

STUDIA MATHEMATICA T. XLV. (1973)

On the existence of fundamental and total bounded biorthogonal systems in Banach spaces

b.

W. J. DAVIS (Columbus, Ohio) and W. B. JOHNSON* (Houston, Tex.)

Abstract. Every separable Banach space admits (for any $\varepsilon > 0$) a biorthogonal system $(x_n; x_n^*)$ with $||x_n|| ||x_n^*|| < 1 + \varepsilon$ which may be selected either so that (x_n) is fundamental or so that (x_n^*) is total. The first part of this result extends to certain non-separable spaces (in particular $m(\varepsilon)$): If X has a weakly compactly generated quotient with the same density character as X, then X has a bounded biorthogonal system $(x_n; x_n^*)$ with (x_n) fundamental.

I. Introduction and notation. It is known (cf., e.g. [2], p. 238 or [12]) that if X is a finite dimensional Banach space (say, dim X = m) then X admits a biorthogonal sequence $(x_n, x_n^*)_{n=1}^m$ with $||x_n|| = ||x_n^*|| = 1$ for n = 1, ..., m. In Section II we prove two infinite dimensional versions of this result. We show that, for each $\varepsilon > 0$, every separable Banach space admits a fundamental biorthogonal sequence bounded by $1 + \varepsilon$ and a total biorthogonal sequence bounded by $1 + \varepsilon$. The first result answers in the affirmative a question of Singer's ([8], p. 169); still unsolved is Banach's problem [2]: Does every separable Banach space admit a fundamental, total bounded biorthogonal sequence?

Our techniques also yield some information in the non-separable case. Theorem 2 shows that if X is a non-separable Banach space which has a weakly compactly generated quotient with the same density character as the density character of X, then X admits a fundamental bounded biorthogonal system.

Henceforth X, Y, and Z will refer to infinite dimensional Banach spaces over either the real or complex numbers. "Subspace" means "closed, infinite dimensional linear subspace". For $A \subset X$, A^{\perp} is the annihilator of A in X^* . For $A \subset X^*$, A^{\top} is the annihilator of A in X. If Y is a subspace of X, the dual of the quotient space X/Y is identified with Y^{\perp} in the canonical way. The real restriction of the Banach space X is the real Banach space obtained from X by allowing multiplication by real scalars only.

^{*} The second named author was supported by NSF GP-28719.

X is weakly compactly generated provided X contains a weakly compact subset whose closed linear span is X. The density character of X (written dens X) is the smallest cardinal, \varkappa , for which X has a dense subset of cardinality z. We identify the cardinal z with the set of ordinals less than z. N denotes the set of positive integers.

 $[x_n]$ is the closed linear span of the indexed family (x_n) . A family (x_a, x_a^*) with $(x_a) \subset X$, $(x_a^*) \subset X^*$ is called biorthogonal provided $x_a^*(x_\theta) = \delta_{a\theta}$. (x_a, x_a^*) is: fundamental if $[x_a] = X$; total if $(x_a^*)^\top = \{0\}$; bounded provided (x_a) and (x_a^*) are both bounded; bounded by λ (where $\lambda \ge 1$) provided (x_a, x_a^*) is bounded and $||x_a|| \, ||x_a^*|| \le \lambda$ for every a.

A sequence $(x_n) \subset X$ is called basic provided that for each $x \in [x_n]$. there exists a unique sequence $(x_n^*(x))$ of scalars with $x = \sum x_n^*(x) x_n$. It is well known that each x_n^* is linear and continuous, and that (x_n, x_n^*) is biorthogonal. For $\lambda \geqslant 1$, the basic sequence (x_n) is said to be λ -equivalent to the basic sequence (y_n) provided that the mapping taking x_n to y_n extends to a linear homeomorphism T of $[x_n]$ onto $[y_n]$ with $||T|| ||T^{-1}|| \leq \lambda$.

II. The existence theorems. Our first lemma generalizes a result of Day's [3] (and uses Day's technique). In the proof we make use of a consequence of the Borsuk antipodal mapping theorem observed by Day [3]: If F and G are subspaces of the real restriction of the same Banach space and $\dim F < \dim G \leq \infty$, then there is a unit vector g in G whose distance d(q, F) from F is one.

LEMMA 1. Suppose that X is separable and set $n_k = \frac{k(k+1)}{2}$ for

 $k=0,1,\ldots X$ admits a biorthogonal sequence (x_n,x_n^*) satisfying

(i)
$$||x_n|| = ||x_n^*|| = x_n^*(x_n) = 1$$
 for $n = 1, 2, ...$

(ii) For each
$$x \in [rx_n]$$
, $x = \lim_{k \to \infty} \sum_{i=1}^{n_k} x_i^*(x) x_i$.

