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Fourier transforms of convolution operators
by
CHARLES SWARTZ (Las Cruces, New Mexico)

Abstract. Lot @ < § be a test space and ¥ the image of @ under the Fourier
transform. It is shown under certain conditions on & that the Fourier transform is
an algebraic and topological isomorphism from the space of convolution operators
on & onto the space of multipliers on ¥.

A very important theorem of L. Schwartz states that the Fourier
transform is an algebraic and topological igomorphism from the space
of convolution operators on &’ onto the space of multipliers on &' (Theorem
VIL. XXV of [3]). The analogous result for the space of distributions
of exponential order has been established by Zielezny [9]. In this paper
we establish a generalization of these results; our final result will yield
the theorems of L. Schwartz and ZieleZny as special cases.

This paper is a continuation of [5], where convolution operators on
generalized function spaces are discussed. In Section 1 we consider multi-
pliers on certain test spaces and supply the space of multipliers with
a locally convex topology. Various properties of the topology are then
discussed. In Section 2 the Fourier transform for certain generalized
function spaces is discussed as in [1], and we show that under certain
conditions the Fourier transform is an algebraic and topological isomor-
phism from the space of convolution operators onto the space of multi-
pliers. In the final section we consider the results in Section 2 for certain
test spaces, In particular the generalization of Schwartz’s result is shown -
to hold for K{M,} spaces which satisfy conditions (M), (N), and (F) as
set forth in [4], [6]. This class of spaces includes & and the test space
Ay of functions of exponential growth as treated by Zielezny [9].

Our terminology and notation will be as in [5].

1. The space of multipliers. Throughout this section ¥ will denote
an arbitrary vector space of infinitely differentiable functions on R*
equipped with a locally convex topology such that differentiation is
continuous on ¥. We first define the multipliers on ¥.

DrrINITION. The space of multipliers on ¥, 0,(¥), is the set of
all infinitely differentiable functions « on .R* such that
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(i) ape¥ for each pe¥,

(i) the map w —>ap I8 continuous on ¥. '

Tf ae0y(¥) and Te¥', the product of o and Tis de'fl.ned ]2yt]§aT, w>
= (T, ap)y for pe¥. That is, the map T —->.aT is the. adjoint (; ) 60111311:-
in (ii), and this mapping is .’sherefor(’a continuous with respect to
the weak* or strong topologies of ¥ ([6], II‘. 19. 5)‘. )

We note that @, (%) is closed under dlf:ferentm’olon:

PROPOSITION L. If acOy(P), then D acOy(¥) for jeN, where N
denotes the set of mon-negative iniegers.

Proof. For pe¥,

W oDa = Y~ (}) p-tgante).
3

The result now follows from (1) and the fact that differentiation is con-
tlml(g‘lsr (zn]]lleg,c.ase P = &, the space of rapidly decreasing functions, the
space 0y (F) is just the space Oy introduced by L: S.e}lwartz (31, VIIt:h5)é
(See [6], XT. 25. b for the equivalence of t_he definition above and tha
of Schwartz.) The space 0y is supplied Wlt].l a locally convex tgpology
guch that a sequence {o;} © 05, converges to 0 iff for each ge &, oD a; - 0
uniformly on R* when ¢ varies over a boum.led subset of & ([2], Example
2.4.15 and [8], VIL 5). With respect to th}s locally convex top?logy the_
bilinear map (a, p) — ap from Oy X & —~ F 18 hypocontinuous with respect
to the bounded subsets of &. . .

ProposITION 2. The sequence {a;} S Oy converges to O in Oy iff for
each pe &, a;p — 0 in & uniformly for ¢ varying over a bownd(.ad s'ubset of &.

Proof. Suppose ao; >0 in 0. From the hypoco_ntmmty .of the
bilinear map (e, @) - ap from Oy x & >, op->0 in & uniformly
when ¢ varies over a bounded subset of &. ‘ -

Let B be a bounded subset of &. Since a;p — 0 in & uniformly fqr
pe B, for each ie N*, pD'a; - 0 in & uniformly for pe B by (1). In parti-
cular, pD'q; -» 0 uniformly on R* for pe B so that ¢y — 0 in _0M'.. 5

From Proposition 2 we obtain an inberesting characterization. of
convergence in 0, ([3], VIL 5). o ,

COROLLARY 3. A sequence {T,} < 0, converges to 0 in O, iff for ea(oh/
pe P, Tyre -0 in & uniformly when ¢ varies over o bounded subset O;f .

