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Factorization of compaet operators
and applications to the approximation problem”*

by
T. PIGIEL (Warszawa)

Abstract. In the present paper we give necessary and sufficient conditions for
a Banach space Z to have one of the following factorization properties: (i) every
compact operator, which can bo uniformly approximated by finite dimensional opera~
tors, admits a factorizution through Z, (i) any compact operator admits a factorization
through a subspace of Z.

As a congoquence wo obtain, for example, that every compact operator admits
a compact factorization through a refloxive space. Hence the approximation problem
can bo reduced to the case of refloxive spaces. (It is a negative answer to one of Gro-
thendicel’s conjoctures.)

Some relatod problems concerning Iy spaces and the traces of nuclear operators.
aro also congidered,

1. Totroduction. Iactorization problems for compact operators have
recently been treated by Johnson [47. Te discussed, however, only the
case of those operators T: X — ¥, which admit an approximation by
finite dimensional operators in the norm topology of B(X, ¥). We recall
that if cither X™ or ¥ has the approximation property (abbreviated a.p.),
then every compact operator in B(X » ¥) admits such an approximation.
Since the approximation. problem, i.e. the question “Does every Banach
space have the a.p.?”; is still open, it is not known whether Johnson’s
restriction is essential (1)

This resteiction can, however, be avoided if, instead of factorization
through # given space, one considers factorization through its subspaces.
Moreover, this approach permits us to obtain some new information con-
corning tho approximation problem. In particular, wo obtain the result
that the approximation problem and the question “Does every reflexive
Banneh spuco have the wp.7* aro equivalent. This shows that not both
of the conjectures formulatod in [2] (chap. XI, p. 135) and [7] can be true.

* "Chis papor is o part of the author’s Ph. D, thesis prepared under the guper-
vikion of Profossor A, Polezydski o the Warsavw University.

() Added in proof. Tho spproximation problem has recently been solved
(in the nogative) by P. Enflo. (His remarksblo paper 4 counterexample to the approxi--
mation problem will appoar in Acta Math,) Some later related results are mentioned
at the oud of the presont papor,
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This is a consequence of the theorem that an arbitrary compact operator
factors compactly through a reflexive space. These facts are proved in
Section 3, where the simplest version of our results is presented. In order
to shorten the proofs we refer there to Johnson’s theorem, although we
need only a weaker fact, whose direct proof is gomewhat gimpler. (It may
be found in Section 5.)

Sections 5 and 6 contain the more detailed exposition of the two
factorization properties we consider. We characterize Banach spaces
Possessing these properties in terms of projections onto finite dimensional
Subspaces. Some consequences of this characterization are deduced.

In Section 7 we briefly study factorization problems for compact
operators whose ranges are subspaces of L, spaces (where p, 1 < p < oo, ig
fixed). This also leads to corollaries concerning the approximation problem.
for corresponding classes of spaces. For cxample if every subspace of
1y 1< p < oo, has the a.p., then so has every subspace of every Ly, (u).
Hence, if 1< p< ¢<2, and every subspace of l, has the a.p., then so
has every subspace of I, (Corollary 7.6).

Proofs of our characterization theorems use a certain lemma on finite
dimensional projections, which is proved in Section 4.

The main result of Section 8 may be treated as an analogue of Corol-
lary 7.6 for 2 < ¢ < p < co. We restate it in a slightly stronger version
which also follows from our argument.

Let 2 < p < oo, and suppose that every subspace of I, (where I,
denotes the space ¢,) has the a.p. (it is certainly satistied if p = 2).

Let w = (u;)%~; be an infinite matrix such that

ed »
2 SUp Juy | P < o0,  and w® = 0.
j=1 %

Then
Zuﬁ =0,
i=1

The extreme cases p = 2 and p = oo were proved in [2]. Our proof
combines a factorization of matrices with the idea used by Grothendieck

in the case p = co. In particular for P =2 we avoid using the theory of .

entire functions.

2. Preliminaries and notation. All spaces we shall consider are suppo-
sed to be Banach spaces over the same, either real or complex field. We
shall deal only with norm topologies.

The word “subspace” (resp. “operator”) will always mean “a cloged
linear manifold” (resp. “a continuous linear mapping”). All isomorphisms,
isometries, projections ete. will be also linear and continuous.
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Lotters X, ¥, Z will always stand for Banach spaces, and letters
H, I, G for finite dimensional Banach spaces. The conjugate space of X
will be denoted by X*. The symbols B(X, ¥), K (X, Y), F(X, Y) will
denote thoe spaces of all operators mapping X into ¥ which are, respec-
tively, bounded, compact and finite dimensional. These spaces are equipped
with the operator norm. The elosure of (X, ¥)in B(X s ¥) will be denoted
by F(X, Y). '

A pair (T4, Ty) iy called o factorization of an operator Te B(X, ¥)
through %, provided T'ye B(X, %), Ty¢ B(%, ¥) and T,T, = T. A factori-
zation (1'y, T'y) 16 said o be o K-factorization (vesp. F-factorization) whenever
Iy, Ty are compact (resp. admil approximation by finite rank operators).

