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TEEOREM 3. Let the function g fulfil hypothesis (H,) and let con-
ditions (2)-(8) be fulfilled for f defined by (28). Then g has a completely
monotonic iteration group if and only if condition (O) is fulfilled (for f de-
fined by (28)).

ExampLE 3. Let

(29) g(@) = 2—s)w—2o?

for # € (0, 1—&]. The function ¢ is completely monotonic. Suppose that
there exists a completely monotonic function X such that

(30) Xi(0) = g(a)

Then ¢@(s) = 1—s—X(1—s—2) is an absolutely monotonic solution
of (24), where

&) =1—s—g(l—s—a) = swt o

But this is impossible (cf. Example 2). Therefore equation (30) with g
given by (29) has no completely monotonic solution.

Theorem 3 and Example 3 answer in the negative U. T. Bodewadt’s
conjecture [1] that for a completely monotonic g the equation

¢"(x) = g ()

always has a unique completely monotonic solution for every positive
integer =.
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Compact absolute retracts as factors
of the Hilbert space
by
H. Toruiczyk (Warszawa)

Abstract. It is shown that if X is a compact ANR then XxI, is an l;-manifold.

Let (¥, o) be a metric space and let # be a retraction of Y onto its
subspace X. We shall call the retraction regular (with respect to o),

if for every £ >0 there exists a 8 >0 such that fr(y), 9) < ¢ whenever

the g-distance from y to X is less than 6. Our main theorem is:

Temormst 1. If (B, | |) 45 @ normed linear space and r: B> X C 1 is
a retraction which is regular with respect to | ||, then XX E =5
If moreover X is complete in the norm | ||, then also X XIL B ~ I, E.

Here, “~” means “is homeomorphic to”, and X E and IL B de-
note respectively {(t) e E®: ¢ =0 for almost all ¢ <N} and {(t:) € B*:
3'|itdl < o}, both spaces equipped with the norm e = X . As
a corollary we conclude that if X is a compact absolute retract and ¥ is
an infinite-dimensional Fréchet space, then X X B ~ H.

The problem whether a given space is a cartesian factor of the
Hilbert cube or of a locally convex linear metric space has been studied
by several authors (see [0], [11], [14]-{18] and also [5] pp. 266 and
269, [9a] p. 30 and [13] p. 265). The strongest results in this direction
were obtained by J. E. West, who proved (among other theorems) that
it K is a contractible locally finite-dimensional simplicial complex
endowed, with its metrie topology, then K x B =~ E> for every Fréchet
space B of sufficiently large density character. The methods used by
West in proving this .were closely connected with those he developed in
[14] for investigating factors of the Hilbert cube; they depend on
“approximating” the space K X B> by sets homeomorphic to B>,

D. W. Henderson in his recent paper [8] considered the situation
where X is a retract of a finite-dimensional space F, and he succeeded

 onto .
in an explicit writing of a homeomorphism f: XX l_iBIF"”EE* lim F*. The
symbol lim F' denotes here the direct limit of finite powers of F; this
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space, which as a seb can be identified with X7, is however not metrizable
and thus is not a normed linear space. Our idea of proving Theorem 1 is
to define a topology B on XE such that: 1) the “Henderson map”
f: Xx(ZB, B)~(ZE,B) remains still a homeomorphism (1), and 2) the
space (ZH, B) is homeomorphic to a normed linear space.

The proof that X x 3, B = X, B. We shall fix here a normed linear

\
space (E,| |) and a retraction 7: EZ5 X C B which is regular in the
metric induced by [ |. Define
w(d) = sup{|r(z+1)—af: zeX and |l <2}, Ae[0,00).

Because of the regularity of r, w is a non-decreasing function with
];"r)%w().) = 0; in particular w is bounded by % on an interval [0, &) C [0, 1%
If we seb

E = conv({(2, ) [0, 8 [0, #): p<w(D} v {1}x[0,1])

and
W) = sup{u: (4, p)e K} when 1e[0,1],
-+ 34 when 1e(1, o),
the]; w will satisfy the conditions
(0) w(d) e[A, 1] if 1¢[0,1] and w)<iifiz=1,

1) fIr (@4 8)— @il < w({H)

Setting finally u'= u, #*** = w o’ and v= Y 2”%7 we get a homeo-
=1
morphism v of [0, o) onto itself such that

for all e« X and ¢t E with |{f]| << 4d.