" Proof. That T, -0 in ¢, implies the condition ,stated folloys from.
the fact that the bilinear map (T, ¢) - T+*g from 0, x & -~ is hypo-
continuous. . )

Let B = & be bounded and suppose T,*p — 0 in & uniformly for
@eB. To show T, -~ 0 in @, it suffices to show & {T,} — 0 in 0y , where
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F{T,} is the Fourier transform of T, ([3], VIL. 8). For peB, if p =F1{p},
9F{T,} =& {T,*y} ~ 0 in & uniformly for p< B since #~{B} is bounded
in &. Henece #{T,} -0 in @, by Proposition 2.

Remark. This result shows that convergence in the topology intro-
duced in [5] agrees with the convergence defined by L. Schwartz in [3],
VII 5.

Motivated by Proposition 2 we introduce a locally convex Hausdorff
topology on @ (¥) by means of the semi-norms

(@) p,5(a) = sup{p(ap): pe B},

where p is a continuous semi-norm on ¥ and B is a bounded subset of ¥,
We assume 0y, (%) is equipped with the locally convex topology generated
by the semi-norms g, », where p runs over the family of econtinuous semi-
norms on ¥ (or some generating family of semi-norms) and B runs through
the bounded subsets of ¥. Thus, we have

PROPOSITION 4. 4 net {a,} in 0 (¥) converges to 0 in 0y (W) iff for
each ¥, a,9 -0 in ¥, where the convergence is uniform for ¢ varying
in & bounded subset of V. ‘

Remark. Thus convergence in the topology defined on 0,(%) in
this faghion agrees with the convergence defined by Schwartz in Oy
(Proposition 2). ’

From Proposition 4, formula (1), and the fact that differentiation

is continuous on ¥, we also have

PROPOSITION 5. For any je N*, the map o — Dia s continuous on
Oy (F).

We summarize the continnity properties of the product map in the
following statements. )

PROPOSITION 6. The bilincar map (a, p) — ap from Oy (P)x ¥ — ¥
s B-hypocontinuous, where B is the family of bounded subsets of ¥.

Proof. Fix ae0y(¥). Then the map ¢ — ap is continuous on ¥
by definition of @, (¥). ‘

Let B = ¥ be bounded and suppose the net {a,} converges to 0 in
O (¥). Then by Proposition 4, a,¢p -0 in ¥, uniformly for pe B, and
hence the result.

The dual of ¥ equipped with the strong topology will be denoted
by ¥;.

Proposirron 7. The bilinear map (o, T) — of from 0y () x ¥y — ¥y
s separately continuous.

Proof. Fix aely(¥). The map I' — oT is the conjugate of the map
defined in (ii), and is therefore continuous with respeet to the strong
otpologies ([6], IL. 19.5).
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Fix Te¥'. Suppose the net {a,} converges to 0 in @, (¥). Let B
be bounded in ¥. By Proposition 4, a,p -0 in ¥ uniformly for pe B so
&y a,9> =<{a,T,p) -0 uniformly for geB. That is, ¢,7 -0 in ¥,.

PROPOSITION 8. The bilinear map (o, f) = af from Oy (¥F) X Oy(¥P) —
— Oy (¥) 15 B-hypocontinuous, where B is the famaly of all bounded subsets
of Oy (V).

Prooi. Let B be a bounded subset of 0 (¥) and let {a,} be a net
which converges to 0 in Oy (¥). If A< ¥ is bounded, then BA
={ap: ae B, ped} is bounded in ¥ by Proposition 6 and Proposition
4.7.2 of [2]. Hence ¢, f — 0 in 0, (VP), uniformly for < B by Proposition 4.

We may also view multiplication by a fixed element of @, (%) as
a linear operator on ¥. That is, if ae @y, (%), o induces a continuous
linear map o¥: ¥ — ¥ via o*: p — ap. If we denote the space of all linear
maps from ¥ into ¥ by L(¥, ¥), the map a - o* imbeds 0,,(¥) in
L(¥W, ¥). We denote by = the topology induced on 0, (¥) by Ly(¥P, 1),
where L, (¥, ¥) is L(¥, ¥) equipped with the topology of uniform con-
vergence on bounded subsets of ¥. Proposition 4 can thus be rephrased as

PROPOSITION 9. The fopology v coincides with the original topology
of Oy (P). . ‘

As an application of this result, we show that certain, spaces of multi-
pliers are nuclear.

