the spaces C(X) and the space of all subcontinus of X are
compacet, the projected set is an F -set (in C(X)X X' X X) :m(]: so iy B
(in Xx X) (comp. [5], vol. IT, p. 14).

Moreover, R is a boundary set, since in every neighbourhood of
two given points @, and y, of X, there are two points # and 4 which lie in
different composants of X (i.e. that znon-Ey).

It follows from Corollary 1 of § 6 that there ewists a Cantor set ¥ C X
such that no two of ils points belong to the same composant of X (Theorem
of Mazurkiewicz [6], see also [1]). In fact, almost every compact subset
of X i3 a Cantor set with the above property.
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Model-completeness for sheaves of structures
, by

Angus Macintyre (Aberdeen)

Abstract. By combining some sheaf-theoretic ideas of Comer, with ideas from the
Lipshitz-Saracino proof that the theory of commutative rings has a model-companion,
we prove a general theorem enabling one to extend metamathematical results on
fields o the corvesponding results for certain regular rings. As an application, the
model-completeness of veal-closed fields yields a model-completeness result for
a natural clags of lattice-ordered rings,

0. Introduction. In » recent paper [15], Lipshitz and Saracino found
the model-companion of the theory of commutative rings without nil-
potent elements. In the present paper we will give an abstract version
of their proof, apparvently suitable for finding the model-companion for
various other theories of rings. In particular, we will find the model-
companion for the theory of commutative f-rings with identity and no
non-zero nilpotent elements. »

The representation of rings by sections of sheaves is now well-
established [4, 5, 11, 13]. In [3], Comer generalized the Feferman-Vaught
results [8] to cover certain structures of sections of sheaves over Boolean
spaces, and thereby proved deecidability results for various classes of
rings. It should be noted that for constant sheaves Comer’s results are
essentially contained in some publications of the Wroclaw group [23, 24,
25, 267 in 196869,

Our main result gives o salficient condition that, for a sheaf of models
of & model-complote theory, the theory of the structure of sections should
be model-complete, ‘

Before treating the main vesult, we give a rapid discusgion, in
Secetion 1, of model-completeness properties of reduced products.

Wa are very grateful to Professors Comer, Lipshitz and Saracino
for maling preprints of [3] and [15] available to us. It will be seen that.
this paper ix hased on a gynthesis of their ideas.

1. Model-cdmp]eteness and reduced products.
LI It is well-known that theorems of Feferman-Vaught type can

be used to give an algebraic structure to the space of complete theories
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