2) Doy = 22‘*"“74" <
=2

and, because v(0)= 0 and v is a concave function,

(3) "’(Zlf) < Do(k) and

i>1 i>1

2(20) <20(A), A, &, k.. €[0, ).

Now let us define Henderson’s [8] map f: X x ZE-»XH; here X
denotes the set {(t;) ¢ B®: #;= 0 for almost all ¢} and (at the moment)
no topology on ZF or on X is considered. We agree that, from now till

" (*) We shall write f: ..XX (¥,B)~>(Z,T,) (respectively f: XX (¥,0)~ (Z,d))
we want to stress the topologies (resp. the metrics) in which the spaces in question
are treated. The space X will be always treated in the topology induced by | |-

e ®
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the end of the next section, t = (§;) and s = (s;) will stand for the
points lying in H*. Set

(4) flz, 1) = (W‘}“tly s+t—r(@+t), o+t—r{z-+1), -") .
It is easy to see that f has the map

(5) 81> (gols) (04(8)— guo®)) € T X ZB, 32,

as inverse, where in the definition above

(6) 0i(8) =8y, Giya(8) = 8541+ 794(8)

PROPOSITION 1. The formula

M elt)= D 2%(u

izl

and  gu(s) = limgy(s) -
100

and  d(s,t) = o(s—1t), 8,t1¢XE,

defines a metric & on ZE, and both f and g are continuous when considered
as maps between X X (X, d) and (ZE, d).

Proof. The triangle inequality follows immediately from (3). Given
te S let us now denote m(f) = inf{j: t;= 0-if i> j}. We have

(8) e+ 57 (@8l < sill -+ (llss-ll)

whenever weX and s, ,s;¢B satisfy max(ls;_,l,lls]) < 4. Hence
Sits— sd| << 6 iraplies

9)  d(f(@, 0,1y, s)—20(o—y+h—sl)—
mft)

— Y 2ot ti—r @+ 1) —y— 7Y+ s:)l)
< > 2%{lsdl+u(lis—)
i>m(l) N
< 3 2(sd)+2 D, 2ou(lsd)
i>m(l) izm(l)
<5 D' 2%(ls) < 5d(s, 1)
i=mil)

because of the inequalities (2) and (3). Since moreover

oli—s) > Yull—sd) > Dlt—sd & elt—9)<1,

i1 =1
we infer, for every fixed (s, 1) ¢ X X ZE, that a{fim, 0,7y, 8) < 12,4¥, 9)
where 7, is a continuous function of (¥, s) and 7, (%,t) = 0.-Hence fis
continuous at the (arbitrarily given) point (z,?) e XX ZB.

(10)
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Now let us consider the funetion ¢. If s € ZH and 4, ¢ N fulfil |ls| < &
for all 7 > 4y, then i

A1) rgis)—71gs ok = lr(8:+7gsa(8))—1ia(SN < wlllsd) s ¢ 4o,
(12) lgs(s)—rgals)| < llss+79:-2(8)—79:(s)]
< flsdl+ wllis:l) < 2ullsd) ,  ¢=4,

(18)  19el8)— ol = G mea(s)— 9(8)]
mis)+1i
< D) lIrgi(s)—rg;a(s)l+lirgis)—g:(s)l
j=1i+1
m(s)+i

< Y u(s+2ulsd <2 Y ullsh), i>d.
=i

J=i-h1

Therefore, given another point ¢ e ZE we get for ¢ = max(@o, (t)):

(14)  llge(s)— gDl = lig+ 764-(8) =7y () ]

<[sdl+ 2 lrg;(8)—78;y(8)|+ 17 Gmr ) — T mr(D]

J=m{f)+1

<GS — T Gma @+ D) w(llss])

F>m)
L Gum(8)— T Gmp(OlI+ (s, 7) -
v (14) and (10),
(t,8) <min(3,2/2)  and  [hu(8)— (B < £/2
together imply ]|g{(s)~— gif)| < & for all 4> m(t); this shows that the

functions ¢; are equicontinuous at (every) point e ZE. Therefore g,
= %Lrg g+ is_a continuous function. Denoting by d the product metric on

X x ZF (the sum ofk the norm || || on X and of the metric d on XZE), we
further get for all s,¢{e¢ ZB with d(s, ?) < 6 (use {10), (13), (3) and (2)):

A(g(8), 90— gool8)— Guolll— . > 2%0(llgs(5)— goul8)— 9:(8) + 9o}

=<m(l)
= D 2%(lgs)—gull) < ) 2 (2 3 ullis)
iSm(d iSmil) =i
<4 D 2 Yollsl) =4 3 2w(lssl)(1427 ... +37Hm0O)
i>m{l) =1 7>mit)

< 8d(s,1).