Proposrrion 10. If ¥ ds complete and barreled, and W, is nuclear
and complete, then 0y (W) is nuclear.

Prootf. By Theorem IIL. 50.5 of [8], L,(¥, ¥) is nuclear, and hence
0y (¥) must be nuclear, being a subspace of a nuclear space.

This technique can also be used to show that Oy (W) is complete
for certain ¥.

Prorosirion 11. Let the space ¥ be such that the injection of ¥ into &
is continuous and for every compact subset K of R* there is pe¥ such that
@ () 5 0 for e K. If ¥ is complete and bornological, then Oy (W) is complete.

Proof. Let {0} e a Cauchy net in 0, (¥). Then for each ze RY,
{o,(2)} converges; for if pe¥ is such that p(z) = 1, then {a,p} is a Cauchy
net in ¥, and therefore is a Cauchy net in &, and thus {o, (@) (2)} = {a,(x)}
converges. Set a(x) = lima,(x).

Now {¢} is Cauchy in L, (¥, ¥), and therefore there exists T Iy (¥, ¥)
such that off — 7T in L,(¥, ¥) ([6], Cor. 1 of IL 32.2). Moreover, from
above we must have Ty = ap for each peW.

It ouly remains to show that ae &, for then 7 = o* and a, -+ a in
Oy (¥) by Proposition 9. If K is a compact subset of R* and pe¥ is such
that () # 0 for i K, then a,¢ — ap in ¥, and therefore a,q - ap in &,
and hence «q,(f) — a(t) uniformly for ¢ X since @ i8 bounded away from 0
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on K. But, {D?a,} is also Cauchy in 0y (¥) for any j (Proposition 5)
so by the argument above {D?q,} converges uniformly on compact subsets
of RF. Thus ¢ is infinitely differentiable.

It is clear that this result is applicable to a wide class of test spaces.
For example, it holds for the spaces 2 and &, the space Z of Gelfand
and Shilov [1], and the space ', of Zielezny [9].

In a similar faghion, if ae @, (%), then o induces a continuous linear
map a*: ¥ ¥ by o*(T) = aT. The map o - a* imbeds Oy (P) in
L(¥;, ¥;). We denote by L,(¥;, ¥;) the space L(¥;, ¥;) equipped with
the topology of umiform convergence on equicontinuous subsets of 7.
If 7" denotes the topology induced on 0, (¥) by L,(¥;, ¥;), we have

PRrOPOSITION 12. The topology ' coincides with the original topology
defined on O ().

Proof. Let {a,} be a net in  0,,(¥), A be an equicontinuous subset
of ¥, and B be a bounded subset of ¥. Then o — 0 in ¢ iff a(T) -0 in
¥, uniformly for T'e 4 iff (a, T, @) — 0 uniformly for T'e 4, pe Biff a,p — 0

- in ¥ uniformly for gpe B ([2], 8.4.7) iff o, =0 in Oh(P).

Remark. See the remark following Theorem VII. X in [3] for a
similar statement pertaining to 0,(%), ° .

2. The Fourier transform. Let & be 2 test space (see [5] for the defi-
nition) with a continuous translation such that @ = & with the injection
continuous. If f denotes a function in I'(R¥), we denote by #{f} its
Fourier transform, #{f} () = [ ¢"®7(t)dt, and we set ¥ = {# {p}: pe B}.
(In the terminology of [1], ITL.1.3, the space ¥ is called the dual space
with respect to @.) The vector spaces @ and ¥ are algebraically isomorohie
via the Fourier transform, and we assume that the topology of ¥ is that
inherited from @ by means of this isomorphism. If Te @', its Fourier
transform, & {T}, is the element of ¥’ defined by (& {1}, & {o}>
= (2m)*(T, ¢> ([1], TIL.2.1). Thus & is a linear operator from &' into ¥,
and since & is essentially the adjoint of the inverse Fourier transform
from ¥ into @, # is continuous with respect to the strong (or weak®)
topologies of these spaces ([6], I1.19.5).

Throughout this section we make the assumption that the test space &
is such that any polynomial is a multiplier on @. Then & is closed under
differentiation and multiplication by polynomials and the formulas
8)  PD)FT} = F(Plin)T), #F{PD)T} =P(—ic)F{T}
hold for T'e ¢’ and P a polynomial ([1], IIL.2.1). From (8) it also follows
that multiplication by polynomials and differentiation are continuous
operators on ¥. Hence the space ¥ satisfies the conditions set forth in
Section 1 for multipliers.
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In this section we generalize Theorem VIL XXV of [3] which states
that @, and 0, are topologically isomorphic under the Fourier transform.
We show that for certain test spaces 0, (¥) and 0,(®) are topologically
isomorphic under the Fourier transform as defined above.