(iii) In the real restriction of X, $(x_i)_{i=n_k+1}^{n_{k+1}}$ is $\left(1+\frac{1}{k+1}\right)$ -equivalent to an orthogonal basis in the k+1 dimensional real Euclidean space l_s^{k+1} for k = 0, 1, 2, ...

(iv) $(x_n^*)^\top + \lceil x_n \rceil$ is dense in X.

Proof. Let (d_n) be a dense sequence in X with $d_0 = 0$. It is sufficient to define sequences $(x_n) \subset X$, $(x_n^*) \subset X^*$ and finite sets $\varphi = F_0 \subset F_1$ $\subset F_2 \subset \dots$ of unit vectors in X^* to satisfy (i), (iii) and

(v) $x_{n_k+j} \in (F_k \cup (x_i^*)_{i=1}^{n_k+j-1})^{\top}$ for each k = 0, 1, ... and j = 1, ...

(vi) $x_{n_k+j}^* \in (d_i)_{i=0}^k \cup (x_i)_{i=1}^{n_k+j-1} \perp \text{ for each } k=0,1,\ldots \text{ and } j=1,\ldots$

(vii) for each $k=0,1,\ldots$ and $x \in [(x_i)_{i=1}^{n_{k+1}}]$ there is $f \in F_{k+1}$ such that $||x|| \le \left(1 + \frac{1}{k+1}\right)|f(x)|.$

For then (x_n, x_n^*) is biorthogonal by (i), (v), and (vi). From (vii) and (v) it follows that, for any scalars (a_i) .

$$\begin{split} \left\| \sum_{i=1}^{n_k} \alpha_i x_i \right\| & \leqslant \left(1 + \frac{1}{k} \right) \max_{f \in \mathbb{F}_k} \left| f \left(\sum_{i=1}^{n_k} \alpha_i x_i \right) \right| \\ & = \left(1 + \frac{1}{k} \right) \max_{f \in \mathbb{F}_k} \left| f \left(\sum_{i=1}^{\infty} \alpha_i x_i \right) \right| \leqslant \left(1 + \frac{1}{k} \right) \left\| \sum_{i=1}^{\infty} \alpha_i x_i \right\|; \end{split}$$

(ii) is an easy consequence of this inequality. Finally, from (vi) we have $d_k \epsilon \left((x_i^*)_{i=n_k+1}^{\infty} \right)^\top, \quad \text{hence} \quad d_k - \sum_{i=1}^{n_k} x_i^* (d_k) x_i \epsilon \left(x_n^* \right)^\top, \quad \text{whence} \quad d_k \epsilon \left[x_n \right] + (x_n^*)^\top,$ so that (iv) holds.

Pick x_1 and x_1^* to satisfy (i). Suppose that $(x_i, x_i^*)_{i=1}^{n_k}$ and $(F_i)_{i=1}^k$ have been defined. Set $m = 2(n_{k+1} + 3k)$ and use the Dvoretzky theorem [4] to get an isomorphism T from a real m dimensional subspace Z of the $\text{real restriction of } ((x_i^*)_{i=1}^{n_k} \cup F_k)^\top \text{ onto } l_2^m \text{ with } \|T\| \leqslant 1 + \frac{1}{\tau}, \ \|T^{-1}\| = 1.$ We select $(x_i)_{i=n_k+1}^{n_{k+1}} \subset Z$ and $(x_i^{*,n_{k+1}}_{i=n_k+1})$ to satisfy (i), (v), (vi) and (viii) $(Tx_i)_{i=n_{k+1}}^{n_{k+1}}$ is orthogonal.

Indeed, having defined $(x_i, x_i^*)_{i=n_k+1}^{n_k+j-1}$ for some $j, 1 \le j \le k+1$, we let W be the orthogonal complement in l_2^m to $(Tx_i)_{i=n_k+1}^{n_k+j-1}$ and, using Day's lemma, select a unit vector $x_{n_k+j} \in (T^{-1}W) \cap ((x_i^*)_{i=n_k+1}^{n_k+j-1})^{\top}$ so that $d(x_{n_k+j}, [(d_i)_{i=1}^k \cup (x_i)_{i=1}^{n_k+j-1}]) = 1$. (Note that Day's lemma applies, because if we set $G = (T^{-1}W) \cap ((x_i^*)_{i=n_k+1}^{n_k+j-1})^\top$ and $F = [(d_i)_{i=1}^k \cup (x_i)_{i=1}^{n_k+j-1}]$, then in the real restriction of X, $\dim F \leq 2k+2(n_k+j-1) < 2k+2n_{k+1}$, while $\dim G \ge m - (j-1) - 2(j-1) \ge m - 3k = 2n_{k+1} + 3k$.) Now we use the Hahn-Banach theorem to get $x_{n_k+j}^*$ to satisfy (i) and (vi).

