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On the existence of fundamental
and total bounded biorthogonal systems in Banach spaces

by
W. J. DAVIS (Columbus, Ohio) and W. B. JOENSON* (Houston, Tex.)

Abstracet, Lvory Bepm‘nyble Banach space admits (for any & > 0) a biorthogonal
gystem (wn; #) With |lwyl llwhll < 1--¢ which may be selected either so that () is
fundamental or 8o that (2f) is total. The first part of this result extends to certain
non-separable spaces (in particular m(x)): If X has a weakly compactly generated
quotient with the same density character as X, then X has a bounded biorthogonal
system (wy; #%) with (x,) fundamental.

L Introduction and notation. It is known (cf., e.g. [2], p. 238 or
[12]) that if X is a finite dimensional Banach space (say, dimX = m)
then X admits a biorthogonal sequence (w,, @)™, With |@,)| = [l}] = 1
forn =1,..., m. In Section II we prove two infinite dimensional versions
of this result. We show that, for each & > 0, every separable Banach space
admits a fundamental biorthogonal sequence bounded by 1+ ¢ and a total
biorthogonal sequence bounded by 1-+e The first result answers in the
affirmative a question of Singer’s ([8], p. 169); still unsolved is Banach’s
problem [2]: Does every separable Banach space admit a fundamental,
total bounded biorthogonal sequence? .

Our techniques also yield some information in the non-separable
case. Theorem 2 shows that if X is a non-separable Banach space which
hag a weakly compactly generated quotient with the same density charac-
ter as the density character of X, then X admits a fundamental bounded
biorthogonal system.

Henceforth X, ¥, and Z will refer to infinite dimensional Banach
spaces over either the ro.zu], or complex numbers. “Subspace” means “closed,
infinite dimensional linear subspace”. For 4 < X, A+ is the annibilator
of 4 in X* For 4 = X* AT is the annihilator of 4 in X. If ¥ is a sub-
space of X, the dual of the quotient space X/Y is identified with ¥+
in the canonical way. The real restriction of the Banach space X is the real
Banach space obtained from X by allowing multiplication by real scalars
only.

* The second named author was supported by NSF GP-28719.
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X is weakly compactly generated provided X contains a weakly compact
subset whose closed linear span is X. The density character of X (written
dens X) is the smallest cardinal, %, for which X has a dense subset of
cardinality ». We identify the cardinal x» with the set of ordinals less
than ». N denotes the set of positive integers.

[wa] ig the closed linear span of the indexed family (z,). A family
(@, )with( ) < X, (2h) = X*is called bwrthogonal provided o} (@) = 0.
(2., @2) is: fundamental if [#,] = X; total if (#;)T = {0}; bounded provided
(%) amd («}) are both bounded; bounded b J A (where 12> 1) provided
(,, #7) is bounded and |jx,]] l&¥) < < 4 for every a.

A gequence (@,) = X ig called basic provided that for each we [s,),
there exists a unique sequence (n (@) of scalars with @ = Yo () w,. It is
well known that each =}, is linear and continuous, and that (8, @) is
biorthogonal. For 13> 1, the basic sequence (z,) iy said to be i-equivalent
to the basic sequence (y,) provided that the mapping taking =, to y,, extends
to a linear homeomorphism 7' of [#,] onto [y,] with |T| [T~ < A

Il. The existence theorems. Qur first lemma generalizes a result of
Day’s [3] (and uses Day’s technique). In the proof we make use of a con-
sequence of the Borsuk antipodal mapping theorem observed by Day [3]:
If 7 and G are subspaces of the real restriction of the same Banach space
and AimF < dim@ < oo, then there is a unit vector g in G whose distance

d(g, F) from F is one.
Levwma 1. Suppose that X is separable and set n, =—k—(~7£2j-1~) for
k=0,1,... X admits a biorthogonal sequence (z,, x}) satisfying
(1) Ilwnll w3l = @ (@) =1 for n =1,3,
(i) For each xrz,], = =iim‘"§1mi (),
300 1=
(ii) In the real resiriction of X, ()il ds (1+ lil)-equwalent

to an orthogonal basis in the k+1 dimensional real Buclidean space I+
for £ =0,1,2, ‘
(iv) (@n)T + [m,.] 8 dense in X.

Proof. Let (d,) be a dense sequence in X with d, = 0. It is sufficient

to define sequences (,) = X, (wn) = X* and finite sety ¢ = Iy Iy

c Fy < ... of unit vectors in X to satisfy (i), (iii) and

(V) @pypge (FV (@) for each &k =0,1,... and j=1,...
.

(vi) w:kﬂe((d,)l_o U (@ )”k""‘l)L for each k =0,1,... and §j =1,,..

ey B
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(vii) for each It = 0,1,
ol < 1+ ) o

Tor then (z,,ay) is biorthogonal by (1), (v), and (vi). From (vii)
and (v) it follows that, for any scalars (a;),

- and we [(2;);551] there s fe By, such that

Hink a, miH % (1 + - ) max |f( atmi)’

Salty,

m( »|w~)max‘f2a¢”f)‘<(1+ )H e

Jelty,

(ii) is an cagy conaequenée of this inequality. Finally, from (vi) we have
g
dye ((-’”f)?’un,,-;-l)"-; hence dlc"‘zjl o (dk),wie (w:.)T7 whence dye [#,]+ (25)7,

so that (iv) holds.