A family (Pir of elements of B(X,.X) is said to be a famdly of
disjoint projections (abbreviated £.d.p.) whenever

I)/tpj = 6’[JP?

where &, iy the usual Kronecker’s symbol.
Tor every paiv X, ¥ of Banach spaces we define the distance coefficient
4(X, Y) putting

for 4,j¢1,

A(X, X)) = ink (|2 177,

where the infimum is takon over all invertible operators from X onto Y.
Henee, d(X, Y) = oo whenever X and ¥ are not isomorphie.
Lot (Xy)er bo a family of Banach spaces, and let 1< p < oo. Let
Z,X,; denote the spaco of all functions f: I — iL(% X, such that f(i)e X;, -

for i¢ I, and the norm of f defined as follows

1
(SIE) it p< oo,
”f ”17 = [ ) .

B‘%P 17 (0)llx, if p=oo
iy finite. If p = oo, then wo require additionally that for every &> 0
‘the set

fie s If(@lx,> o}
is finibe.

The spaco X, A", equipped with the norm. ([, will be called the l,-sum
of the family (X)) (Hence by l-sum. we mean the ¢g-sum.) _

It m is o non-negative integer, I = {1, ..., n}, and X; is a one-dimen-
sional Banach space for ie I, then X, X, iy an n-dimensional Banach space
denotied more simply 1. '

We recall the definition of &,-spaces introduced in [8]. _

Lot 1L =p < oo, and let 15A<< oo A Bzma._ch space X is called
an %, ~space, provided that for every finite dimensional subspace B of X
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there is a subspace F of X such that ¥ < I, dimF = n< oo and &(F, Ij)
< A X is said to be an Z,-space whenever it is an &, ;-space for some
Azl :

Since we consider only Banach spaces, it will be convenient to use
another definition of the approximation property, equivalent to the original
one.

A Banach space Y has the a.p., if for every Banach space X we have

E(X,Y) =F(X, Y).

All facts concerning the approximation property we use can be found
in [2].

3. Primary version. In this section we shall base on results obtained
by Johnson in [4]. Another, more general, treatment, independent of those
results, will be given in the subsequent sections.

‘We recall the definition of the spaces 0, 1 < p < oo, introduced by
Johnson.

Let (64);~; be a sequence of finite dimensional Banach spaces such

that

(i) for every finite dimensional Banach space I and every &> 0
there is an ¢ such that (¥, G;) < 1+¢, ’

(ii) for every ¢ =1,2, ..., the set

{g: (@, &) =1}
is infinite.
Let 1 < p < co. We shall, following Johnson, denote by €, the space
2,@; (recall that by X, we mean the ¢y-sum).
_ Johnson proved ‘that for every », 1<p< oo, overy operator
TeF(X,Y) admits an F-factorization (4, B) through Cp.
This result implies that the spaces C, have also another factorization
property. :

PROPOSITION 3.1. Let 1< p < oo, and let Te K(X, Y). Then there

exists -a K-factorization (4, B)wof T through a subspace Z of C,.
Proof. Let j: ¥ - C(8) be a linear isometric embedding, 8 heing
suitable compact space. Since O(8) has the a.p., we have

JTe (X, 0(8) = F(X, 0(8).

By Johnson’s result, there is an F-faetorimtion,‘ say (fI, 15), of jo
through 0,. Let Z be a subspace of 0, such that

~

A(X) s Z = B(j(X)).
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Define opm.‘m;orft AeB(X,Z), BeB(Z,Y) putting Az = A for
weX, and Bz = j(Bz) for ze Z. The factorization (4, B) has the required
properties. '

Remark 3.2. Observe that the proof of 3.1 remains valid, if O, is
replaced by any space possessing the property described in Johnson’s
theorem.

COROLLARY 3.8, Bvery compact operator admits a compact factorization
through a reflexive space.

Proof. If we take 1< p< oo, then 0, is reflexive, hence so is Z.

Romark 3.4. It is not known whether every weakly compact operator
ean be factorized through a reflexive space.

» COROLLARY 3.0, Suppose that for some p, 1 < p << oo, every subspace
of Oy, has the w.p. Then every Banach space has the a.p.

Proof. Let I: X - X be an arbitrary compact operator. Let (4, B)
be a K-factorization of I' through a subspace Z of C,,. If we assume that Z
hag the a.p., then K (X, Z) = F(X, Z), hence 4 is a limit of a sequence

- (4,)%., = F(X,Z). Clearly BA,e F(X, Y)forn =1,2,..., and since

IT'— Byl = |BA—BA,| < B |4 —4,l,

we infer that 7'« F(X, ¥). This concludes the proof.