Finally, using the compactness of the unit ball of the finite dimensional space $[(x_i)_{i=1}^{n_{k+1}}]$ and the Hahn-Banach theorem, pick a finite set $F_{k+1} \supset F_k$ of unit vectors to satisfy (vii).

Clearly (x_n, x_n^*) and (F_n) satisfy (i) and (∇) -(∇ iii), while (iii) follows from (viii).

Remark 1. By using the techniques in [6] and a bit more care in the above proof of Lemma 1, (x_n, x_n^*) may be chosen so that (x_n) is basic and (x_n^*) is w^* -basic in the sense of [6].

THEOREM 1. Suppose X is separable and let $\varepsilon > 0$. (a) X admits a fundamental biorthogonal sequence bounded by $1+\epsilon$. (b) X admits a total biorthogonal sequence bounded by $1+\varepsilon$.

177

Proof. Let (x_n, x_n^*) be a biorthogonal sequence for X satisfying (i)-(iv) of Lemma 1. Let $p\colon N\times N\to N$ be a bijection such that for each $n,\ p(n,1)< p(n,2)<\dots$, and for each n and k there exists j so that, in real restriction of X, $(x_{p(n,i)})_{i=j+1}^{j+k}$ is 2-equivalent to the usual basis for l_2^k . It follows that for each n, $(x_{p(n,i)})_{i=1}^\infty$ is a basic sequence in the real restriction of X not equivalent to the usual basis for l_1 (the space of absolutely summable real sequences), so there is a sequence $(\alpha_i^n)_{i=1}^\infty$ of real numbers with $\sum_{i=1}^\infty \alpha_i^n x_{p(n,i)}$ convergent and $\sum_{i=1}^\infty |\alpha_i^n| = \infty$.

Let (y_n) be dense in the unit ball of $(x_n^*)^\top$, and set, for each n and i,

$$w_i^n = -\varepsilon \operatorname{sign} a_i^n y_n + x_{p(n,i)}$$
.

Obviously $(w_i^n, x_{p(n,i)}^*)_{i,n=1}^{\infty}$ is biorthogonal and $||w_i^n|| ||x_{p(n,i)}^*|| \leq 1 + \varepsilon$, so we can complete the proof of (a) by showing that $(w_i^n)^{\perp} = \{0\}$.

Suppose $x^* \in (w_i^n)^{\perp}$. Then for each n and k.

$$x^* \left(\sum_{i=1}^k a_i^n x_{p(n,i)} \right) = \varepsilon \sum_{i=1}^k |a_i^n| x^* (y_n).$$

For each fixed n the left side of the preceding equation is bounded in k, so $x^*(y_n) = 0$, from which it follows that $x^*(x_{p(n,i)}) = 0$ for i = 1, 2, ... Thus x^* vanishes on $(x_n^*)^\top + [x_n]$ whence, by (iv), $x^* = 0$.

To prove (b), note that (iv) implies that, for each $n,\ x^*_{p(n,i)}$ converges weak* to 0 as $i\to\infty$.

Let (z_n) be a weak* dense sequence in the unit ball of $(x_n)^{\perp}$ and set, for each n and i,

$$b_i^n = -\varepsilon z_n + x_{p(n,i)}^*.$$

Clearly $(x_{p(n,i)}, b_i^n)$ is biorthogonal and bounded by $1+\varepsilon$; we complete the proof by showing (b_i^n) is total.

Suppose $x \in (b_i^n)^\top$. Then for each n and i, $\varepsilon z_n(x) = x_{p(n,i)}^*(x)$. Letting $i \to \infty$, we have that $z_n(x) = 0$ for each n, hence also $x_{p(n,i)}^*(x) = 0$ for each n and i. But then $x \in (x_n^*)^\top \cap [x_n]$ and thus, by (ii), x = 0.

Remark 2. The perturbation technique used in the above proof (and in the proof of Theorem 2 below) was suggested by Singer's proof of Proposition 1 in [9]; however, Singer's construction there produced unbounded biorthogonal sequences. Singer [11] has also modified his technique of [9] to give a proof of 1 (b) with " $1+\epsilon$ " replaced by " $2+\epsilon$ ".