Pick @, and @ to satisfy (i). Suppose that (wy, })%, and (F,)%i,
have been defined. Set m = 2 (n;,., +3%) and use the Dvoretzky theorem [4]
to get an igomorphism T from a real m dimensional subspace Z of the

1
real restriction of ((})i%,U F,)T omto I with |T| < S1+3, 177 =1

We select (w)iies = Z

(viil) (Ta)kt,, s orthogonal.

Indeed, having defined (mt,mi)?ﬁ,tj 71 for some j, 1<j<k+1, we
let W be the orthogonal complement in I to (Tmi)?ﬂzﬁ and, using Day’s
lemma, seloct a unit vector @, ;e (T7'W) N ((@F)f%5721)T so that d(mnw:,
[(di)%_,lu(mt)”’f” 1) = 1. (Note that Day’s lemma, applies; because if
we sot @ = (T™'W) N ((@})fi7])7 and F = [(d)f, U (@) "], then in
the real restriction of X dunlf’<2k+2(n,c—|-j —1) < 2k+2ny,,, while
dim@ = m—(j—1)—2(j -—1) > m—38k = 2m;,,+-3k.) Now we use the Hahn~
Banach theorem to get mn g B0 satisty (i) and (vi).

Finally, using the compavctness of the unit ball of the finite dimensional
space [(#,);"1*] and the Hahn-Banach theorem, pick a finite set Fy,, = F
of unit vectors to qublsfy (vii).

Clowrly (m,, @) amd (1) satisfy (i) and (v)—(vili), while (iii) follows
from (viii). W

Roemark 1. By using the toehmques in [6] and a bit more care in
the above })1001‘ of Lemma 1, (#,, @5) may be chosen so that (z,) is basie
and (@) is w*-bagic in tho sense of [6].

Trumorem 1. Suppose X is separable and let & > 0. (a) X admits a fun-
damental biorthogonal sequence bounded by 1 - e. (b) X admits o total biortho-
gonal sequence bounded by 1L+ e.

Z and (wt)ﬁf;',‘,,:_u to satisfy (i), (v), (vi) and

6 — Studla Mathematica XLV.2
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Proof. Let (z,,#)) be a biorthogonal sequence for X satisfying
(i)-(iv) of Lemma 1. Let p: N X N — N be a bijection such that for each
n, p(n, 1)< p(n, 2)< ..., and for each n and % there exists j so that,
in real restriction of X, (wy(,q)itf,, is 2-equivalent to the usual basis
for 1%, It follows that for each n, (®pn,5))i=1 18 a bagic sequence in the real
restriction of X not equivalent to the usual basis for I, (the space of abgo-
lutely summable real sequences), so there is a sequence (o), of real

2] [
numbers with 3 07 T,y CONVErgent and 3 [af| = co.
=1 =]

Let (y,) be dense in the umit ball of ()T, and set, for each n and i,
wy = —epignaly, + Byin, -

Obviously (w?,ac;';(,m),?fn=1 is biorthogonal and |wf| ||o:;(n,¢)j|<1+e, 80
we can complete the proof of (a) by showing that (w})t = {0).
Suppose z*e (w?)*. Then for each n and %,

k Lk '
09* (Z a:flea(n,i)) =¢& 2 |aﬂa7*(’!/n)-
g=1

=1

For each fixed n the left gide of the preceding equation is bounded in %,
80 @*(y,) = 0, from which it follows that w*(wp(m)) =0 for 1 =1,2,...
Thus o* vanishes on (a)T + [@,] whence, by (iv), 2* = 0.

To prove (b), note that (iv) implies that, for each N, w;(m) converges
weak® to 0 as i —oco.

Let (2,) be a weak* dense sequence in the unit ball of (2,)* and set,
for each # and 4,

\

Y3 &
bi = &Ry, + mp(n,z’) .

Clearly. (2,5, b7) i biorthogonal and bounded by 1+4¢; we complete
the proof by showing (b7) is total.

Suppose ze (b7)7. Then for each # and 4, s, (z) = Ty (1) Letting
. - *
¢ = oo, we have that z,(#) = 0 for each %, hence also D,y () = 0 for
each » and 4. But then e (#))7 N[x,] and thus, by (i), # = 0. W

Remark 2. The perturbation technique msed in the above proof
(and in the proof of Theorem 2 below) was suggested by Singer's proof of
Proposition 1 in [9]; however, Singer’s construction there produced
unbounded biorthogonal sequences. Singer [11] has also modified his
technique of [9] to give a proof of 1 (b) with “1+¢” replaced by “2 ¢,

Levwva 2. Suppose that X is weakly compactly generated and dens X
= %> %y. Then X has a quotient ¥ which admits & bounded Jundamental
biorthogonal system (yg, In)acn,nery SUch that for each a, 0 is a weak clusler
point of (Y5)y.
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Proof. It follows from the results of Amir and Lindenstrauss [1]
that there is a family {1’,,: aex U{x}} of norm one projections on X satis-
fying

(a) -PaPﬁ = Lmin(e, p) for all ay ﬁ.