Remark 3.6. The proof of 3.5 remains valid if 0, is replaced by any
gpace possessing the property described in Proposition 3.1.

CoroLLARY 3.7. If every reflemive Bamach space has the a.p., then the
approzimalion problem has a. positive solution.

Proof. Since the spaces ¢, where 1 < p << oo, are reflexive, it is an
immediate consequence of Corollary 3.5. .

Remark 3.8. Since the space O, is isomorphic to“a, subspace of ¢,
Corollary 3.5 implies Grothendieck’s result that the approximation problem
has & positive solution if every subspace of ¢, has the a.p.

Roemark 3.9, Tn the formulation of Proposition 3.1 and Corollary 3.5

.

tho wpaco €, can bo replaced by 2,0

4. Auxiliary lenoma. This section iy devoted to the proof of the follow-
ing known lemma, which will be ropeatedly needed in the sequel.

Lumwa 4.1, Let % be o Banach space, and let S< F(Z,7), dim8(Z)
= < oo, Lot M) be an r-dimensional Banach space, and let 1 < p < .
Denote by I the Lyeswm. of (mr--1)% copies of 1. Suppose that P is a projection
in Z such that |P| - K, and d(P (%), F) < L.

Then there is w projection Q in Z such that

Q08 =8¢ =0, |QI<XKL, aQ®),B<L.
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Proof. Put & = mr-41. We have
F =18 x..XH;,

where each H; is a copy of H. Let I;: F — F be the natural embedding,
and P;: F — H the natural projection, both onto the /th summand, 1 <4
< K. Let J: F ->Z be an isomorphism onto P(Z) such that

i<, <L

Fix j, 1<j<k, and let G = §8(2).
Since dim B(@, ) = mr < %, then the set

{'P(f‘l)k%—l']‘ll} lay oy Piped ™ 11)'6} < B(&, E)

is linearly dependent. Hence there is

a b= (b,..., bp)elk = (15" with
[3ll, = 1 such that
(0 Pyyyprr+ e+ Py) I Pl = 0.

Let ¢ = (¢;, ..., &) be an element of I} such that [l¢j, = 1 and
k
by 0y = D byo, =1.
8=1
Put
b= 01:__(1__,1)}., if (] '—'1)76 < z<j7c,
0 otherwise,

and define an operator B; in F by

Bi(eyy ...y ) = (18, ..., gp2),
where g = Z’ bs b1 +o¢ B Obviously
(*) B;J7'PS = 0.
Let ¢ = (e, ..., ¢2) ¢ F. Since
Bj(Bj(en v o)) = By(e,@, ..., ga0) = (&1 ooy 829),
‘where
Yy -—stu Vies® *Zbﬁa” =,
],

we infer that B;B; = B;, i.e. B; is a projection. Further, we have

”B:If“ = ”Bj(eu e e)]l = ”(elwi cony 520)]| .

k
= el lollz = lolly =|| 3 batssye
§=1

k k 1 I
< 20l egyeesd <3 e 3 el )7 =
g= . 8=1 §=1

gk 1

D el

8= (J= 1) kel 1
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Observe that the operator Us;: H — F, defined by
Uje) =
is an isometric mapping of X onto B;(I"). Consider operators
8JUy,y .., 8JULe B(H, &),
, @) e Th such that

(1) «ovy 8528,

and choose & d = (dy, ...

ke
ldly =1, >&8JT; =0.
=]

7
Define the operator U: B — I by

ke
Ule) = D& Tje.

Jel
Clearly, » is an isometric embedding and
(k) 8JU =0..

y ) e &b 8o that

Y]
g, & = D) gidi =

=l

Now choose g= (gay -+
llglla =1, and
and define for we I

- (3T 5.

Teal

Let @ = Uee U(H). Then we have

Qo = U f 0. U (B, Ue))

iwl

(1.,2: 9. U7 (& Use)) = (g}‘ gidy0)
= U(e) = 0,

Henco f) is & projection of 1 onto U(H). Since for each ¢ = (61, ..., 62) € '

we have
< L 94 1B: gl
ik 1 i

el = HZ 0:Ui(Byo))
;(2 w) (2 1B enf‘)’l” (}j( S lee)) = lel,

et Tel e (=T A1

that Wli = 1.

we infor
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Let @ = JQJ~'P. Then [Q|l< KL, and, by (x) and (++), we have
for zeZ

k . :
8QZ = 8JQJ Pz = 87U (Y g U7 (By(T~ Pe))) = 0,

E
gl

k
082 = JQJ ' PSe = JU(E % U;l(BiJ“‘.PSz)) =0,

=1
Further, since PJ = J and ¢* = §, we get
@ =JQI'PIQIP = JGIIDP = .