Hence g is' continuous at every point ¢ e ZF, which completes our proof.
Now, the first assertion. of Theorem 1 follows from the lemma below:
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Levma 1. Let (E, || ||) be a normed linear space, let v: [0, oo)gt_g [0, )

be a homeomorphism wnd let d be the metric on ZE defined by (7). Then the
Sformula :

i 0
(15) A(t)= (2 D (|it4]]) m ”) where m= 0

defines a homeomorphism of (ZE,d) onto (ZE, ||| ||l) (recall that ||jt|]|
=‘£ [t:ll, e ZR).

Proof. We have

A6 —4@mll— 2w

i<m(l)-

= D2l < als, )
>m(f)

o)t — ol

()
Since the map s 1—> 2o ([ls4]]) sellsall = — 2 (ligll) tital ™ is continuous, 4 mush

be continuous at the given point ¢ ¢ ZE. Moreover

(16) A7N(s) = (v 12l s H)

and
mt)
a{4™(s), A7) — 2 2% ([l Ysd) ssllsefl * — 0@ UMt el )

i=1

= > 2hpe sl < [lls—1ll -

i>mie)
Hence A~ is also a continuous map.

Proof of the second part of the theorem. Under our previous notation,
let us denote by Z the set {t= () e E®: > 2%(|tdl) < oo}. Because
of (8), Z is a linear space; we shall consider it under the metrie
d(s, 1) = a(s—t), where p(s) = > 2¢v(|lsi]). Observe that

=1

(102) (s, 0> Yule—t) = Yl—tl i dsH<1.
i>1 .1

Let f: X x Z->E> be the natural extension of the map f, defined by the
same formula (4). )

PROPOSITION la. The map f has its range contained in . If moreover
X is complete in the norm Il Il, then f is a homeomorphism of X X (Z, d)
onto (Z, d).

Proof. Given points (,1), (y,s) e XxX-Z we have for every inte-
ger m which is so large that i>m implies [t llsdl < B .
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(92) dff(y,s), (@, O)—20(p—y+h—sl)—

Y Gollot b0 b=y sk T+ 500

=32

< Yoot ti—r(@t e+ ly+s—r (@8l

i>m

<) 2%t + 2 (ol sl 4- 2 (l183-alD)

>m

<5 Do (+5 3 2 (sd) -
i>m i=m
Seeting here z =1y, s = (0, 0, ...) and m an integer which is large enough
we infer that image(f)C Z. If further (w,?) ¢ XX Z and &e(0,d) are
fixed, and m is an integer with > 2% (|lt)]) < /30, then d(s, t) < /30
>

implies "

Dot(lsd) < ) 2%t 4 Ite— i) < /18

izm izm

and, consequently,
df(y, s), f(e, 1)
< 2o(lo—y+t—sl)+ > 20(lo+ti—r (@ tg)— y—s,— 7 (y+ i)+ o2

i=2

Thus f is continuous at the point (#,%) ¢ X X Z.

Now assume X to be || |-complete and for each ¢>1 denote by
gi: Z—>E the natural extension onto Z of the map g¢; defined by (6).
(j‘riven s _eZ,_ (rgu(s)) is by (11) and (10a) a Cauchy sequence; define
Foo(8) = I.E’lorgi(s) e X. By (12) also the sequence (g,(s)) converges 0 Joo($).
Arguing as in the proof of Proposition 1 (the necessary changes, similar
to those given above, are left to the reader) one shows that all the gi's
are equicontinuous and that the map

815 (7el8) (Gu(8)—Fua(8))) e XX B®,  5¢7,

has its range_cqntained in XX Z and is continuous when considered as
a map of (Z, d) into X X (Z, d). Since further X is d-dense in Z, § and |
must be inverse to each other.