‘We first establish a simple version of the exchange formula VIL.S8.5
of [3].

LevMA 13. 0,(P) < 06.(F).

Proof. Let Te0,(P). If e, then ped 50 that Trped < &
Thus Te0,(¥) by the remarks in [3], VIL5.

Lmnva 14. If each pe © is a convolution operator on @, i.e., pe 0,(D),
then F {p} is a multiplier on .

Proof. Suppose y, =F {p,}¢¥ with ¢,e @. Then
4) Foty = F{prp,}?.

Also if {g,} is a net in & which converges to 0, then (4) shows that
F{p}F{p.} -0 in ¥. Hence #{p} belongs to 0, ().

TamorEM 15. If each pe @ is in  0,(D), then for each Te 0, (D)
(5) Flp»T} = F {p}7 {T}.

Proof. By Lemma 13, T 0,(%) so that & {T} is an infinitely differ-
entiable function (see the first part of the proof of Theorem IT.30.3 of [6]
where this fact is established). Therefore the elements on the right and
left side of (B) are both infinitely differentiable funections, and to show
that’they are equal it suffices to show that they are equal as elements
of Z' ([1], IIL.1.2). For ae @, by hypothesis, we have

FlorT} #{a}) = 2n)*(p*T, a) = (2n)"(T, pa).
But by Lemma 14,

FRFT} Flal) =(FT}, Flp*a}) = (2n)f<T, prap,
and the equality follows.

Formula (5) is the critical point in much of the discussion that
follows. In the final section we consider test spaces for which. this formula
holds. Note that we have not used the full statement; of Theorem VIL XXV
of [3], but only the fact that if Te 0,, then & {I} is an infinitely differen-
tiable function.

TemoRrEM 18. If for each pe @ and each T« O,(D), F{T g} — & [T\
e TEE. T o (D), F (T g} = (T} (),

‘ Pro_of. Let Te _ 0,(P) and again note that & {I} is an infinitely
differentiable function. If y =& {p}e¥ with @e®, then p# {17}
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=F{T+p}e¥. Also if {p,} is a net in & which converges to 0 in &, then
Flo}F{IT} =F {T'*¢,} -0 in ¥. Hence F{I} is a multiplier on ¥.

THEEOREM 17. If for each g « @ and each T < O,(D), F{T * ¢} = F{T}F {},
then F: O(D) - 0y (F) is continuous.

Proof. Let {T,} be a net in 0,(®) which converges to ¢ and let
B < ¥ be bounded. Then A = %~'{B} is bounded in & so that T,*p — 0
in @ uniformly for peA. Hence & {T, *¢} = F {T,}# {¢p} — 0 in ¥ uniformly
for # {¢}e B, and, therefore, #{T,} — 0 in 0 (¥). :

From Theorems 16 and 17 we see that the Fourier transform is a
linear continuous map from @,(®) into 0 (W) provided that formula (5)
is valid, and Theorem 15 gives a sufficient condition for this formula to
be satisfied. To establish the analogue of Theorem VIL. XXV of [3], we
now show that & carries ,(®P) onto @, (¥). This fact is essentially
egtablished in Theorem 1 of [1], IIL.3.7. To apply this result, we only
need to make the following observation.

LevmA 18. If the infinitely differentiable function g is in Oy (¥),
then ge¥'.

Proof. Since & is sequentially dense in &, there is a sequence
{p.} = 9 such that @, -~ 6 in &;. Then F{p,} -1 in &, and hence
F{p,} =1 in ¥, since the injection @ — & is continuous. Therefore,
9F {p,} g in ¥, and g<¥'.

By the lemma if ge 0,,(¥), then g has an inverse Fourier transform
and Theorem 1 of [1], ITL.3.7 gives

THEOREM 19. If ge 04, (F), then ¢ =F *{g} is a convolution operator
on @. That is, F~ {0 (P)} < O,(P).

‘We now establish our generalization of Schwartz’s result.

THEOREM 20. Suppose the test space D is such that for each pe @ and
each Te 0, (D), F{T+p} =F{IVF {p}. Then the Fourier transform is an
algebraic and topological isomorphism from Oy(P) onto O (¥).