Finally, observe that J U/ is an isomorphism of % onto @(Z). Since for every
¢ F we have
L7 el = L[ TUell < T Uell < | Ve < lefl
we infer that i
a(Q(2), B)< L,
which completes the proof of the lemma.
5. Factorization through a given space. In view of the results of

Section 3 we introduce the following definition.

DeriNrrioN 5.1. A Banach space Z is said to have the Sactorization
property (vesp. the subspace factorization property) if every Te F(X, Y)
(resp. every T K (X, X)) admits a factorization through Z (resp. through
a subspace of Z). We shall use abbreviations £p. and s.Lp.

In this section we give a characterization of the clags of Banach spaces
possessing the f.p. and deduce some of itg consequences. This' characteri-
zation is contained in the following theorem.

TemormM 5.2. Back of the following properties of a Banach space Z is
equivalent to the f.p.

(i) Boery operator Te F(X, Y) admits an F-factovieation, say (A, R),
through Z. .

(ii) There emists a constant K >0 such that A and B in (i) can be
chosen so that ||A|| |B|| < K.

(iil) There ewists a p, with 1 < p < oo, such that every Te T (0, 0,)
admits a factorization, say (4., B), through Z.

(iv) There emists a constant K > 0 such that Sor every finite dimensional
Banach space B there exists a projection P in Z with

PI< K, d4(B,PZ)<XK.
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(v) There exists a constamt I = O such that for every sequence ()7,
of finite dimensional Banach spaces there ewists a f.d.p. (Po)ey in Z such that

1Pl <K, d(m;, Py(2) < K
for i =1,2,...
(vi) There ewists o sequence (ay)i., of positive reals such that for every

5]

sequence (M), of finite dimensional Banach spaces there is a fdp. (P)
in Z such that the sequences

(aglP)Ey

o0
!

(w@(By, Py(2)))
are bounded.
Proof, Clearly (ii) = (i) = (L.p.) = (iii) and (v) = (vi). Henee it suffices
to prove that (i) = (ii), (iii) = (iv) = (v), and (vi) = (i).
(vi) = (i). Lol T'e F (X, ¥). T can bo decomposed in the form T'= 2T,
i=1
where T'ye (&, Y)fori =1,2,..., and
Iyl (L5 ad) |71,
1T < 47 | T)  for & =2,38,...
Indeed, it sutficos to choosefor¢ == 1,2, 3 ... an element 8;¢ F'(X, Y)
such that
17— 8yl < 44~ min(af, of,),
and put for ¢ = 1,2,...
Ty = St""’gi-«u
where 8y == 0. ‘
‘Consider & sequence (I)F, of finite dimensional Banach spaces
_defined by :

By = TX), i=1,2,..,

and lot ()7, be a Ld.p. in Z existing by (vi). For every ¢ =1,2,...,
choose an isomorphism It W, -~ Py(Z) such that

M < 1,

K being a suitable constant independent of 4. Define 4eF(X,Z),
BeF(Z, Y) by tho formulne

W < Koo,

o0
Aw mzz‘a'ﬁ“‘]ﬂ'iw for we X,
vl

B e 319G (Pi)  for ee 2.
i~
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Since P,I; = 0,l;, for i,j =1,2,..., and the series are absolutely
convergent, we have for e X,

BAx =S’2"‘a§1{1 (Pifyafz.[jTJW) ‘

g=1 J=1

= Yo I (2 i Tiw) = D Tiw = Ta.
i=1 Fam]
Hence (4., B) iy a desired factorization.
(i) = (ii). Suppose that Z satisfie (i) but no (ii).
For any X, ¥ and any T'e F(X, Y)\{0} denote

o(T) = inf(|All |BIl |71,

where the infimum is taken over all F-factorizations (4, B) of 7' through Z.
By our assumption, there exist sequences

(Xadamry  (Tpdnery o and (Th)n,
guch that
TnEF(Xm Y,),

ITall =1, o(Ty) > 4%

forn=1,2,...,

Let X (resp. Y) be the ¢p-sum of the sequence (X,) (vesp. (¥,)). (The
ly-sums, 1< p < oo, may be used as well.) Let I;: X; - X be the natural
embedding, and P;: ¥ — Y, the natural projection. The operator 7': XY
defined as follows

T{(@a)5ms) = (@7 L)

belongs to F(X, Y). Let (4, B) be an F-factorization of 7' through Z.
It is easy to check that, for every n=1, 2, ... (41, 2"P,B) is an F-fac-
torization of T,. Hence

4" < o(Ty) < AL 12" P, Bl < 2" 4]l |B]].

Since » is arbitrary, we get a contradiction.

(iii) = (iv). Since 0, is isometrically isomorphic to the I,-sum of a count-
able family of its copies, using a similar argument as that in the proof
of (i) = (ii), we infer that there exists a K >0 independent of 7, guch
that A and B in (iii) can be chosen so that |4 |B| < K||7.