To finish the proof of Theorem 1 it remains to demonstrate

Leyma 1a. Under the notation of Propositi d
position 1a the spaces (Z,d) and
(LB, ||| I1) are homeomorphic. “ ‘)

e ©
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Proof._Le‘o us consider the map 4: Z—-E* defined by (15). Then
MA@ =e(8)< oo for all seZ, and therefore image(d)CILE.
Moreover for all 8,teZ and m > 1 we have

A ()= A@l— > 2ol sdlsd™—v(dealital ™

<m
< 32wt} + o ()
i>m
< Do)+ D 2 wlitd) +ollse—1l)
>m i>m
<2 Y ow(td)+d(s, 1) .
i>m
This easily leads to the conclusion that 4 is continuous at every point
t e Z. Similarly one shows that the map B: I, B—~Z,

(16a) B(s) = (v-l(z—"llsm) —si)

. [lsdll
is continuous too. Obviously 4 o B= B A = the identity.

T.et us note that if ¥ is a Banach space, then the assertion of Lemma la
follows from more general theorems of Oz. Bessaga ([3], Proposifion 5.2
and § 6); moreover the homeomorphism 4 we use is very similar to that
constructed Dby S. Magzur in 1929 for IL,-spaces. See [3] and the re-
ferences given there for more information on the subject.

Remark 1. Propositions 1 and 1a and their proofs remain valid if
we assume only that F is an additive group and | || is & group norm
on B (ie. o] = 0 iff a=10 and [a—bl] < llall+-1p}f for a,b € B).

Some applications. First of all, we have:

Remark 2. Let X be a compact absolute retract and let (B, ) be
2 mormed linear space such that X can be (topologically) embedded
into B. Then Xx 5, F = %, B and X I B ~I1, 8.

Proot. Every retraction onto a compact set is regular. Hence we get

TamorEM 2. Let X be a compact absolute reiract. Then XxF =P in
any of the following cases :

(a) F is an fmﬁmte—dimensional Fréchet space, .

(b) F is a o-compact locally conves linear metric space which contains
an infinite-dimensional compact conves set,

(c) F is an mﬁnite-dimensional locally convex linear metric space and
both X and F are cowntable unions of finite-dimensional compact sels.

Proof. (a) Let us first assume F =1, the space of summable se-
quences. Since X can be topologically embedded into I, we get X xIIl
o IT,1, and thus X x b, = 1. I now T is an arbitrary infinite-dimensional

5 — Fundamenta Mathematicae, T. LXXXIII
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Fréchet space, then, by the theorems of Bartle-Graves (see e.g. [10],
Oorollary 7.3) and of Kadec-Anderson [1], X X F e IX U X F =l X F = F.

(b) Set B = {(4) el sup@[d| < oo}; E is regarded as a subspace
of I,. By [12] p. 126, any space F satisfying the assumptions of (b) is
homeomorphic to ¥; in particular X, B o~ B ~ F. Hence X X F ~ X x
XE B BT

(c) Denote B = {(4) ¢ ;: 2= 0 for all but finitely many 4}. Using
Proposition 4.6 of [4] and Theorem 3 of [12] one easily shows (in the
same way as in the proof of Proposition 5 of [12]) that F =~ F ~ X} B
for every space F satisfying the assumptions of (¢). Moreover it follows
from [4] or from [2] that, under the assumptions of (c), X can be
topologicclly embedded into E. Hence XX F= XX 2 B = 2 F ~F.

COROLLARY 1. Let X be a compdct ANR, let F be a locally convex linear
metric space and suppose that one of the assumptions (a)-(c) is satisfied.
Then X X F is homeomorphic to an open subset of F.

Proof. The cone ¥ = (X X [0, 1]);xxy; is 2 compact AR which can
be embedded into Fx R, and, by the theorems we quoted in the proof
of Theorem 2, F X B ~ F. Hepce X X (0, 1) X F o« X X I is homeomorphic
to an open subset of Y X F =~ F.

It is clear that if X X F' =~ F for a locally convex linear metric space,
then X is (homeomorphic to) a retract of F and hence is an absolute
retract (see [T] or [6]). Similarly, if X X ' is homeomorphic to an open
subset of F and ¥ is a locally convex linear metric space, then X ¢ ANR ().
Thus Theorem 2 and Corollary 1 give us characterizations of absolute
retracts (resp. absolute neighbourhood retracts) in the class of compact spaces.