(b) [Poyy—P,]X is infinite dimensional for each ae x.

(c) P, is the identity, and for each limit ordinal f < %, {P,: a<< 8}
tends strongly to P,. '

Tor each ae », write a = m,-+n,, where m, is a limit ordinal (or zero),
n, 18 & non-negative integer, and “--” denotes ordinal addition. As in the
proof of Lemma 1, for each « we can choose a biorthogonal sequence
(@5, fiat® in [P, —P, X with || = |ff] =1 so that, in the real
restriction of X, (#f)fef’ is 2-equivalent to the usual basis for [at?,

Bot fi = fi (Para—Pu). The system (o, fi)eianys 1 biorthogonal
by (a). Now for each aex, [P,.,—P,]X is the direct sum of [(zf)fef*
and ((f)7«f*)T. From this and (c) it follows that [#f1+ (f9)T is dense in X.
Thus by reindexing (7, f;) we have that X admits a bounded biorthogonal
system (75, 0f)aex iy Sabistying

(1) [F51-+(gHT is dense in X. ,

(ii) for each aex and n =1,2,..., there exists % such that in the
real vestriction of X, (§¢)itP,, is 2-equivalent to the usual basis for .

Let ¥ = X/(g))7, let T: X — ¥ be the quotient map, and set ¥
= T§¢, Cleaxly (v, gf) is a bounded biorthogonal system for ¥ and it
is fundamental by (i). From (ii) it follows that, for each ae », 0 is a weak
cluster point of (¥£)2.;, hence also 0 is a weak cluster point of (¥5);. M

THEOREM 2. Suppose that dens X = x> », and X has a weakly com-
pactly generated quotient whose density character is x. Then X admits a fun-
damental bounded biorthogonal system.

Proof. From Lemma 2 it follows that X admits a bounded biortho-
gonal system (@, fu)anay With [#3]-4(f2)T dense in X and, letting
T: X - X/(f9T denote the quotient map, 0 is a weak cluster point of
(T2, for each ae . Lot (4,).w be dense in the unit ball of (f;)" and,
for cach ae x, define

why == =Y o By for mo=1,2,...,

91 =

g = faa 1 for n =2,3,...
Then (wg, ¢2) is a bounded biorthogonal system. We complete the

proof by showing that (wg)* = {0} .
‘Jupposo ao*e(w,;,‘,)-L. Then for each aex and n =1,2,..., ;nw (y,l)

= & (#}) —a*(#%,,), hénce by the Doundedness of (#3), #"e (¥
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= (X/(f&T)*. But the nfor each aex, @*(2%) = o*(2]) = 2*(25) = ... and,
since (Twh)e_, has 0 as a weak cluster point, we have "¢ (#2)%. Thus
* = 0 by the denseness of [@2]-+ ()7 '

Remark 3. Of course it is a particular case of the theorems that
every reflexive Banach space admits a fundamental bounded biorthogonal
system. It follows by duality that every reflexive space also admits a total
bounded biorthogonal system. A more general result than this latter one
follows easily from a recent argument of Singer’s: a trivial modification
of Singer’s proof of Theorem 1 in [11] shows that the Banach space Z
admits a bounded total biorthogonal system of cardinality dens Z = x» > x,
provided Z has a subspace ¥ with dens ¥ = » and ¥ admits a total,
fundamental, bounded biorthogonal system. Now if Z contains a weakly
compactly generated subspace X with dens X = w, then such a subspace ¥
exists. Indeed, letting {P,: a<<»} be a “long sequence” of projections
on X satisfying (a), (b), and (c) of the proof of Lemma 2 above; selecting
unit vectors ¥,e¢ [P,.,—P,]X; and setting ¥ = [y,]; we have that the
functionals (y;) on ¥* biorthogonal to (y,) are total over ¥ and ||
< “Pa+1'—' a“ < 2.

Remark 4. Since m(x) (the space of bounded scalar valued functions
on the infinite cardinal ») has a quotient isomorphic to a Hilbert gpace
of orthogonal dimension 2* (ef. [7], p. 203), m(x) admits a fundamental
bounded biorthogonal system. Obviously m (x) also admits a total bounded
biorthogonal system; however, m(x) does not admit a total, fundamental
biorthogonal system [5].

Remark 5. The fact that the construction in Theorem 2 produces
fundamental biorthogonal systems (,, o) with X /(«5)T weakly compactly
generated is not purely accidental: the argument of [6] shows that if
(,, @%) is a fundamental biorthogonal system for a Grothendieck space X
(i.e., weak™ convergent sequences m X* are weakly convergent) then
[#3] — and, consequently, also X /(z J(%2)T — is reflexive. Thus if X is a Grot-
hendieck space, the following are eqm.valent: (a) X admity a fundamental
bounded biorthogonal system; (b) X admits a fundamental biorthogonal
system; (¢) X has a reflexive quotient with density character dens X.

ProBLEM. Does every Bamach space have a (bounded) fwndame'ntal
biorthogonal system ?
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