Now fix &> 0 and choose an ¢ such that d(H, @) < L.

Let I: G; - O, be the natural embedding, and let @ be the natural
projection of C, onto its summand I(&;). Let (4, B) be a factorization
of @ through Z such that

141 1Bl < K@) = K.

icm®
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Then 4.B: Z —% is » projection of norm < K, and, since AI: ¥ > AB(Z)
is an isomorphism with

(AL)y™ = LB‘AB(Z)’
we have
d(t, (AB) (2)) < |AL| | I7B]|
< Al B I < K
Hence

d(B, (AB) (2)) < a1, 6 (G, (AB) (2)) < (140K

which completes the proof of (ii) = (iv).
(iv) = (v). Tiot (H;)72., be an arbitrary sequence of finite dimensional
Banach spaces. We shall define reeursively a £.4.p. (Py)i, in Z such that

(%) 1P, < B 4(B,, Py2) < K,
for i =1,2,..., whore K denotes the constant appearing in (iv).
Let P, be an arbitrary projection in Z such that
Pl <X, d(ly, PA(2)) < K.
Buppose that we have defined Py, ..., P,_, 80 that (*) is satisfied
and

PPy = PyPy =0 for L<i<j< m.

Let 7 == dim.j,, m = &'l My, & = mr+1. Let F be the ¢-sum of ¥?
copies of H,, and let };ﬂbe a projection in Z such that

IPl< K, d(P(2),F)<K.
Putting § == Py+ ... L., wo have dim8(Z) = ‘v, hence we may apply
Temma 4.1 to oblain & projection @ in Z such that

OF = 8Q =0, 1QI<E%, (B, Q)< K.
Since, for avery ¢ == 1, ..., #-1, wo have
P = (P8)Q = P8Q =0,
QP; = Q(SPy) = (@8)P; =0,

This completes the proof of the theorem. .

UorosARY 5.3 (Johnson). The spaces Opy LK P < 00 have the f.p.

Proof. Use condition (iii). ,

OOROLTARY 5.4, A Banaoh space Z has the f.p. if and only if its dual Z
has.
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Proof. Suppose that Z satisfies condition (ii) of the theorem, and
let B be a finite dimensional Banach gpace.

The identity operator Iz.: E* — B* admits, by (ii), a factorization
(4, B) through Z such that

<1, [BI<K.
Since the adjoint operators satisfy
4% = dIl<1, 1B* =|BI< K,

A*B* = (BA)" = (Ip)" = Iy,

we get eagily that d(E, B*(B)) < X, and B*4* is projection of Z* onto
B*(E) of norm < K. Hence Z* satisfies condition (iv).
Conversely, suppose that Z* has the f.p. Then, by the first part .of

the proof, so has Z**. The proof that this implies that Z satisfies condition -

(iv) follows readily from the stréngthening of the principle of local retle:
xivity given in [5] (Th. 3.3).

Indeed, it states that if B is a subspace of Z**, dim B < oo, and P is
a projection of Z** onto B, then, for every &> 0, there is a subspace , of Z
and a projection P, of Z onto B, such that

Q(B, B)<l+e, [PI<|IPl(L+s).

COROLLARY B.5. If Z has the f.p. and Se F(Z, Z), then the kernel of 8
has the f.p.

Proof. Use condition (iv) of the theorem and Lemma 4.1.

PROPOSITION 5.6. If Z has the f.p., then it has the s. f.p.

Proof. It is a consequence of 5.1 and 3.2. A direct proof can also
be given. :
Remark 5.7. An’inﬁeresting.‘.example of a Banach space possessing
the £.p. is that discovered by Szankowski [9]. Namely, he constructed

a separable reflexive Banach space Z such that for every finite dimensional

Banach space & there is a norm 1 projection in Z, whose range is isometric
to .

6. Factorization through subspaces. Now we pass to the characteri-
zation of Banach spaces possessing the s.f.p. For every Banach gpace Z
and every positive integer » it will be convenient to introduce an abbre-
viation, say ¢,(Z), for the quantity

int{d(B,1%): ¥ < Z,im¥ = n}.
In this notation our result reads as follows.

TEEOREM 6.1. The following properties of a Banach space Z are oqUY-
alent 1o the s.f.p.
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(i) Tivery Te K (X, Y) admits a compact factorization through a sub-
space of Z.
(i) There ewists a nom-increasing sequence (a,)X., of positive reals
such that
(a) limay, = 0,
n

(b) lima,n® == oo for every ¢ 0,
"

(c) the operator T': o)~y given by T((wt)ﬁl) == (@ 0)im;  admits
a factorization through a subspace of Z.
(ifi) lime, (Z)n"° = O for every ¢ > 0,
[

(iv) e, (%) == 1 for n = 1,2, ...
(v) For every sequence (e,)m., of positive numbers there exists a f.d.p.
(P2 in Z such that

'

IPul< 16y 4(P,(2),12) < 1+e,,

for m=1,2,....