Proof. From Theorems 17, 18, and 19, the Fourier transform is
a continuous isomorphism from @,(®) onto 0 (¥). It remains only to
show &~ is continuous. Suppose {,} is a net in @,,(¥) which converges
to 0 and F{T,} =y, with T, 0,(P). Let 4 < & be bounded so that
B = # {4} is bounded in ¥. Then & {p}y, = F{T,*¢p} ~ 0 in ¥ uniformly
for ped, and therefore T,*p — 0 in @ uniformly for ped. That is, T, -0
in ().

Again we remark that the critical point in the analysis above is the
validity of formula (5). Under the assumption that (5) holds it is easy
to establish the familiar exchange formula & {T*8} = # {T}# {8}, where
Te 0,(0) and Se .

Next we consider Theorem 20 for some of the classical test spaces.


GUEST


218 ) Ch. Swartz

3. Specific test spaces.

ExameLE 1. If we take for the test space @ the space @ of L. Schwartz,
then @,(9) = ¢, and ¥ = Z ([1], II1.1.2). Any polynomial ig certainly
& multiplier on 9 and condition (5) is clearly satisfied in this case so
Theorem 20 is applicable, and the Fourier transform is an algebraic and
topological isomorphism from &' onto @,(Z). The class of multipliers
on Z is given in [1], I1.3.2; a function g is in ,,(%) iff g is entire and
there are constants b > 0, s = 0, and M > 0 such that 19(2)] < M (L [2|™)
exp(bly|), where z = x--4y. Thus the fact that & carries & onto Oy (Z)
is just the Paley-Wiener—Schwartz Theorem ( [8], VI.4).

The other test spaces which we consider are the K {M,} spaces intro-
duced by Gelfand and Shilov [1]. Further we restrict attention to those
K {M,} spaces satistying conditions (M), (N), and (I) as seh forth in [1],
[4], [6]. Our first result shows that formula (6) of Theorem 15 is valid
for these test spaces.

TEEOREM 21. Let @ = K{M,), where the sequence satisfies condsi-
tions (M), (N), and (F). Then the bilinear map (@, p) —@*yp i continuous
Jrom ¢ xX @ — . ’

Proof. Let p be a positive integer and i< p, je N® It P pe D,
then

© [, @) \Dprp@lds = [lp()| [ I, @)D p(o—y)|dody
< O [ My)lp(w)ldy [ M, (0) | D (s ae
< Oy gl eyl

where p’ =g and €, are given by condition (F) ([4], [6]) and |||
= sup {[ M,|D7g[: |jl < g}. From (6) it follows that llo* pllp < O ol el
and since the sequence of semi-norms {Il I} generates the topology of &
([1], 11.4.2), the theorem is established.

COROLLARY 22. If e &, then ge 0(D).

Thus if @ = K{M,} is such that & < & with the injection continuous
and if polynomials are multipliers on @, then the Fourier transform is
an algebraic and topological isomorphism from 0,(®P) onto Oy (V) by
Theorem - 20.

Bxavern 2. I M,(0) = (L+ |o|2)?, then K {M,} = & and the remarks
above give exactly Theorem VII. XXV of [3] (see also [7]). (It is observed
in [4] that {M,} satisfies conditions (M), (N), and (F).) Note that the
only faet used pertaining to the Fourier transform defined on ¢, = 0,(&)
was that # {T} i3 an infinitely differentiable funetion for any T'ed,.

Examern 3. For M,(s) = exp(py (), y(z) = L+ |=*)¥, K {,}
=47 ([9]) and {M,} satisfies conditions (M), (N), and (F) ([4]). It is
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clear that o', < & with continnous injection and that polynomials are
multipliers on 2¢,. The remarks following Corollary 22 then give that
the Fourier transform is an algebraic and topological isomorphism from
O,(o1) onto  Op(F {o}). This fact is just Theorem 8 of [9].

Theorem 20 may also be applied to inductive limits of X {1} spaces
like those treated in Theorem 21. This follows from the following observa-
tion.

ProPOSITION 23. Let & and @, (n = 1,2,...) be test spaces with

continuous translations such that &, < Ppyy and & = JB,. Suppose the
1

n =

injeotion of &y, into Bry, is continuous and ¢ = ind@,. If D, < U,(D,)
for each n, then & < 0,(®).

Proof. Let pe @. Then pe Py for some N. The continuity of the
map y = @+*y from @ into @ follows from the fact that for = > N the
map p —@*y is continuous from @, into @, ([6], II1.50).

Thus Theorem 20 is applicable to the &-spaces of Gelfand and Shiloy
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