Setting F = 1 = 2, B we infer from Corollary 1 that X x 1] is homeo-

mo.rphic to an open subset of I in any case where X is a compact ANR
which is a countable union of finite-dimensional compact sets. Let us
rfacall t.hat every open subset of ¥/ has a structure of a countable metric
simplicial complex; for the proof of this and other properties of I -mani-
folds see [9]. In a sense, the (c)-part of Theorem 2 and of Goro]l;ry 1is
“a “metric version” of the results of Henderson [8].
Our second -application is

@ Hll‘l])m;l;EM ; L;t X be a closed convex subset of a normed linear space
s, Then X'x 2y B ~ X} B; if moreover X is complete
Ghon dlvo T 1.8 T ; omplete in the norm || |,

Proof. By the theorem of Dugundii, there is a retraction ®)r: B wX
such that [}r(t)-—t“ < 4inf{li—a|: s ¢ X} for all teB. Then » is regular
and our assertion follows from Theorem 1.

. ) ‘E[‘he required retraction is defined in [7], p. 359 (one has to set there X =L
and f=id, to get the retraction onto a convex subset 4 of the normed linear space I).

icm°®
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In particular we infer that if X is a closed subset of the space §,(4),
where 4 is an infinite set, then X xi(4) == ,(4).

Added in proof. The author has recently shown that every (complete) AR(M)-
space can be embedded into a complete normed linear space as its 1egular retrach;
the proof will appear in [19]. This implies that Xx H is homeomorphic to H when-
ever X e AR(9M) is complete metrizable and H is a Hilbert space of density character
not less than that of X.
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Axnanor Teopemst Kyparosckoro-Jlyrymmxd

T. JI. Tapr (Mocksa)

Abstract. The paper is dedicated to the problem of extension of mappings in the
category of metrizable uniform spaces and uniformly contintous mappings. Unless
otherwise mentioned, all spaces and maps belong to this category.

TEEOREM 1. For a complete space ¥, the following three ditions are eguivalent:

i) ¥ e LO", where n = 0;

ii) for any closed subset A of X, where XNA is precompact and relative dimension
rdd(XNA) < n-+1, every mapping fr A Y has an extension fg: U - ¥ for some uniform
neighborhood U of A; v :

iii) for every closed embedding i: ¥ ~Z where ZNiY is precompact and rAd(Z\iY)
< n+1, there exists retraction rg: U —>i¥ from some uniform neighborhood U of iX.

TaroreM 4. If A is closed in X and 7Ad(XENA) = 0, there exisls retraction r: X>4;
wnder these very conditions every mapping f: 4 > Y has an extension F: X - X for arbiirary
uniform spaces ¥ (not necessarily metrizable).

Various variations of Theorem 1 are also proved. Examples showing the essentiality
of the precompactness of X\4 and the completeness of ¥ are given: Theorem 1 is not
true if even one of these conditions is removed.

Hacrosmasa paGoTa HOCBSAINEHA BONPOCY O MPOFODKEHMM DABHOMEPHO-
~HENPEPHIBHBIX OTOOpayKeHnH

i
A—Y

: 31
| 4

X

[ISL MEIPHM3YeMBIX TPOCTPAHCTB, rjie ® i — PABHOMEPHOe BIoKerwme, f-— 3a-
JlaHHOEe OTOGpaXKEHHE, & § — uckomoe IPOMOIDHEHHE. Kak msBecTHO, ST He-
MPEPBIBHBIX OTOOpaXKeHAH mopo6Hasi 3a7avya DEmIcHa Ipd CIeAyFOIHX (mocta-
TOYHO MIMPOKKX) M3BECTHBIX YCIIOBHAX Kypatosckoro [7]: 1) A — 3aMKHYTO
B X,2) dim(X\4)<n+1, 3) Te O™ ~ LO™ B usydaemom sj1ech cyuae (ka-
TEropHs MeTPH3YeMbIX DABHOMEDHBIX IPOCTPAHCIB C PaBHOMEPHO-HEIPEPAIB-
EBIMA OTOGD@KEHHSIME) CHTYAIs SHAUUTEBHO CIOMHEE, H9eM B TOHOJIOTMYECKOM
ciyuae (KaTeropys METPHU3YEMBIX TOMOJIOTHICCKIX IPOCTPAHCTE C HEIPEepPbIBHbIMKI
oTo6pwxeruamyr), TAE BepHA KIACCHYCCKAT teopema  Kyparoscroro-JLyrys-
mxa [5], [7].
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