(vi) There ewisls o sequence (w,)mm, of positive reals such that for every
sequence (o, )m., Of positive integers there emists o f.d.p. (P)y., in Z such
that the sequences

(@ Py (and(Po(2), V)finy
are bounded.
Proof. The implications (i) = (s.£.p.) = (ii) and (v) = (vi) are obvious.
In order to prove that (if) = (iii) we fix a factorization (4, B) of T
through a subspace %' of Z.
Let » bo an arbitrary positive
Ji gy > 1% by

integer. Define I: I, —+¢, and

T(yy ooey @) = (Byy ey 2,050, ..0),
I () Myy ) == (A7 Wy vony O ).
Let B == AI(l). Thon wo havo
(I B) (AL) () = J(BA) (L) = JT(Iw) =
for all wel, and

W BI = 1) VB = a 1B, AT < 1A 1T = 14l

Ience .
6u(4) < 0,(%) < Al 18) << B AL < o7 II4] B

Sinco n was arbifeary, the conclusion follows immediately.
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The implication (iii) = (iv) iz a consequence of the estimate
(%) ‘ eul(Z) = 20, (Z)(1 +0(Z)"Y) ! = a0y (Z),

Indeed, if ¢,(Z) >1 for some & >1, then, by (%), om(Z) > o} = (K"},
for n = 1,2, ..., with log,e; > 0, which contradicts (iii). We omit the
proof of (), since gimilar facts are well known (cf. [17], [3])-

The proof that (iv) = (v) uses Lemma 4.1. Being similar to the analo-
gous one in Theorem 5.2 it can be left to the reader.

It remains to prove that (vi)=- (i).

Let j: ¥ — C(8) be an isometrical embedding. Then jT'¢ F(X, 0(8)),

hence we can write jT= 3 T, where
ps

for &, 1 =1,2,...

T« P(X,0(8) fori=1,2,..,
1T, < 2111,
1Tl < 47°02| T} for i =2,3,...
Choose for every ¢ = 1,2, ..., a subspace T; = 0(S) such that
Ty(X) < 1y, a(Fy, 1) < 2.
Take a £.d.p. (P;)i2, in Z such that for some K >0
1Pl < Ko, d(l’,-(Z), lﬁ) <Kol i=1,2,..,
and choose isomorphisms I,: F; — P;(Z) such that

<1,

dlmlﬂi = f; < 00,

< Koty ©=1,2,...

Define operators A: X > Z and B: Z — 0(8) by

Az = 22"11;21,-1’#

Te=1

for e X,

-~ had .
Be = Zzwail,.‘l(ln(z)) for ze Z.

g

1]0]11()wtr}i()1151y (4, B) is an F-factorization of j7T'. Let Z' be subspace of Z such
a .

©AX) =2 = BTj()).

Tht?n (4, B), where 4, B are suitable restrictions, iy a required K-factori-
zation of 7. .
This completes the proof of the theorem.
CoROLLARY 6.2. The spaces Zpln, 1< p<oo, and ¢, have the s.fp.
Proof. They obviously satisty (iv).
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OoxorrnAny 6.3. If the approwimation problem has a negative solution,
then every space possessing the s.f.p. conlaing o subspace which does not
have the a.p. ‘

Proof. Use Theorem 6.1 and Remark 3.6.

COROLLARY 0.4, If Z has the 8.f.p., then some subspace Z' of Z has the f.p.

Proof. Lot (P,)%,, be a Ld.p. in Z such that

» o 1 3 n 1
IPall s Lok =y A(Pu(2), U} € L,
n 7
and lot (@)=, bo u sequence appearing in the definition of the spaces 0.

Choose an increasing soquence (n)h., of positive integers such. that, for
every i == 1,2, ..., thoro oxists o subspace IF; = Py (Z) such that d(F;, &)

1
< LA T It is oasy to soeo that the subspace

7' = {eeZ: Py (R)e Fyfor i =1,2,...}
has the f.p.

7. L, factorization. Factorization problems similar to these we consi-
dered, can bo stated also for other classes of operators (cf. [4]). In this
gection we briefly discuss the factorization of corpact operators whose
range is a subspace of & certain Ly, (u) space. We indicate some applications
of these resulty to the approximation problem for this class of spaces.
Tt will be convenient to denote by I, the space usually called ¢,.

‘Wo start with the following definitions of two factorization properties.

DerINIIIoN 7.1, Let 1 < p < oo, A Banach space Z is said to have
the factorization property for L, (vesp. the subspace factorization property
for L), provided every compact operator T: &, — 1, admits a factorization
through Z (resp. through a subspace of Z). We shall use abbreviations
£p. and stp. as before.