LEMMA 2. Suppose that X is weakly compactly generated and dens $X = \varkappa > \varkappa_0$. Then X has a quotient Y which admits a bounded fundamental biorthogonal system $(y_n^a, g_n^a)_{a \in \varkappa, n \in \mathbb{N}}$ such that for each a, 0 is a weak cluster point of $(y_n^a)_{n=1}^\infty$.

Proof. It follows from the results of Amir and Lindenstrauss [1] that there is a family $\{P_a\colon \alpha\in\varkappa\cup\{\varkappa\}\}$ of norm one projections on X satisfying

- (a) $P_{\alpha}P_{\beta} = P_{\min(\alpha,\beta)}$ for all α, β .
- (b) $[P_{\alpha+1}-P_{\alpha}]X$ is infinite dimensional for each $\alpha \in \varkappa$.
- (c) P_{\varkappa} is the identity, and for each limit ordinal $\beta \leqslant \varkappa$, $\{P_a\colon a<\beta\}$ tends strongly to P_{β} .

For each $\alpha \in \varkappa$, write $\alpha = m_a + n_a$, where m_a is a limit ordinal (or zero), n_a is a non-negative integer, and "+" denotes ordinal addition. As in the proof of Lemma 1, for each α we can choose a biorthogonal sequence $(x^a, \tilde{f}_a^n)_{n=1}^{n-1}$ in $[P_{a+1} - P_a]X$ with $||x_a^\alpha|| = ||\tilde{f}_a^\alpha|| = 1$ so that, in the real restriction of X, $(x_a^n)_{n=1}^{n-1}$ is 2-equivalent to the usual basis for l_2^{n+1} .

Set $f_i^a = \tilde{f}_i^a(P_{a+1} - P_a)$. The system $(x_i^a, f_i^a)_{a \in \mathcal{N}_i \leqslant n_a + 1}$ is biorthogonal by (a). Now for each $a \in \mathcal{N}$, $[P_{a+1} - P_a]X$ is the direct sum of $[(x_i^a)_{i=1}^{n_a + 1}]$ and $((f_i^a)_{i=1}^{n_a + 1})^{\top}$. From this and (c) it follows that $[x_i^a] + (f_i^a)^{\top}$ is dense in X. Thus by reindexing (x_i^a, f_i^a) we have that X admits a bounded biorthogonal system $(\tilde{y}_i^a, g_i^a)_{a \in \mathcal{N}_i \in N}$ satisfying

- (i) $[\tilde{y}_i^a] + (g_i^a)^{\top}$ is dense in X.
- (ii) for each $a \in \kappa$ and n = 1, 2, ..., there exists k such that in the real restriction of X, $(\tilde{y}_{k+k-1}^{n+k-1})$ is 2-equivalent to the usual basis for l_2^n .

Let $Y=X/(g_i^a)^{\top}$, let $T\colon X\to Y$ be the quotient map, and set $y_i^a=T\tilde{y}_i^a$. Clearly (y_i^a,g_i^a) is a bounded biorthogonal system for Y and it is fundamental by (i). From (ii) it follows that, for each $a\in \varkappa$, 0 is a weak cluster point of $(\tilde{y}_i^a)_{i=1}^{\infty}$, hence also 0 is a weak cluster point of $(y_i^a)_{i=1}^{\infty}$.

THEOREM 2. Suppose that dens $X = \varkappa > \varkappa_0$ and X has a weakly compactly generated quotient whose density character is \varkappa . Then X admits a fundamental bounded biorthogonal system.

Proof. From Lemma 2 it follows that X admits a bounded biorthogonal system $(x_n^a, f_n^a)_{a\kappa, n \in \mathbb{N}}$ with $[x_n^a] + (f_n^a)^{\top}$ dense in X and, letting $T \colon X \to X/(f_n^a)^{\top}$ denote the quotient map, 0 is a weak cluster point of $(Tx_n^a)_{n=1}^{\infty}$ for each $a \in \varkappa$. Let $(y_a)_{a\kappa}$ be dense in the unit ball of $(f_n^a)^{\top}$ and, for each $a \in \varkappa$, define

$$egin{aligned} w_n^a &= -y_a + w_n^a - w_{n+1}^a & ext{for } n = 1, 2, \ldots, \ g_1^a &= f_1^a, \ g_n^a &= f_{n-1}^a + f_n^a & ext{for } n = 2, 3, \ldots \end{aligned}$$

Then (w_n^a, g_n^a) is a bounded biorthogonal system. We complete the proof by showing that $(w_n^a)^{\perp} = \{0\}.$

Suppose $x^* \in (w_n^a)^{\perp}$. Then for each $a \in \varkappa$ and $n = 1, 2, ..., nx^*(y_a) = x^*(x_1^a) - x^*(x_{n+1}^a)$, hence by the boundedness of (x_n^a) , $x^* \in (y_a)^{\perp}$

178

 $=(X/(f_n^a)^\top)^*$. But the nfor each $a \in \varkappa$, $x^*(x_1^a) = x^*(x_2^a) = x^*(x_3^a) = \dots$ and, since $(Tx_n^a)_{n=1}^\infty$ has 0 as a weak cluster point, we have $x^* \in (x_n^a)^\perp$. Thus $x^* = 0$ by the denseness of $[x_n^a] + (f_n^a)^\top$.