Obviously the space I, and more generally, an arbitrary infinite
dimensional #,-space, hag these properties. (The latter fact follows from
Proposition. 7.3 of [8]). A characterization of spaces possessing the £.p.
for I, is contained in the following

Trmornm 7.2, et 1= p < co. The following properties of a Banach
space Z are equivalondt,

() Kwery operator Te F (X, X), where Y is an Zy-space, admits am
Ffactorization, say (4., B), through Z. '

(ii) Thare ewists a real funotion g(A) suoh that whenever Y is am Ly
space and Te F(X,Y) (= K(X, X)), then A and B in (1) cam be chosen
so that '

141 1Bl < g(A) 1T ¢
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(ii) Z has the factorization property for L.
(iv) There is a constant K > 0 such that for every n there is a projection P
in Z such that ‘

IPI<E, daP2),n<K.

(v) There is a f.d.p. (P,)., in Z such that the sequences

(Pul)ins  (d(Pal2), W)

are bounded.
" (vi) Analogue of (vi) in Theorem 5.2 with B; replaced by 1.

The proof of this theorem, being similar to that of B.2, may be left
to the reader. We remark only that the proof of (i) = (ii) uses the following
simple lemma. (We state it here in more precise form than we need.)

LeMMA 7.3. Let 1< p < oo, If (Y,)pis o Sfamily of Bamach spaces,
which are £, 1. -spaces for every &> 0, then so is the space X, Y.

This lemma may be proved by a usual stability argument. We omit
the details.

Theorem 7.2 implies that Z has the £.p. for L, if and only if Z* hag
the £.p. for L, where ¢ = p/(p —1).

Obviously the f.p. for L, implies the s.f.p. for .L,. On the other hand,
the proofs of Section 6 can be modified to show that every space posse-

ssing the 8.£p. for L, contains a subspace which has the Lp. for' L,. We

do not present this proof here. We give, however, an independent proof
of an important consequence of this fact (Theorem 7.4). Tt should be
remarked that in this proof, instead of Theorem 7.2, one can use the
following consequence of another result from [4].

If ¥ is an &,-space, 1 < p< o, then every Te K(X,Y) factors
compactly through 1,.

THEOREM 7.4. Let 1< p < co. Suppose that Z has the s.fp. for L,
and Y s isomorphic to & subspace of o certain Ly (). Then every Te K (X, T),

X being an arbitrary Banach space, admits a compact factorization through
a subspace of Z.

Proof. Let j: ¥ — I,(u) be an isomorphie embedding. Then wo
have jTe F (X, Lp(;z)), hence, by Theorem 7.2 or Johngon’s result, we get
an F-factorization (111, 4,) of T through l,. The same argument shows
that 4, admits an F-factorization (4, A,) through 1,,.

Let (45, Ag) be a factorization of 4, through a subspace of Z. Let 2’
be a subspace of Z such that

4 4y(X) € 7' < (4,471 (T)).
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The operators A: X ->Z', B: Z -+ 'Y given by
A (m) = Ay A, ()
Bz) = § Ay Ay (2))
form a required K-factorization,
JorornAry 7.0, Let 1<p < oo, Suppose that every subspace of 1,
has the a.p. Then every subspace Y of every Ly, (u) has the a.p.
Proof, It follows from Theorem 7.4 that every compact operator

into Y fuctors compaotly through a subspace of 1,. So we can proceed as
in tho proof of 3.5,
CoroLLARY T.6. If 1 =1 p < q £ 2, and every subspace of 1, has the a.p.
then 80 has every subspace of 1, .
Proof. By o vesult of Kadee [6], I, is in this case isometric to a sub-
space of I,([0, L]), henee the vesult follows from Corollary 7.5.

for zeX,
for ze 7',

8. Some factorizations of matrices. Weo do not know whether the last
corollary is still valid if p, ¢ are supposed to satisty 2 < g< p < oco. How-
ever, here also the hypothesis that the subspaces of 1, have the a.p. leads
to & stronger result than the one for the subspaces of I, The result v;re
mentioned is closoly conneeted with Grothendieck’s Proposition 37 ()
and Remarque 14 of [2], Tt will be convenient to formulate it in terms
of maitrices.

Let M donote the set of all infinite matrices % = (uy)f5.., such that

Wy = (“t!)‘ml“ [ for j == 1, 2, feny

=]
3
§ lleglley < 00,
=i

uh o= 0,
o0
The subsoet of M consisting of thoso « such t’hm;j }; lluyli§, < oo, where 0<

g1, will be denoted M. Let

Grothendioek proved that the approximation problem 1:s equiva@enb
o0 the statemoent A0 == N, Using some propertios of entive functions
and Wredholm determinants o showed that My, s N.

Wo ghow that one ean, in a sense, interpolate between these two

~results, (Wo usnume below that p < oo, only for simplyfying of the nota-

tion.)
PROPORITION 8.1, Suppose that every subspace of by, 2 <p < oo, has
the a.p. Thew My, & N

T Studle Mathomatien XLv.2
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Proof. Let weMp .- Then there exists o sequence (b))7%.; of positive
numbers such that }' b; < co and

g=1
luyl < BEHDP - for 4,5 =1,2,...
Let
. b{ _];
“¢1=MK7(7)p7 thj=1,2,..
J
Then

4 = (ag)2yel, and  'ajl, < oo
J=t

Let ¢ = (0;)21¢ (I,)*. Consider a nuclear operator A in 1, defined by

4 =§0}k®aj.

Jasl

It is eagy to check that A* =0. Now we shall repeat Grothendieck’s
argument.
Let X be the kernel of 4. Then a;eX, for j =1,2,..., hence the
expression
e
Delx) @t XX
i=1
is a nuclear representation of the zero operator in X. Since, by hypothesis,
X has the a.p., we get, in virtue of Proposition 35 of [2], that

0 =Tr.0 =Z (6] ]x) () = i“ﬂ‘

§=1 * el

To conclude the proof it remains to observe that Ugg =vaﬁ for
P=1,2,...,

Remark 8.2. As far as we know, the problem whether the space
lpy 2<p < oo, possesses closed infinite dimensional subgpaces non-igo-
morphic to the whole space remains still open.

Added in proof. Enflo’s result has complotely changed many opinions about
the approximation property. Now it seeing very likely that oneh Banaeh spaco non-
isoxnorphic to any Hilbert space contains a subspaco failing to have the agp.

In any case, we have proved, using Enflo’s wethod, that thoe hypothesis of
Proposition 8.1 is satistied only for p = 2 (ef. Romark 8.2). (This proof yiolds, how-
ever, only that () Mypiy)\N = @.)

P>8

Observe that, by Theorom 7.4, if I, contains a subgpaco failing to have the
a.p., then so does each space with the s.Lp. dfoxr Ty (ef. the proot of Corollary 6.3).
Since it appeared that the former could happen alse for P # oo, wo docided to include
a gketch of the proof of the characterization we had mentionoed in Scetion 7.

icm
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Tarorud 7.7, Let 1 < p < co. The following properties of a Banach space 7 are
equivalent lo the 8.f.p. for Ly.

(i) There ewist a K > 1 such that for each n = 1,2,... there is a subspace H
of Z with (B, 1}) < K.

(ii) % has a subspace possessing the f.p. for In,.

Proof. The implication (i) = (s.Lp. for Ly) is obvious.

(i) = (i), It follows easily from Lemma 4.1 that
(*)  oaoh subspace Z' of Z with 8imZ[Z' < oo satisfies (i) with the same K as Z does.

Using this and the following well known fact

(M) given e > 0 and a subspace B < Z with dim B < oo, there is a subspace Z2' < Z
and an operalor P: Z' — 1 such that dimZ/Z’ < oo, Z' 2 B, P = ¢ for ech,
and ||P|| < L&,

we can define recursively sequences (Bp)i.y, (Zp)pei, (Qn)oe; so that By, Z, < Z,
n
A( By, B) < K, Zp2 3 By = Ty, dimZ[Z, < oo, QueB(Zy, Fy), Qne = 6 for ecF,,
4

=1
1@l < 18 Byq < Ker(@Qn), Zpyy E Zp, forn =1, 2, ... Indeed, it is easy to choose
By, %y, Q- IE n> 1 and H;, Z;, Q; have been defined for i = 1, 2, ..., n so that all
conditions are satistied, we can, by (*), choose a subspace By, < Ker(@y) so that

n
A( By, YY) < K and then, using (**) with B = 3 By, detine Z,,11 as Z,nZ’ and put

el
Qui1 = Plz, -

-~ o ~ :
The subspace Z = (7) Zy of Z and a soquence Py, = (Qnit1—@n)lZ, n = 1,2, ...
: el

satisfy the condition (iv)y of Theorem 7.2 with the constant max (2 2, K).
(s.kp. for Lp) = (i). Let, for n =1,2,...,

E(n) = inf{d(B, 1): B < 7).

Suppose, on the contmry,’that sup K (n) = oo. Choose a sequence (n)fe, so that

K(ng) > 4% for ¢ = 1,2, ... The der;ired contradiction will be obtained, if we repre-
sent I, a8 Z,1;¢ and factorize through a subspace Z' of Z & diagonal operator T in Zp [
defined by the formula T((2)§,) = (2~ %@;){,. Indeed, if (4, B) were a factorization
of 1, we would have .

# < K (ng) < d(4 (gh), 155 < 281 411B,

for 4 = 1, 2, ..., & contradiction, This completes the proof of the theorem.
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