Remark 3. Of course it is a particular case of the theorems that every reflexive Banach space admits a fundamental bounded biorthogonal system. It follows by duality that every reflexive space also admits a total bounded biorthogonal system. A more general result than this latter one follows easily from a recent argument of Singer's: a trivial modification of Singer's proof of Theorem 1 in [11] shows that the Banach space Z admits a bounded total biorthogonal system of cardinality dens $Z = \varkappa > \varkappa_0$ provided Z has a subspace Y with dens $Y = \varkappa$ and Y admits a total, fundamental, bounded biorthogonal system. Now if Z contains a weakly compactly generated subspace X with dens $X = \varkappa$, then such a subspace Y exists. Indeed, letting $\{P_a\colon a\le \varkappa\}$ be a "long sequence" of projections on X satisfying (a), (b), and (c) of the proof of Lemma 2 above; selecting unit vectors $y_a \in [P_{a+1} - P_a]X$; and setting $Y = [y_a]$; we have that the functionals (y_a^*) on Y^* biorthogonal to (y_a) are total over Y and $\|y_a^*\| \le \|P_{a+1} - P_a\| \le 2$.

Remark 4. Since $m(\varkappa)$ (the space of bounded scalar valued functions on the infinite cardinal \varkappa) has a quotient isomorphic to a Hilbert space of orthogonal dimension 2^{\varkappa} (cf. [7], p. 203), $m(\varkappa)$ admits a fundamental bounded biorthogonal system. Obviously $m(\varkappa)$ also admits a total bounded biorthogonal system; however, $m(\varkappa)$ does not admit a total, fundamental biorthogonal system [5].

Remark 5. The fact that the construction in Theorem 2 produces fundamental biorthogonal systems (x_a, x_a^*) with $X/(x_a^*)^{\top}$ weakly compactly generated is not purely accidental: the argument of [5] shows that if (x_a, x_a^*) is a fundamental biorthogonal system for a Grothendieck space X (i.e., weak* convergent sequences in X^* are weakly convergent) then $[x_a^*]$ —and, consequently, also $X/(x_a^*)^{\top}$ —is reflexive. Thus if X is a Grothendieck space, the following are equivalent: (a) X admits a fundamental bounded biorthogonal system; (b) X admits a fundamental biorthogonal system; (c) X has a reflexive quotient with density character dens X.

PROBLEM. Does every Banach space have a (bounded) fundamental biorthogonal system?

References

- D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. (2) 88 (1968), pp. 35-46.
- [2] S. Banach, Theorie des operationes lineaires, Warsaw 1932.
- [3] M. M. Day, On the basis problem in normed spaces, Proc. Amer. Math. Soc. 13 (1962), pp. 655-658.

- [4] A. Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Int. Symp. on Linear Spaces, Jerusalem (1961), pp. 123-160.
- [5] W. B. Johnson, No infinite dimensional P space admits a Markuschevich basis, Proc. Amer. Math. Soc. 28 (1970), pp. 467-468.
- [6] and H. P. Rosenthal, On w*-basic sequences and thei rapplications to the study of Banach spaces, Studia Math. 43 (1972), pp. 77-92.
- [7] H. P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from $L^p(\mu)$ to $L^r(\nu)$, J. Func. Analysis, 4 (1969), pp. 176-214.
- [8] I. Singer, Bases in Banach spaces II, Studii si Cercet. Math. 15 (1964), pp. 157–208. (Roumanian).
- [9] On biorthogonal systems and total sequences of functionals, Math. Ann. 193 (1971), pp. 183-188.
- [10] On minimal sequences of type l_+ in Banach spaces (to appear in Czech J. Math.).
- [11] On biorthogonal systems and total sequences of functionals II (to appear).
- [12] A. E. Taylor, A geometric theorem and its application to biorthogonal systems, Bull. Amer. Math. Soc. 53 (1947), pp. 614-616.

OHIO STATE UNIVERSITY COLUMBUS, OHIO UNIVERSITY OF HOUSTON HOUSTON, TEXAS

Received September 27, 1971

(409)